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Abstract The functional connectome represents a compre-
hensive network map of functional connectivity throughout
the human brain. To date, the relationship between the orga-
nization of functional connectivity and cognitive performance
measures is still poorly understood. In the present study we
use resting-state functional magnetic resonance imaging
(fMRI) data to explore the link between the functional
connectome and working memory capacity in an individual
differences design. Working memory capacity, which refers to
the maximum amount of context information that an individ-
ual can retain in the absence of external stimulation, was
assessed outside the MRI scanner and estimated based on
behavioral data from a change detection task. Resting-state
time series were analyzed by means of voxelwise degree and
eigenvector centrality mapping, which are data-driven net-
work analytic approaches for the characterization of function-
al connectivity. We found working memory capacity to be

inversely correlated with both centrality in the right
intraparietal sulcus. Exploratory analyses revealed that this
relationship was putatively driven by an increase in negative
connectivity strength of the structure. This resting-state con-
nectivity finding fits previous task based activation studies
that have shown that this area responds to manipulations of
working memory load.
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Introduction

The ability to retain and to manipulate information, even in
the absence of external stimulation, is a key prerequisite for
goal-directed and purposeful interaction with the environ-
ment. The mental faculty underlying this ability has been
labeled working memory (Baddeley and Hitch 1974;
Goldman-Rakic 1995) and is one of the most central con-
cepts in cognitive psychology and the cognitive neurosci-
ences, most likely because of its relevance for clinical phe-
notypes (Lee and Park 2005), intelligence (Conway et al.
2003) and academic success (Alloway and Alloway 2010).
A distributed set of brain regions supports working memory
processes with lateral prefrontal cortex (PFC) being the
most prominent (Owen et al. 2005). Lateral PFC shows
sustained activity during the retention of information in
working memory. It is debated however, if lateral PFC
stores information itself (Sreenivasan et al. 2014; Riley
and Constantinidis 2016). Current systems neuroscience ac-
counts content that lateral PFC provides attentional control
signals that exert control over extrastriate areas that hold
representations of the retained information online (Smith
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and Jonides 1999; Petrides 2000; D’Esposito et al. 2000;
Awh and Jonides 2001; Lee and D’Esposito 2012; Riggall
and Postle 2012; Scolari et al. 2015; Lorenc et al. 2015).
This segregation of the working memory network into stor-
age and control structures is in line with cognitive working
memory accounts that postulate a control system that mon-
itors modality specific storage units (Baddeley 1986;
Cowan 1999).

A neural correlate for the storage unit for visuospatial in-
formation has been localized in posterior parietal regions,
along the dorsal visual stream (Mishkin et al. 1983): Here,
neural activity is sensitive to the amount of information
retained: Evidence from electroencephalographic recordings
(Vogel andMachizawa 2004; Vogel et al. 2005) and functional
magnetic resonance imaging (Todd and Marois 2004, 2005)
shows a linear (positive) relationship between activity and
working memory load until the individual’s capacity limit is
reached, and an asymptotic plateau afterwards. The neural
source of these signals has been localized along the
intraparietal sulcus, with stronger activation in the right hemi-
sphere (McNab and Klingberg 2008).

An imminent aspect of this neural framework for working
memory is the idea that all implicated regions exchange infor-
mation during working memory performance. And indeed,
the analysis of task-related functional connectivity (Palva
et al. 2010; Nee and Brown 2013) indicates that the distributed
neural sites activated by working memory tasks form a func-
tionally connected network. It is assumed that characteristics
of this network relate to performance onworkingmemory task
and can be diagnostic for individual differences in the normal
range but also in clinical conditions (Repovš and Barch 2012).

The field of connectomics is currently emerging as the
science of brain networks. Besides seed-based analysis of sin-
gle brain connections and multivariate statistical composition
of connectivity data, the field draws from the corpus of math-
ematical graph theory to characterize connectivity on the
whole brain level (van den Heuvel and Hulshoff Pol 2010;
Bassett and Bullmore 2009). In order to study the functional
connectome, cognitive neuroscience studies have extensively
capitalized on resting-state functional magnetic resonance im-
aging (rs-fMRI) data (Smith et al. 2013; Vaidya and Gordon
2013). In typical rs-fMRI experiments, participants do not
engage in a specific task while functional images are acquired
(van den Heuvel and Hulshoff Pol 2010). Despite the uncon-
strained nature of the resting-state, there is a high degree of
stability in the organization of functional connectivity
(Shehzad et al. 2009; Braun et al. 2012; Cao et al. 2014)
suggesting trait-like properties of the functional connectome
at rest (Markett et al. 2013).

