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Abstract Diffusion MRI (dMRI) data acquired on different
scanners varies significantly in its content throughout the
brain even if the acquisition parameters are nearly identical.
Thus, proper harmonization of such data sets is necessary
to increase the sample size and thereby the statistical power
of neuroimaging studies. In this paper, we present a novel
approach to harmonize dMRI data (the raw signal, instead
of dMRI derived measures such as fractional anisotropy)
using rotation invariant spherical harmonic (RISH) features
embedded within a multi-modal image registration frame-
work. All dMRI data sets from all sites are registered to
a common template and voxel-wise differences in RISH
features between sites at a group level are used to harmo-
nize the signal in a subject-specific manner. We validate
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our method on diffusion data acquired from seven differ-
ent sites (two GE, three Philips, and two Siemens scanners)
on a group of age-matched healthy subjects. We demon-
strate the efficacy of our method by statistically comparing
diffusion measures such as fractional anisotropy, mean dif-
fusivity and generalized fractional anisotropy across these
sites before and after data harmonization. Validation was
also done on a group oftest subjects, which were not used to
“learn” the harmonization parameters. We also show results
using TBSS before and after harmonization for independent
validation of the proposed methodology. Using synthetic
data, we show that any abnormality in diffusion measures
due to disease is preserved during the harmonization pro-
cess. Our experimental results demonstrate that, for nearly
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identical acquisition protocol across sites, scanner-specific
differences in the signal can be removed using the proposed
method in a model independent manner.

Keywords Diffusion MRI · Harmonization · Multi-site ·
Inter-scanner · Intra-site

Introduction

Diffusion MRI (dMRI) data is widely used to study several
brain disorders, such as Alzheimer’s disease, schizophre-
nia etc. Several multi-center studies have acquired dMRI
data at different sites. However, the inter-scanner variabil-
ity poses a potential problem for joint analysis of these
data sets (Matsui 2014; Magnotta et al. 2012; Dariya et al.
2016). This inter-site variability in the measurements can
come from several sources, such as the number of head
coils used (16, 20 or 32 channel head coil), sensitivity of
the coils, the imaging gradient non-linearity, the magnetic
field inhomogeneity, the differences in the algorithms used
to reconstruct the data, and other scanner related factors
(Kochunov et al. 2014). These factors lead to non-linear
changes in the data as well as in the estimated diffusion
measures such as fractional anisotropy (FA). Thus, aggre-
gating data sets from different sites is challenging due to
the inherent differences in the acquired images from differ-
ent scanners (Giannelli et al. 2014). Although the inter-site
variability can be minimized by acquiring data using similar
type of scanners (same vendor and version) with simi-
lar pulse sequence parameters (Cannon et al. 2014), many
recent studies have shown that there still exist large dif-
ferences between diffusion measurements from different
sites (Kochunov et al. 2014; Mirzaalian et al. 2015, 2016).
Specifically, the inter-site variability in FA and mean dif-
fusivity (MD) is not uniform over the entire brain, but is
tissue specific as well as region specific (Mirzaalian et al.
2015; Mirzaalian et al. 2016). Thus, harmonizing dMRI data
across sites is imperative for joint analysis of the data.

There are three major categories of methods that have
addressed the issue of dMRI data pooling (not necessar-
ily harmonization). The first category of methods use Meta
Analysis (Salimi-Khorshidi et al. 2009; Jahanshad et al.
2013; Kochunov et al. 2014), which involves combining
z-scores of a given diffusion measure (say FA) from all
sites to determine group differences. However, the subject
population at each site may not be sufficient to capture
the variance of the entire population, a critical require-
ment to ensure proper pooling and analysis of the z-scores
(which depends on the variance and not just the mean). The
second category of methods use Statistical Covariates to
account for site-specific differences (Forsyth and Cannon
2014; Venkatraman et al. 2015). For example, the method

of Kochunov et al. (2014) uses z-scores from each site and
then regresses-out site specific differences using statistical
covariates. In general, a linear model is used to account
for these site-specific differences, which may not be accu-
rate enough if one wants to analyze fiber tracts that travel
between distant brain regions, as regional variations are not
taken into account in this framework. Finally, both of the
methodologies mentioned above correct for scanner differ-
ences at the last stage of the analysis using specific dMRI
measures based on a certain model of diffusion.

Recently, we proposed a third category of method
(Mirzaalian et al. 2015, 2016), which harmonized the
dMRI data in a model independent manner. We harmo-
nized the raw dMRI signal appropriately in different brain
regions and tissue types. In this work, we further build on
this methodology, but significantly simplify it and address
some of its limitations as discussed below.

Our contribution

In this paper, we provide an extension of our previous
work (Mirzaalian et al. 2015, 2016) and address some
of its limitations by using a registration-based framework.
The main contributions of this work are: i) The current
work has no dependence or requirement of an a-priori
computed Freesurfer (or any other) segmentation to obtain
correspondence between different brain regions across sub-
jects. In fact, this was one of the challenges of our earlier
work, where a separate mechanism was devised to cor-
rect all errors in the Freesurfer segmentation, which were
quite common. For example, several voxels at the bound-
ary between white and gray would be easily misclassified
by Freesurfer once it was transformed to the diffusion MRI
space of each subject due to limited resolution. This correc-
tion was done separately for each site and had to be tuned
for each region. These limitations don’t exist in the current
work; ii) In our earlier work, a single group level differ-
ence between sites for each SH order was computed for each
region separately, which was then uniformly used to update
all voxels in that particular region. In comparison, the pro-
posed framework is voxel-wise and thus allows to update
the differences at a voxel level, albeit in a smooth manner.
This can be clearly seen in Fig. 2, where both voxel wise
and region-wise differences in RISH features are displayed
for all the sites; iii) In our earlier work, two levels of map-
ping were required: 1. Region-wise, 2. Voxel-wise. In the
current framework, this is simplified and only a voxel-wise
mapping is directly computed. iv). Using synthetic data, we
also show that the proposed method is robust and preserves
the changes in diffusion measures due to subtle pathology.

Thus, the proposed method is a much more simplified
version of our earlier work and is quite easy to use and
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Fig. 1 Outline of the proposed method for inter-site dMRI data har-
monization. The reference and the target sites are shown in green
and red, respectively. Given the RISH features, we start by perform-
ing multi-modal registration between all data sets. Next, we compute

voxel-wise population average of the RISH features for each site and
also the group differences (�) between the sites. By unwarping the
computed differences to a given subject in a target site, we map the SH
coefficients, which are then used to harmonize the dMRI signal

implement, without the requirement for any kind of param-
eter tuning or dependence on Freesurfer or any other kind
of segmentation algorithm. The code will be publicly avail-
able soon. Please contact the senior author on this paper for
further details.

Method

Figure 1 shows an outline of our dMRI data harmonization
procedure. Details about each of the steps in this procedure
are given in the following sections.

Multi-modal image registration

Any dMRI signal (at a single b-value) can be represented
accurately in a basis of spherical harmonics. Rotation invari-
ant features derived from this representation can be used
to harmonize the diffusion signal as these features do not
depend on the orientation of the white matter fibers or gray
matter tissue, but only on the frequency content. Thus, the
signal can be modified by changing the rotation invariant
spherical harmonic (RISH) features, without changing the
underlying fiber orientation (and hence the connectivity) of
each subject. Consequently, we use the RISH features to
harmonize dMRI data.

We start by computing a set of RISH features at each
voxel from the dMRI signal S = [s1...sG]T along G

unique gradient directions. This signal can be compactly
represented in a basis of spherical harmonics (SH) with
coefficients Cij given by: S ≈ ∑

i

∑
j CijYij , where Yij

are the SH basis functions of order i and degree j . Several
RISH features F at each voxel can be computed as follows
(Mirzaalian et al. 2015; Descoteaux et al. 2007)1:

F = [‖Co‖2‖C2‖2...‖C8‖2] where:‖Ci‖2 =
2i+1∑

j=1

(Cij )
2.

(1)

1In this work, we computed the RISH features for order {0, 2, 4, 6, 8}
and ignored the higher order terms as they are very high frequency
terms primarily capturing noise in the data.

These RISH feature images are then used within a reg-
istration framework with data from all subjects across all
sites to create a single template. There are 5 RISH fea-
tures for SH of up to order 8; each RISH feature can be
represented as a scalar image (see Fig. 2). Thus, for each
subject we have 5 image volumes (RISH feature images),
which we term as multi-modal images as they capture
different aspects (frequency) of the diffusion signal. Our
multi-modal template (consisting of the 5 RISH feature
images) is computed using the ANTs algorithm (Avants
et al. 2014) (i.e., vector-image registration of RISH feature
images).

In the template space, given the registered RISH images,
we approximate the expected value of the voxel-wise RISH
features as the sample mean over the Nt subjects for the t th

site using:

Et ([‖Ci‖2]) ≈
Nt∑

n=1

[‖Cn
i ‖2]/Nt ,

where ‖Cn
i ‖2 is the RISH feature of order i for the nth

subject. Unlike the method of Mirzaalian et al. (2015) and
Mirzaalian et al. (2016), where two separate mappings are
computed, one at the ROI level and another one at the voxel
level, in this work, we only compute one mapping at each
voxel to harmonize the signal. In Fig. 2, we show examples
of voxel-wise (using the registered images) and region-wise
(using Freesurfer label maps) RISH features for different
SH orders and different sites. As can be seen in these fig-
ures, the RISH features vary significantly across the brain
as well as in different tissue types (white matter, neocor-
tical, subcortical). Comparing the amount of energy of the
signal at different orders in Fig. 2, it can be seen that the
energy at order 8 is 500 times smaller than the one at order
0. Therefore, using SH order of up to 8 in our pipeline, we
capture 99.9 % of the energy of the signal. This is also con-
sistent with all works that have used spherical harmonics,
where they have also truncated the SH basis at order 6 or 8,
(Descoteaux et al. 2007; Özarslan et al. 2006; Tournier et al.
2007).
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Fig. 2 Regionwise (R) and voxelwise (V) RISH features for different SH orders and sites

Table 1 Scanner details and demographic information for each site (M - Male, F - Female, R - right handed, L - left handed)

Site# Manufacturer Field Model Software # of # of # of Age Handedness Gender

strength version channels subjects directions

1 Philips 3T Achieva 2.6.3 8 20 64 35±11 20R 0L 10F, 10M

2 Philips 3T Achieva 2.6.3 8 20 64 35±12 17R 3L 14F, 6M

3 Philips 3T Achieva 2.6.3 8 7 64 36±12 7R 0L 4F, 3M

4 GE 3T MR750 20xM4 8 6 86 37±10 6R 0L 1F, 5M

5 GE 3T MR750 M4 8 16 86 37±9 14R 2L 12F, 4M

6 Siemens 3T Tim Trio vb17 12 24 87 35±12 23R 1L 6F, 18M

Ref. Siemens 3T Tim Trio VB15 12 23 87 36±11 20R 3L 13F, 10M

Table 2 P-values in Freesurfer defined regions for MD before and after data harmonization