While working memory can be understood as a collection
of processes that support encoding, maintenance, and retrieval
of information in support of current task goals and therefore
has a strong state component (D’Esposito and Postle 2015),

working memory capacity on the contrary is thought to have
stable trait-like properties. Working memory capacity refers to
the maximal amount of information an individual can retain
over a short interval in the absence of external stimulation
(Owen et al. 2005) and is surprisingly limited (Cowan
2001), given its tremendous impact on general cognitive abil-
ity (g, intelligence) (Conway et al. 2003). Working memory
capacity cannot be directly observed but can only be inferred
across a set of instances. In the visual modality, this can be
accomplished by the change-detection task that involves the
short-term retention of a variable number of visual objects
(Luck and Vogel 1997).

In the present study we seek to characterize neural
correlates of working memory capacity as a cognitive
trait with network properties of the resting brain. To
this end, we apply two types of centrality mapping to
resting-state data. During centrality mapping, a weight is
assigned to each voxel based on its connectivity pattern
with all other voxels (Lohmann et al. 2010). We calcu-
lated degree centrality (DC) which is a voxel-wise sum-
mary measure of connectivity strength. DC mapping ex-
clusively aims at Bfirst step connectivity ,̂ i.e. at con-
nectivity strength between a given voxel and all other
voxels. We therefore complemented our analysis by ei-
genvector centrality (EC) mapping which additionally
takes connectivity pattern beyond the first step into ac-
count. During EC mapping, centrality scores are weight-
ed by the centrality of connected voxels. Thus, higher
values do not only indicate more connections, but also
more connections to well-connected voxels. As data-
driven and model-free approaches, centrality mapping
techniques do not require the selection of regions or
networks of interest as nodes for network analysis and
are an ideal method for the study of connectivity
throughout the entire functional connectome. Besides
from this exploratory whole-brain approach, we focus
on the intraparietal sulcus region as this area has been
implicated in visuo-spatial working memory capacity in
previous reports (McNab and Klingberg 2008).

Methods

Subjects

The study protocol was approved by the ethics committee of
the University Clinics Bonn and was in accordance with the
Declaration of Helsinki. A total of N = 78 healthy, right-
handed volunteers (n = 39 males, n = 39 females, mean age
M = 23.32 years, SD = 3.71) participated in the study after
providing informed written consent. All participants were free
of past or present psychiatric disorders, neurological disorders
or past head injuries as assessed by a screening questionnaire.
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Behavioral testing

Working memory capacity was assessed outside the MRI
scanner immediately after image acquisition by a change de-
tection task (Luck and Vogel 1997). A total of 128 trials were
administered in 4 blocks (hence 32 trials in each block). The
stimulus sequence of a representative trial is depicted in Fig. 1.
Each trial started with a centrally presented fixation cross
(500 ms). Subsequently, a variable number of colored squares
(.08°) lit up on randomly chosen positions around central fix-
ation (about 3.3° away). Squares were either black, blue,
green, purple, red, white or yellow, and no squares of the same
color were presented on a given trial. The brief presentation of
100 ms ensured that participants were not able to rely on eye-
movements or meta-mnemonic strategies to memorize the
squares’ colors. The number of squares was increased block
wise from three to six (block 1 = three squares, block 2 = four
squares, block 3 = five squares and block 4 = six squares).
After stimulus presentation and a stimulation free retention
interval of 1000 ms a probe array appeared. This array was
either identical to the memory array (catch trial) or different
with respect to the color of one square (change trial). Figure 1
depicts a change trial. Both trial types occurred equally often
(16 catch and 16 change trials) and participants were instructed
to indicate by button press on a keyboard whether a change had
occurred or not. Trials were spaced by an intertrial interval of
1000 ms. Participants were allowed to take breaks between
blocks. Participants chose to rest for M = 6.7 s between blocks
on average (SD = 8.9). The length of breaks was not correlated
with the main performance measure (r = −.049, n.s.).
Individuals’ working memory capacity was quantified by a
formula originally proposed by Pashler (1988) for whole-
display change detection paradigms: For each block, the max-
imal capacity was estimated by K = ((HR - FR) / (1 - FR)) * N,
where K is the individuals working memory capacity on this
block, HR and FR the hit and false alarm rates and N the
number of squares in the array. As the main dependent mea-
sure, the highest individual capacity estimate across blocks
was selected and set as individuals’ overall working memory
capacity (Markett et al. 2010). This measure captures working
memory capacity best because the change detection task is a
classical power test with little between-participant variation

before and a performance plateau after the individual capacity
limit is reached.