Site#1 Site#2 Site#3 Site#4 Site#5 Site#6

Before After Before After Before After Before After Before After Before After

lFrontal 2.6e-04 0.56 4.0e-02 0.66 1.9e-04 0.81 3.2e-04 0.74 2.4e-08 0.70 0.17 0.97

lParietal 1.7e-09 0.62 2.3e-09 0.58 1.7e-06 0.98 1.5e-04 0.80 9.6e-09 0.62 3.6e-03 0.97

lTemporal 8.5e-11 0.60 1.7e-11 0.50 8.0e-07 0.83 8.5e-05 0.53 2.2e-08 0.66 1.9e-03 0.95

lOccipital 1.7e-05 0.61 2.1e-07 0.57 1.6e-03 0.71 0.21 0.88 1.1e-03 0.91 0.11 0.85

lCentrumSemiovale 1.5e-15 0.21 4.8e-14 0.20 3.5e-10 0.40 3.3e-07 0.44 1.8e-10 0.80 7.2e-05 0.80

lCerebellum 3.6e-06 0.37 4.9e-09 0.48 4.9e-05 0.65 5.3e-03 0.89 0.17 0.42 0.77 0.76

rFrontal 4.4e-05 0.62 2.1e-03 0.72 9.5e-05 0.74 1.1e-04 0.76 2.0e-09 0.83 5.1e-02 0.92

rParietal 1.1e-05 0.63 7.7e-06 0.60 2.0e-05 0.99 9.4e-03 0.93 8.8e-05 0.92 0.15 0.88

rTemporal 3.1e-06 0.82 3.5e-07 0.77 9.8e-05 0.92 1.9e-02 0.94 4.7e-05 0.83 2.1e-02 0.82

rOccipital 7.3e-03 0.75 4.5e-04 0.68 2.5e-03 0.97 0.76 0.77 0.87 0.36 0.67 0.80

rCentrumSemiovale 1.8e-12 0.72 2.5e-11 0.52 2.1e-08 0.96 1.0e-05 0.75 2.7e-09 0.84 1.3e-05 0.88

rCerebellum 9.7e-02 0.98 3.8e-05 0.70 0.28 0.91 0.16 0.73 0.11 0.15 0.84 0.98

BrainStem 1.3e-18 0.084 6.1e-21 0.078 8.9e-12 0.079 8.0e-07 0.34 9.9e-05 0.81 2.5e-04 0.68

Corpus 1.7e-09 0.67 3.7e-06 0.55 2.0e-06 0.89 1.3e-03 0.67 2.3e-06 0.81 0.34 0.89
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Table 3 p-values for FA before and after harmonization in Freesurfer ROIs

Site#1 Site#2 Site#3 Site#4 Site#5 Site#6

Before After Before After Before After Before After Before After Before After

lFrontal 6.4e-07 0.85 6.3e-06 0.83 2.5e-04 0.98 0.28 0.50 5.8e-03 0.72 0.28 0.99

lParietal 1.7e-08 0.71 1.6e-08 0.72 2.9e-05 0.82 0.15 0.64 1.2e-04 0.90 2.1e-02 0.80

lTemporal 4.0e-08 0.89 9.4e-09 0.81 3.6e-04 0.66 0.23 0.40 2.5e-03 0.54 9.3e-02 0.77

lOccipital 3.9e-07 0.72 5.7e-08 0.72 2.3e-04 0.64 0.83 0.39 4.4e-02 0.87 0.25 0.88

lCentrumSemiovale 1.9e-12 0.92 2.2e-11 0.91 1.8e-07 0.85 2.4e-03 0.57 5.1e-06 0.94 7.1e-03 0.90

lCerebellum 3.5e-10 0.74 1.1e-11 0.56 9.9e-10 0.56 0.65 0.85 0.69 0.53 0.15 0.63

rFrontal 1.2e-07 0.77 3.6e-06 0.70 1.3e-04 0.98 0.20 0.64 4.3e-03 0.91 0.15 0.93

rParietal 7.3e-09 0.64 3.6e-08 0.76 9.5e-06 0.93 0.45 0.48 1.3e-03 0.94 4.9e-02 0.81

rTemporal 7.6e-08 0.82 6.7e-08 0.69 1.2e-04 0.88 0.54 0.47 2.0e-02 0.90 0.11 0.96

rOccipital 2.9e-05 0.88 3.0e-06 0.81 4.1e-05 0.97 0.83 0.34 0.59 0.97 0.64 0.84

rCentrumSemiovale 3.3e-11 0.57 2.6e-10 0.60 2.6e-07 0.78 4.0e-03 0.80 8.9e-06 0.72 1.0e-03 0.83

rCerebellum 5.8e-07 0.46 2.8e-10 0.45 3.1e-05 0.48 0.78 0.99 0.39 0.35 0.53 0.83

BrainStem 1.4e-11 0.48 1.7e-14 0.67 7.6e-10 0.64 0.10 0.41 0.29 0.77 3.8e-04 0.75

Corpus 8.6e-07 0.35 2.0e-04 0.44 5.9e-04 0.78 0.90 0.84 6.9e-02 0.99 0.79 0.74

Mapping voxel-wise RISH features between sites

As part of the diffeomorphic registration procedure to
compute a template, we also obtain the deformation field
that maps each voxel location ν to �n(ν), where �n

is a diffeomorphism for subject n. Further, the voxel-
wise expected value of each of the RISH features for the
target and reference site {Er ,Et } are also computed in
the template space. Using a procedure analogous to the
one used in Mirzaalian et al. (2015, 2016), harmonization

is achieved by scaling each of the SH coefficients based
on the difference between the group means of the two
sites (for matched set of subjects). This ensures that
only the shape of the signal changes, but not its orien-
tation (a critical requirement to preserve subject-specific
anatomical connectivity). This was also numerically ver-
ified in Mirzaalian et al. (2015), where it was shown
that this scaling procedure does not change the orienta-
tion of the underlying fiber orientation distribution function
(fODF).

Table 4 P-values in Freesurfer defined regions for GFA before and after data harmonization

Site#1 Site#2 Site#3 Site#4 Site#5 Site#6

Before After Before After Before After Before After Before After Before After

lFrontal 2.8e-09 0.56 1.6e-10 0.72 9.6e-04 0.76 6.9e-04 0.81 4.7e-03 0.81 0.27 0.40

lParietal 4.1e-06 0.46 4.3e-06 0.49 2.7e-03 0.73 2.1e-03 0.85 0.11 0.70 0.49 0.27

lTemporal 6.3e-06 0.89 1.6e-06 0.97 2.5e-02 0.76 2.0e-03 0.74 5.0e-02 0.68 0.068 0.70

lOccipital 2.4e-07 0.72 1.7e-05 0.45 1.4e-03 0.80 3.0e-03 0.90 0.15 0.56 0.39 0.27

lCentrumSemiovale 2.8e-04 0.44 6.6e-05 0.36 0.20 0.79 1.8e-05 0.90 5.0e-03 0.80 0.053 0.42

lCerebellum 2.6e-08 0.90 7.0e-08 0.89 1.6e-06 0.76 5.8e-03 0.78 0.19 0.85 0.23 0.60

rFrontal 7.5e-09 0.71 8.3e-10 0.66 8.8e-04 0.83 6.6e-04 0.96 3.3e-04 0.73 0.14 0.35

rParietal 2.7e-09 0.55 0.80 0.48 5.3e-05 0.84 1.4e-02 0.69 0.85 0.87 0.90 0.30

rTemporal 6.3e-10 0.86 5.5e-11 0.99 7.7e-05 0.92 7.5e-02 0.73 0.39 0.83 0.27 0.58

rOccipital 2.8e-10 0.49 1.8e-09 0.69 1.1e-06 0.71 0.10 0.70 0.63 0.69 0.75 0.28

rCentrumSemiovale 8.3e-07 0.63 2.9e-06 0.30 1.1e-02 0.91 8.5e-04 0.85 5.0e-03 0.81 0.079 0.47

rCerebellum 1.8e-13 0.67 7.2e-12 0.60 2.8e-07 0.83 0.13 0.89 0.17 0.62 0.23 0.61

BrainStem 0.21 0.52 0.12 0.86 7.7e-02 0.41 9.7e-06 0.43 1.7e-05 0.80 0.02 0.29

Corpus 6.4e-05 0.68 5.8e-05 0.51 0.39 0.79 1.8e-05 0.91 4.3e-03 0.86 0.11 0.38
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Fig. 3 TBSS results using FA and GFA for different target sites before (a-f) and (g) after harmonization. The yellow-red colormap displays
p-values less than 0.05

Given the computed {Er ,Et }, we harmonize the signal
by scaling the SH coefficients of the signal at ν′ by:

π(Cij (ν
′)) =

√
‖Ci(ν′)‖2 + Er (ν) − Ek(ν)

‖Ci(ν′)‖2 Cij (ν
′) (2)

where ν′ = �−1
n (ν). The final harmonized diffusion signal

at ν′ is then computed using:

Ŝ(ν′) =
∑

i

∑

j

π(Cij (ν
′))Yij . (3)

Table 5 P-values before and after harmonization for MD, FA, GFA for different sites and ROIs using test data excluded from training

MD FA GFA

Before After Before After Before After

lFrontal 8.3e-03 0.84 3.4e-05 0.35 3.4e-07 0.20

lParietal 1.2e-06 0.77 6.4e-07 0.22 3.6e-05 0.12

lTemporal 9.3e-08 0.97 1.8e-06 0.53 4.3e-04 0.48

lOccipital 2.4e-03 0.67 6.3e-05 0.20 4.9e-05 0.31

lCentrumSemiovale 1.0e-10 0.48 7.5e-09 0.73 6.6e-03 0.30

lCerebellum 1.0e-04 0.45 5.5e-08 0.69 3.7e-06 0.96

rFrontal 3.3e-03 0.73 1.5e-05 0.18 4.3e-07 0.14

rParietal 1.1e-03 0.73 3.3e-07 0.21 1.2e-08 0.20

rTemporal 3.9e-04 0.73 1.5e-06 0.25 2.9e-08 0.57

rOccipital 9.5e-02 0.69 8.0e-04 0.45 3.5e-08 0.55

rCentrumSemiovale 1.9e-08 0.68 1.5e-07 0.25 8.5e-05 0.53

rCerebellum 0.26 0.87 7.5e-05 0.31 2.3e-10 0.69

BrainStem 2.7e-13 0.08 2.5e-09 0.17 9.7e-01 0.53

Corpus 1.6e-06 0.49 9.9e-05 0.83 2.1e-03 0.39
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Table 6 P-values in Freesurfer defined regions for MD (top), FA (middle), and GFA (bottom) before and after data harmonization for the traveling
subject