Imaging protocol

From each participant, 245 T2*-weighted volumes were ob-
tained on a Siemens Avanto 1.5 Tscanner (Siemens, Erlangen,
Germany) at the Life & Brain Center in a single 12-min ses-
sion. Each volume consisted of 38 slices (thickness: 3 mm,
interslice gap: 1 mm, in plane resolution: 3 mm × 3 mm)
scanned in interleaved order (TR: 3.04 s, TE: 45 ms, Flip
Angle: 90°, Field of View: 192 mm). Participants were
instructed to lie as still as possible with their eyes closed and
without thinking about anything in particular and without fall-
ing asleep. All participants confirmed immediately after image
acquisition via the MRI intercom that they managed to stay
awake throughout the scanning session. After the functional
scan, a high resolution structural T1-weighted image with 160
sagittal slices with 1 mm thickness was acquired from each
participant using a Magnetization Prepared Rapid Gradient
Echo (MP-RAGE) sequence (Field of View: 256mm, in plane
resolution: 1 mm x 1 mm). Foam padding was used to con-
strain head movements during image acquisition.

Preprocessing

Preprocessing of the functional MRI data was carried out
using SPM8 (www.fil.ion.ucl.ac.uk/spm) and the data
processing assistant for resting state fMRI (DPARSF, Yan
and Zang 2010) as in a previous study using voxelwise cen-
trality mapping (Markett et al. 2015). Preprocessing contained
the following steps: (1) removal of the first ten volumes (2)
slice timing (3) realignment (4) controlling for twelve voxel-
specific movement parameters and the head motion scrubbing
regressors (Power et al. 2012; DPARSF default settings), as
well as whole brain, white matter and cerebrospinal fluid sig-
nals by means of linear regression (5) bandpass filtering (.01
–.08 hz) (6) coregistration with the high resolution structural
scan (7) spatial normalization using the T1-unified segmenta-
tions of the structural image and (8) spatial smoothing with a
Gaussian kernel with a full width of 6 mm at half maximum.
Identification of bad time points for head motion scrubbing
(Bmotion censoring^) was based on the DPARSF default set-
ting: Time points with a framewise displacement >0.5 as well
as time points immediately preceding (one time point) and
succeeding (two time points) these time points were flagged
as bad. Scrubbing was performed by means of linear regres-
sion to avoid individual differences in the amount of time
points for connectivity analyses. Three participants were ex-
cluded from further analyses because of excessive headmove-
ment (> 3° rotation or >3 mm translation).

Even though motion scrubbing and bandpass filtering are
recommended and commonly applied in resting-state fMRI

Fig. 1 Representative trial from the working memory task. Depicted is a
trial with three items in the target array
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studies, the two preprocessing steps are not without criticism
(Carp 2013; Niazy et al. 2011; Kalcher et al. 2014). We there-
fore tested whether the main results reported in the results
section depended on these two preprocessing steps. Omitting
scrubbing from the preprocessing pipeline did not change the
results. Omitting bandpass filtering and only applying a high
pass filter of .01 hz however, affected the results in a way that
no significant results were obtained. The here reported asso-
ciations hold only for the lower frequency band of resting-
state time series.

Graph formation and network analysis: The functional
connectome was modeled as a weighted undirected graph with
each voxel in the cerebrum as a node and functional connectiv-
ity between each pair of voxels as an edge. Edge weights
representing connectivity strength were defined as linear corre-
lations between blood oxygen level dependent (BOLD) time-
series of each pair of voxels. We denote the corresponding ad-
jacency matrix by R, which is a symmetric N-by-N matrix,
where N is the number of voxels. DC is defined as the row-
wise sum of all entries in the adjacency matrix. EC is defined as
the normalized positive eigenvector belonging to the largest
eigenvalue of the adjacency matrix. Due to the Perron-
Frobenius theorem the existence and uniqueness of such an
eigenvector is ensured for (irreducible) matrices with non-
negative entries. While the assumption of irreducibility is valid
here, correlations might be negative. Hence a transformation R
into a non-negative connectivity measure is required. This is
done in our case by linear scaling to the unit interval
(Lohmann et al. 2010; Wink et al. 2012), i.e. we define the N-
by-N connectivity matrix C by Cij = ( 1 + Rij ) / 2. No further
thresholding was applied.