MD FA GFA

Before After Before After Before After

Site#1

lFrontal 1.1e-01 6.5e-01 2.1e-01 5.2e-01 1.8e-01 8.6e-01

lParietal 4.0e-04 4.7e-01 2.7e-01 1.0e-01 4.8e-01 1.6e-01

lTemporal 7.1e-02 5.4e-01 3.7e-02 0.8e-01 6.7e-02 0.6e-01

lOccipital 3.1e-01 0.5e-01 1.1e-01 3.6e-01 1.9e-01 3.9e-01

lCentrumS. 4.6e-02 1.0e-01 2.8e-02 2.8e-01 4.3e-01 0.9e-01

rFrontal 2.2e-01 3.0e-01 1.4e-01 5.4e-01 9.2e-02 9.1e-01

rParietal 3.4e-01 0.6e-01 2.5e-01 6.3e-01 1.9e-01 0.7e-01

rTemporal 3.3e-01 4.4e-01 4.7e-03 1.7e-01 6.3e-03 2.2e-01

rOccipital 5.1e-01 9.3e-01 2.6e-01 6.3e-01 2.4e-01 3.6e-01

rCentrumS. 7.7e-01 2.9e-01 6.3e-01 1.3e-01 6.5e-01 7.4e-01

rCereb. 2.3e-01 3.1e-01 1.3e-01 1.1e-01 8.3e-01 2.8e-01

BrainStem 8.1e-01 1.0e-01 7.9e-01 6.9e-01 2.2e-02 3.1e-01

Corpus 1.7e-01 0.9e-01 9.9e-02 5.8e-01 8.3e-02 2.3e-01

Site#2

lFrontal 3.4e-02 1.9e-01 2.3e-01 3.4e-01 2.9e-01 5.8e-01

lTemporal 1.2e-02 0.6e-01 3.3e-02 1.5e-01 2.3e-01 1.6e-01

lOccipital 2.1e-02 3.3e-01 4.6e-02 2.1e-01 2.8e-01 3.6e-01

lCentrumS. 3.2e-05 1.9e-01 1.2e-02 1.5e-01 6.0e-01 0.7e-01

lCereb. 6.9e-03 6.4e-02 2.3e-02 1.7e-01 3.2e-01 2.9e-01

rFrontal 1.1e-02 1.0e-01 1.8e-01 2.5e-01 2.5e-01 4.3e-01

rParietal 8.7e-05 0.8e-01 5.7e-02 2.0e-01 1.1e-01 1.9e-01

rTemporal 1.3e-01 0.9e-01 1.7e-03 4.8e-01 4.4e-03 1.3e-01

rOccipital 1.6e-02 2.3e-01 3.9e-02 4.7e-01 5.9e-02 2.7e-01

rCentrumS. 1.8e-01 1.3e-01 7.1e-01 5.7e-01 7.8e-01 6.1e-01

rCereb. 2.0e-01 2.1e-01 5.9e-01 2.6e-01 4.9e-01 1.2e-01

BrainStem 9.4e-01 6.5e-01 4.4e-02 1.2e-01 9.9e-01 2.0e-01

Corpus 5.6e-03 9.0e-02 1.5e-02 3.4e-01 2.5e-02 3.7e-01

Site#4

lFrontal 9.6e-04 1.8e-01 5.8e-01 3.7e-01 7.2e-01 1.2e-01

lParietal 1.8e-03 5.5e-01 3.9e-01 2.7e-01 7.2e-01 7.1e-01

lTemporal 1.8e-02 7.3e-01 1.9e-01 8.1e-01 8.9e-01 2.5e-01

lOccipital 3.5e-01 3.4e-01 7.7e-01 4.8e-01 8.6e-01 2.6e-01

lCentrumS. 4.4e-01 0.8e-01 3.7e-01 7.7e-01 3.3e-01 3.9e-01

rFrontal 2.6e-03 0.9e-01 7.7e-01 3.6e-01 6.3e-01 3.4e-01

rParietal 1.6e-01 0.7e-01 6.9e-01 6.6e-01 7.3e-01 1.9e-01

rOccipital 8.8e-01 1.3e-01 8.9e-01 0.9e-01 9.0e-01 0.9e-01

rCentrumS. 8.1e-01 6.7e-01 7.5e-01 5.3e-01 9.7e-01 1.7e-01

rCereb. 7.3e-03 3.1e-01 1.7e-01 0.8e-01 8.1e-01 1.6e-01

BrainStem 2.3e-01 1.4e-01 7.3e-02 0.7e-01 7.8e-01 0.7e-01

Corpus 2.8e-01 8.3e-01 9.7e-01 4.3e-01 5.2e-01 1.2e-01

Site#5

lFrontal 2.6e-04 2.7e-01 3.9e-01 5.5e-01 8.7e-01 6.5e-01

lParietal 1.0e-02 5.2e-01 2.0e-01 1.7e-01 5.5e-01 3.1e-01

lTemporal 2.6e-02 6.0e-01 7.6e-02 2.5e-01 4.4e-01 4.8e-01

lOccipital 1.3e-01 4.1e-01 4.2e-01 1.7e-01 6.9e-01 1.8e-01

lCentrumS. 2.4e-04 3.6e-01 3.8e-03 1.0e-01 6.3e-01 1.4e-01
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Table 6 (continued)

MD FA GFA

Before After Before After Before After

lCereb. 4.0e-02 1.0e-01 1.2e-01 4.8e-01 9.9e-01 5.8e-01

rFrontal 4.3e-04 4.7e-01 6.7e-01 5.4e-01 6.2e-01 4.5e-01

rParietal 6.4e-02 0.6e-01 5.6e-01 6.9e-01 7.1e-01 7.9e-01

rOccipital 7.7e-01 2.0e-01 9.9e-01 5.9e-01 8.0e-01 0.8e-01

rCentrumS. 9.5e-01 1.0e-01 7.8e-01 7.9e-01 9.5e-01 4.2e-01

rCereb. 4.6e-01 3.5e-01 8.7e-01 4.5e-01 4.8e-01 3.2e-01

BrainStem 9.8e-02 3.2e-01 2.6e-01 1.4e-01 9.8e-01 5.3e-01

Corpus 1.3e-01 2.5e-01 4.5e-01 2.4e-01 9.6e-01 3.7e-01

Site#6

lFrontal 3.9e-01 1.2e-01 8.5e-01 6.7e-01 9.4e-01 8.3e-01

lParietal 2.0e-01 1.3e-01 9.8e-01 1.3e-01 9.5e-01 7.0e-01

lTemporal 9.0e-01 8.3e-02 9.1e-01 3.2e-01 7.7e-01 1.0e-01

lOccipital 7.2e-01 9.4e-01 2.8e-01 2.0e-01 3.5e-01 8.1e-01

lCentrumS. 9.3e-01 3.9e-01 6.5e-01 3.2e-01 5.5e-01 0.9e-01

lCereb. 4.3e-01 5.1e-01 4.0e-01 0.9e-01 8.6e-01 1.4e-01

rFrontal 8.2e-01 3.0e-01 7.7e-01 8.4e-01 8.1e-01 5.1e-01

rParietal 7.8e-01 1.6e-01 7.9e-01 5.7e-01 8.0e-01 6.4e-01

rTemporal 3.8e-01 2.0e-01 7.5e-01 5.6e-02 4.4e-01 3.6e-01

rOccipital 6.8e-01 1.9e-01 5.3e-01 3.5e-01 5.0e-01 2.7e-01

rCentrumS. 9.4e-01 2.4e-01 6.7e-01 0.6e-01 8.1e-01 5.3e-01

rCereb. 8.8e-01 4.8e-01 4.6e-01 0.7e-01 2.8e-01 2.3e-01

BrainStem 7.0e-01 4.2e-01 1.3e-01 3.5e-01 8.9e-02 3.9e-01

Corpus 9.2e-01 7.4e-01 9.5e-01 2.1e-01 9.3e-01 8.4e-01

We applied this procedure to harmonize data from several
sites as described in the next section.

Experiments and results

Diffusion MRI data was acquired at seven different sites
(two GE, three Philips, and two Siemens scanners) on a
group of matched healthy subjects. All the healthy subjects
were matched for age and handedness to the best possi-
ble extent. Demographic and scanner details are given in
Table 1. All data sets had a spatial resolution of 2 mm
isotropic voxel size and a b-value of 1000 s/mm2. Since
the subjects were matched across all the sites, at a sta-
tistical group level, we do not expect to see statistical
biological differences. Therefore, it is reasonable to hypoth-
esize that the differences in the RISH features and standard
diffusion measures are only due to scanner related inconsis-
tencies. To validate our hypothesis, we used a paired t-test
to compute p-values of RISH features and standard diffu-
sion measures (such as MD, FA, and generalized fractional
anisotropy (GFA)) between an arbitrarily chosen reference

site and all of the other (target) sites. Tables 2, 3 and 4
show that prior to harmonization, significant statistical dif-
ferences exist between sites in Freesurfer defined ROIs
for all diffusion measures. However, using the proposed
multi-modal registration based harmonization procedure, all
statistical site differences in each of the Freesurfer ROIs
are removed. For the sake of comparison, we included
the results from our earlier work (Mirzaalian et al. 2016)
on the same set of subjects, but using the Freesurfer ROI
based method in the appendix section (see Table 7). As can
be seen, our results are comparable to those presented in
Mirzaalian et al. (2016).

To ensure our method is unbiased and robust, we used
an independent voxel-wise method to test the robustness of
our harmonization procedure. We used tract-based spatial
statistics (TBSS) (Smitha et al. 2006) to demonstrate that
scanner related differences in FA and GFA, which existed
prior to data harmonization are practically removed by using
the proposed harmonization procedure; see Fig. 3. An inter-
esting point to note is that, significant FA differences in
the centrum-semiovale region exist prior to harmonization
between the two Siemens scanners (Site#6), but not in
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GFA indicating that FA is a poor metric to use in crossing
fiber regions. However, all differences in FA and GFA are
removed after harmonization.

Validation on unseen subjects In the above experiments,
all subjects were used to obtain the site differences {Er −Et }
in RISH features, which were then used for harmonization.
To test the validity of our approach on a set of new subjects,
we created two distinct data sets, one for training and one
for testing from two different sites. We used 70 % of the
subjects in the reference and the target sites (Site#1) to learn
the harmonization parameters using (2) and computed the
p-values before and after harmonization for rest of the 30 %
of the subjects, which were excluded from the training stage.
Note that, in this experiment, the data in the training/testing
groups at the two sites were age-matched. Computed p-
values are reported in Table 5, which are very similar to
results shown in Tables 2–4. Thus, the proposed method
could be used in a true data harmonization scenario, at least
when the acquisition protocol is similar across sites. Note
that, our numerical results in Tables 2–5 are comparable to
those in our earlier work (Tables 7 and 8 in Appendix).

Validation on a traveling subject Using the learnt param-
eters in our pipeline, we harmonized the images of a
traveling subject for which there existed data acquired on
six different sites (all sites except site #3). The computed
region-wise p-values for {MD, FA, GFA} between voxels
from each Freesurfer ROI before and after data harmoniza-
tion are reported in Table 6, which are all above 0.05 after
harmonization, indicating that scanner specific differences
were removed in this traveling subject. We should point out
that statistically, significant differences in FA, MD and GFA

existed prior to harmonization in this traveling subject as
seen in Table 6.