The main issue of performing centrality mapping is
assembling and storing the matrix C and R, because of
the enormous number of correlations. This obstacle can
be overcome by using a so-called matrix factorization
approach proposed by Wink et al. (2012): the correla-
tion matrix R is rewritten as a product R = QQt, where
Q is an N-by-T matrix and Qt its transposed matrix.
Here T is the length of the time series which is several
orders smaller than N. Note that Q represents the nor-
malized time series, i.e. the i^th row of Q corresponds
to the time series of the i^th voxel with zero mean and
unit variance. Based on this factorization ECM was car-
ried out in Matlab with the power-iteration algorithm
applied to C as proposed by Wink et al. (2012). The
only storage requirement for this algorithm is the N-by-
T matrix Q (instead of the N-by-N matrix R) and the
vector-matrix-multiplication (as the core operation in the
power-iteration algorithm) is rendered efficiently. For
DC mapping, row-wise sums of C were computed.
Because only first-step connections are required for the
calculation of DC, the only computational requirement
for DC mapping was assembling but not storing R and

C which rendered DC computation also efficient. Prior
to statistical analysis, all centrality maps were trans-
formed into a Gaussian distribution (Van Albada and
Robinson 2007).

Statistical analyses

We relied on parametric statistical testing for all analyses be-
cause a Shapiro-Wilk test indicated that the individual work-
ing memory capacity estimates followed a normal distribution
(p = .489). Possible sex differences were assessed by a t-test
and a possible relationship with age was explored using linear
correlation analysis.

Association between working memory capacity and cen-
trality maps were tested by multiple linear regression models
in SPM8 with working memory capacity as covariate of inter-
est and age, sex, and the number of scrubbed time points as
nuisance regressors. The family-wise error in the resulting
statistical parametric map was corrected at the cluster level
(p < .05), after applying an initial statistical threshold of
p < .001, uncorrected.

The calculation of centrality values included a linear scal-
ing factor to circumvent the problem that arises from negative
edge weights (Wink et al. 2012). This, however, complicates
the interpretation of individual differences. Lower centrality
values can either result from weaker positive connections or
from stronger negative connections. Higher centrality values
on the other hand can result from stronger positive or less
pronounced negat ive connect ions . We therefore
complemented our main analysis by an exploratory analysis
where the sum of all positive and all negative connections was
calculated separately from the R matrix and then correlated
with working memory capacity. Because of its exploratory
nature, this analysis was constrained to clusters that showed
significant associations between centrality estimates and
working memory capacity in the main analysis. Please note
that this approach is similar to the analysis of Bfirst step
connectivity^ proposed by Geib et al. (2015).

Results

Age, gender and performance in working memory

Women and men did not differ in their working memory ca-
pacity (t(73) = .342, p = .733) and there was no correlation
between working memory capacity and participants’ age
(r = −.089, p = .499).

Working memory and the functional connectome

Figure 2 depicts participants’mean working memory capacity
depending on working memory load, i.e. number of items in
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the memory array. In accordance to previous reports, mean
maximal working memory capacity equaled about four items

(Cowan 2001; Vogel and Machizawa 2004). Fig. 3 shows the
results from the whole brain individual differences analysis on
the relationship between working memory capacity (kmax)
and the centrality maps. A negative relationship between cen-
trality and WMC was observed for both DC (top panels) and
EC (bottom panels). Both analyses revealed almost identical
clusters in cortical areas along the right intraparietal sulcus
including the inferior and superior parietal lobules (DC: peak
voxel at x = 42, y = −57, z = 48, cluster size k = 46 voxels,
t(70) = 3.76, p = .027, FWE-corrected; EC: peak voxel at
x = 42, y = −57, z = 48, cluster size k = 45 voxels,
t(70) = 3.947, p = .022, FWE-corrected). The reverse contrasts
did not yield any results. Because the right intraparietal sulcus
area has previously been found to be sensitive to working
memory load in a task-activation fMRI study using the change
detect ion task (McNab and Klingberg 2008), we
complemented the whole brain analysis by a region of interest
analysis (ROI) with a spherical ROI (10 mm radius) around
the peak activation coordinate (x = 48, y = −66, z = 48) re-
ported in the McNab and Klingberg (2008) paper. The ratio-
nale was to examine whether the present resting-state finding
includes the precise anatomical location of previously