Synthetic validation in the presence of pathology To
demonstrate the robustness of the harmonization procedure
in the presence of pathology, we did some synthetic exper-
iments. We generated three synthetic images labeled as
{Sr, St,1, St,2}, where i) Sr is a control subject at the ref-
erence site; ii) St,1 is a control subject at the target site;
and iii) St,2 is a synthetically generated subject with pathol-
ogy in white matter at the target site. To generate St,1, we
first introduced a simple warping (rotation) to Sr and added
some bias to the second order RISH features of Sr ; the
bias was added to voxels within a mask denoted by Mask1
(Fig. 4). This is similar to a data set where the data acquired
at the target and reference site are different, as is typically
the case for in-vivo data. In particular, the FA in the sim-
ulated white matter region for Sr was 0.79, for St,1 was
0.82, while for St,2 it was 0.79 (lower FA due to pathology).
Various levels of rician noise (standard deviation of noise
ranging from 0 to 0.2) was added to test the effect of noise
on the harmonization procedure.

The data, St,2 was generated by adding some bias to the
second order RISH features of St,1 within voxels given by
another mask, Mask2; in fact, we assumed that the voxels
within Mask2 were affected by disease. The second order
RISH features of {Sr, St,1, St,2} and the masks are shown in
Fig. 4. We first registered St,1 to Sr to learn the spatial map-
ping � (for different noise levels) followed by computing
the region-wise mean of the RISH features, which were used
to obtain the harmonized images {Ŝt,1, Ŝt,2}, respectively.

In Fig. 5, for the voxels within Mask2 with different lev-
els of rician noise, we report the differences between: i)

Fig. 4 The procedure to evaluate the effect of harmonization in the
presence of pathology. Synthetic images {Sr , St,1, St,2} are generated
and feature differences of the diseased and control subjects at the target

site before (i.e. St,1 vs St,2) and after harmonization (i.e. Ŝt,1 vs Ŝt,2)
are reported in Fig. 5, which indicate that our method would preserve
the differences during harmonization of the data
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Fig. 5 Difference of ‖C2‖2, FA, and GFA between: i) St,2 and St,2; (original data) and ii) Ŝt,2 and Ŝt,2 (harmonized data) for different levels
of rician noise. It can be seen that the differences computed between the normal and patient cases at the target site are preserved after data
harmonization

St,1 and St,2; and ii) Ŝt,1 and Ŝt,2 for each of the following
measures: ‖C2‖2, FA, and GFA. Our goal is to demon-
strate that the differences in FA and GFA due to disease
are preserved during the harmonization procedure, i.e.,
St,1 − St,2 ≈ Ŝt,1 − Ŝt,2. From the plots in Fig. 5 with
100 different realizations for each noise level, we see that
subtle differences in diffusion measures are preserved dur-
ing the harmonization procedure. Thus, this method could
potentially be used to harmonize dMRI data, by first “learn-
ing” the harmonization parameters from a group of matched
control subjects followed by applying the same parameters
to the “diseased” cases.

Conclusion and limitations

In this work, we proposed a registration based framework
to harmonize the raw dMRI signal from different sites in
a subject-dependent manner, by removing scanner specific
differences from the signal.

In our earlier region-wise harmonization method, we
required both the DWI images and a structural (T1-
weighted) image of the subjects; the structural images were
used to perform the region-wise segmentation task. Then,
the label maps were registered to the DWI space to obtain
inter-subject correspondences. Further, we automatically
(albeit with some parameter tuning) had to sub-segment
large regions into smaller regions to be able to properly har-
monize the data. However, our new registration framework
is free of: i) requirement of a structural image; ii) seg-
mentation of the structural image; iii) registration between
the structural and the DWI images; and iv) correction of
Freesurfer segmentation errors. This significantly simpli-
fies the entire processing pipeline while maintaining the
accuracy of the method.

Using synthetic experiments, we demonstrated that, once
the signal is harmonized using data from healthy sub-
jects, it can then be used to map another cohort of dis-
eased subjects without altering the signal due to disease
or pathology. The proposed method is model independent
and directly maps the signal to the reference site. We also
validated our approach on a group of new subjects not used

to “learn” the mapping transformation, demonstrating the
robustness of the proposed approach on new unseen data
sets. Thus, the method can be of great use to aggregate data
from multiple sites for joint analysis of a large sample of
data.

An ideal scenario in which the proposed method could be
used is when a few traveling human phantoms are available
from all sites, scanned within a very short period of time. In
this case, the scanner specific differences can be obtained
from these traveling subjects and subsequently used for
data harmonization. A similar scheme, albeit using only the
dMRI derived scalar measures of FA and MD obtained from
a limited single tensor model was used in Pohl et al. (2016).
In contrast, our method will allow to harmonize the acquired
dMRI data without any modeling assumptions.

Nevertheless, a comprehensive in-vivo validation study
needs to be done to ensure that the dMRI signal due to
disease is preserved during the harmonization procedure
(we only did synthetic validation, which shows encourag-
ing results). Further, the effect of using this procedure in the
case of extreme pathologies such as brain tumors needs to
be evaluated. The proposed method cannot be used for DSI
data sets, however, it can be used to separately harmonize
each b-value shell for multi-shell diffusion data.
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Appendix

Table 7 P-values before and after harmonization for MD, FA, GFA for different sites and ROIs applying the harmonization method at Mirzaalian
et al. (2015)