Fig. 2 Mean working memory capacity depending on working memory
load across participants as estimated with the Pashler-K formula

Fig. 3 A cluster in the right
intraparietal sulcus (x = 42,
y = −57, z = 48) shows an inverse
relationship with working
memory capacity (Top panel for
DC, bottom panel for EC). The
scatterplot on the top shows
extracted mean DC values from
the cluster, plotted against
working memory capacity. The
scatterplot on the bottom shows
results for EC correspondingly
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reported activation changes in the intraparietal sulcus. The
statistical threshold for this ROI analysis was set to p < .05,
corrected for the family wise error rate, as implemented in
SPM’s small volume correction. The additional ROI analysis
confirmed that the cluster observed in the data-driven whole
brain analyses corresponds to the previously reported location
(DC: t(70) = 3.76, p = .018, family-wise error corrected at the
ROI level; EC: t(70) = 3.73, p = .021, family-wise error
corrected at the ROI level).

In a last step, we correlated working memory capacity with
the sum of positive and negative functional connectivities
from the cluster in the intraparietal sulcus separately (see
methods). The brain-wide sum of all positive connectivities
did not correlate with working memory capacity (r = .096,
p = .410) while the brain-wide sum of all negative connectiv-
ities was intercorrelated with working memory capacity
(r = −.256, p = .027). The negative sign of the correlation
coefficient indicates stronger negative connections of the
intraparietal sulcus in high capacity individuals.

Discussion

The present study’s objective was to elucidate the relationship
between resting-state connectivity and workingmemory capac-
ity by combining centrality mapping on the voxel-level and
behavioral performance on a visual change detection task. We
observed an inverse relationship between degree and eigenvec-
tor centrality in a cluster alongside the right intraparietal sulcus
and the maximum number of items participants could retain in
working memory. Degree centrality is a summary measure of
direct functional connectivity of a given brain region while
eigenvector centrality introduces an additional weighting of
the centrality estimates by taking connectivity profiles of other
brain regions into account. Given the high degree of similarity
in the results from either method and the considerable concep-
tual overlap between the two measures, we conclude that it is
particularly the first step connectivity of the right intraparietal
sulcus that is linked to working memory capacity.

The negative relationship between centrality estimates and
working memory capacity suggests that the intraparietal sul-
cus is less centrally embedded into the whole brain functional
connectome in individuals with higher working memory ca-
pacity. This, however, was not confirmed in additional analy-
ses. Because of the linear scaling factor that was applied to
account for negative edge-weights (Wink et al. 2012), lower
centrality estimates do not necessarily reflect weaker positive
connectivity but can also result from more pronounced nega-
tive connectivity. We found that negative but not positive con-
nectivity strength of the intraparietal sulcus was linked to
working memory capacity. This suggests that the reduced cen-
trality estimates in high capacity individuals resulted from
more pronounced negative connectivity of the intraparietal

sulcus. The intraparietal sulcus is a nexus within the fronto-
parietal attention network but shows a strong negative cou-
pling with task-negative regions at rest (Fox et al. 2005; Fox
et al. 2009). Weaker anti-phasic relationships between task-
positive and negative networks at rest have been linked to
higher behavioral variability and thus poorer performance dur-
ing cognitive tasks (Kelly et al. 2008). The current finding
could reflect a similar relationship. Increases in negative con-
nectivity strength of the intraparietal sulcus in high capacity
individuals could thus also stem frommore efficient inhibition
of task-irrelevant processing which has been shown to inter-
rupt working memory and control processing (Vogel et al.
2005; Weissman et al. 2006).

Previous work has highlighted the posterior parietal cortex
and particularly the intraparietal sulcus as key neural corre-
lates of performance in the change detection working memory
task. This is important to note since the present study focussed
on a graph theoretical analysis of resting-state fMRI data.
Even though graph theoretical approaches to functional con-
nectivity data are widely used and well-evaluated means for
the data-driven exploration of large connectivity datasets
(Keilholz et al. 2010), its high level of abstraction raises ques-
tions on the underlying physiology (De Vico Fallani et al.
2014). Evidence from complementary approaches has shown
that the intraparietal sulcus seems to scale its activity during
the retention of visuospatial information with memory load.
Event related potentials in electrophysiological activity over
parietal sites show an increasing negativation that depends on
the number of items retained and BOLD activity in the
intraparietal sulcus increases linearly with increasing working
memory load (Vogel et al., 2004; Todd andMarois 2004). The
present study’s cluster lies at the exact same location as a load
sensitive cluster reported previously (McNab and Klingberg
2008). It thus appears that the association between the
intraparietal sulcus and working memory capacity extends
into the stimulation-free resting state. Newer evidence sug-
gests that the intraparietal sulcus encodes the precision of
working memory representations (Weber et al. 2016) and
shows increased functional connectivity with lateral PFC dur-
ing the manipulation of memory representations (Bray et al.
2015). This connectivity is presumably supported by structur-
al white matter tracts that connect posterior parietal and pre-
frontal sites either directly or indirectly via the thalamus and
the basal ganglia. Working memory maintenance correlates
particularly with structural connectivity strength of the direct
pathway (Ekman et al. 2016). This finding was obtained by a
graph theoretical investigation and validated by probabilistic
tractography. Our version of change detection task empha-
sized working memory maintenance which raises the question
how the present finding relates to structural connectivity.
Future studies may want to combine resting-state functional
with structural connectivity assessments to characterize the
brain network that underlies working memory and individual
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differences inworkingmemory functions inmore depths. This
should be combined with the examination of task-evoked net-
work changes during working memory. First studies have
looked at network-specific and brain-wide connectivity
changes during working memory tasks (Cohen et al. 2014;
Cohen and D’Esposito 2016). Such approaches will help to
clarify the relationship between activity and connectivity, at
rest and during task performance. Furthermore, it is of utmost
importance to characterize connectivity changes with
complementary methods. Palva et al. (2010) have used
magnetencephalographic recordings to study brain wide phase
synchrony in different frequency bands. Of note, they also
identified the intraparietal sulcus as the connectivity hub with
the highest involvement in individual differences in working
memory capacity. New approaches have been proposed to
combine hemodynamic and electrophysiological recordings
for the formation of brain-wide network graphs (Yu et al.
2016). Such approaches will help to clarify the physiological
basis of graph-theoretical measures. Together with other ap-
proaches to resting-state fMRI such as independent compo-
nent analysis (Beckmann et al. 2005; Seeley et al. 2007; Bey
et al. 2015; Smith et al. 2015) and resting-state data of higher
quality such as data taken from the Human Connectome
Project (Van Essen et al. 2013), they have the potential to
eventually clarify the relationship between functional connec-
tivity and higher cognition.

Even though areas alongside the intraparietal sulcus show
sustained activity during retention intervals of working mem-
ory tasks, the identity of memorized items is not decodable
from this activity: These areas seem to encode trial-specific
information related to task instructions while stimulus identity
is encoded by non-sustained activity in low-level sensory
areas (Riggall and Postle 2012). Given the intraparietal sulcus
does not store information itself, the present finding should be
better interpreted as a resting-state correlate of a working
memory related control processes rather than a correlate of
item storage capability at baseline. This, however, would rise
the question why prefrontal control areas do not show a sim-
ilar relationship. While the prefrontal cortex shows sustained
activity during working memory retention (Curtis and
D’Esposito 2003), its activity levels do not correlate with
working memory load in the change detection task (Todd
and Marois 2004). It is conceivable that the present associa-
tion between working memory capacity and the intraparietal
connectivity at rest reflect between-participant efficiency by
which this region can be recruited during task processing.

Working memory capacity relates positively to general
cognitive ability, even to an extent that some authors consider
the two constructs isomorphic (Kyllonen and Christal 1990).
A prominent theory on the neurobiological foundations of
cognitive ability highlights the integration of frontal and pari-
etal sites as a neural substrate of human intelligence differ-
ences (Jung and Haier 2007). In the resting state, the

intraparietal sulcus is the central hub of the fronto-parietal
network (Fox et al. 2005). This network has already been
linked to general cognitive ability (Colom et al. 2010).
Furthermore, frontal and parietal regions have recently been
implicated in a multivariate pattern of brain connectivity that
relates to a wide range of behavioral and demographic vari-
ables, including general cognitive ability (Smith et al. 2015).
Given the high importance of general intelligence for academ-
ic success, health, and longevity (e.g. Gottfredson and Deary
2004), it is not only of high importance to understand the basis
of intelligence, it is also imperative to derive training routines
and to obtain measures to monitor training success. The fast
centrality mapping approach applied here provides a fast and
efficient means to assess the organization of large scale func-
tional connectivity across the entire brain network. It would be
valuable to explore the robustness of our present finding
across different populations and its plasticity to cognitive
training programs.
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