Site#1 Site#2 Site#3 Site#4 Site#5 Site#6

Before After Before After Before After Before After Before After Before After

lFrontal 7.7e-02 1 9.9e-02 1 8.0e-03 1 2.9e-02 1 8.5e-05 1 1.7e-01 1

lParietal 2.6e-11 1 2.7e-10 1 8.4e-07 1 1.2e-03 1 1.1e-09 1 2.2e-02 1

lTemporal 6.8e-04 1 1.2e-01 1 2.6e-03 1 7.1e-04 1 7.8e-05 1 1.3e-02 1

lOccipital 2.6e-07 1 1.9e-09 1 7.2e-03 1 1.0e-01 1 6.5e-04 1 2.2e-01 1

lCentrumSemiovale 5.9e-16 1 4.2e-14 1 1.9e-09 1 9.2e-06 1 4.2e-13 1 6.0e-06 1

lCerebellum 2.3e-09 1 3.9e-15 1 2.6e-05 1 9.5e-05 1 2.2e-05 1 3.4e-03 1

rFrontal 1.8e-05 1 1.3e-03 1 5.8e-03 1 1.6e-02 1 3.9e-05 1 1.7e-01 1

rParietal 3.8e-10 1 2.9e-09 1 4.7e-06 1 6.1e-02 1 2.3e-06 1 2.1e-01 1

rTemporal 6.4e-04 1 8.5e-03 1 4.4e-02 1 3.4e-02 1 4.4e-05 1 8.9e-02 1

rOccipital 1.5e-03 1 3.2e-02 1 6.6e-02 1 2.6e-01 1 6.2e-01 1 6.4e-01 1

rCentrumSemiovale 5.6e-15 1 9.9e-14 1 1.3e-08 1 1.5e-05 1 9.4e-15 1 1.3e-07 1

rCerebellum 1.4e-04 1 5.7e-10 1 8.4e-04 1 4.9e-02 1 8.8e-01 1 2.1e-03 1

Corpus callosum 9.0e-14 1 1.3e-09 1 4.7e-07 1 3.8e-02 1 4.1e-09 1 1.7e-01 1

FA

lFrontal 2.9e-02 4.2e-01 5.0e-02 4.3e-01 1.1e-02 6.3e-01 5.8e-01 6.7e-01 7.8e-02 5.2e-01 2.3e-01 6.1e-01

lParietal 4.3e-10 2.5e-01 7.5e-10 2.1e-01 2.6e-05 4.7e-01 8.0e-02 6.8e-01 9.5e-06 2.3e-01 2.9e-02 5.4e-01

lTemporal 2.5e-05 3.5e-01 5.1e-05 3.7e-01 2.8e-02 5.8e-01 3.8e-01 7.4e-01 7.0e-02 4.6e-01 4.8e-01 6.1e-01

lOccipital 1.5e-02 2.9e-01 3.3e-02 3.7e-01 6.3e-02 6.1e-01 2.0e-01 7.1e-01 5.7e-01 2.8e-01 5.9e-01 5.7e-01

lCentrumSemiovale 1.1e-12 1.3e-01 8.9e-11 2.3e-01 1.0e-08 3.9e-01 2.9e-03 5.1e-01 1.6e-07 2.8e-01 7.1e-03 3.4e-01

lCerebellum 9.6e-06 9.5e-02 7.6e-07 6.3e-02 2.0e-07 7.8e-02 2.4e-01 4.2e-01 8.2e-01 4.1e-01 6.2e-01 2.3e-01

rFrontal 5.3e-04 3.9e-01 3.8e-03 5.0e-01 1.3e-02 5.8e-01 3.5e-01 6.5e-01 6.1e-02 4.8e-01 1.7e-01 6.5e-01

rParietal 1.6e-08 2.5e-01 6.4e-08 3.3e-01 3.3e-05 5.2e-01 2.4e-01 7.7e-01 2.7e-04 3.4e-01 2.5e-01 5.8e-01

rTemporal 2.5e-05 3.4e-01 3.3e-05 4.0e-01 9.5e-03 5.7e-01 5.2e-01 7.0e-01 1.3e-01 5.1e-01 4.2e-01 6.3e-01

rOccipital 3.1e-04 4.0e-01 1.1e-05 3.0e-01 1.5e-04 3.6e-01 5.8e-01 7.9e-01 3.9e-01 3.9e-01 9.2e-01 8.2e-01

rCentrumSemiovale 1.1e-11 1.0e-01 7.3e-10 1.1e-01 2.3e-07 4.0e-01 3.9e-02 5.8e-01 9.0e-07 2.4e-01 1.7e-02 2.9e-01

rCerebellum 1.8e-06 1.1e-01 3.4e-10 2.5e-01 4.2e-06 1.1e-01 1.7e-01 4.2e-01 4.5e-02 9.4e-01 8.8e-01 3.7e-01

Corpus callosum 7.4e-13 1.0e-01 4.5e-10 2.0e-01 4.2e-05 5.6e-01 2.5e-01 5.1e-01 8.5e-04 8.6e-01 1.3e-01 8.1e-01

GFA

lFrontal 5.8e-02 5.6e-01 5.0e-02 5.3e-01 1.0e-01 7.2e-01 9.1e-02 6.4e-01 2.1e-01 5.9e-01 4.0e-01 6.8e-01

lParietal 6.3e-03 3.9e-01 3.3e-03 3.7e-01 8.0e-02 5.1e-01 2.6e-01 6.1e-01 4.4e-01 2.2e-01 3.2e-01 4.3e-01

lTemporal 1.6e-02 3.5e-01 1.1e-01 3.8e-01 3.4e-01 5.8e-01 1.9e-01 7.8e-01 5.0e-01 5.4e-01 1.5e-01 6.7e-01

lOccipital 3.1e-01 5.4e-01 6.4e-01 4.2e-01 3.2e-01 7.4e-01 1.2e-01 7.4e-01 2.1e-01 4.5e-01 4.9e-01 6.7e-01

lCentrumSemiovale 1.2e-05 1.7e-01 7.9e-06 2.2e-01 2.1e-04 3.3e-01 2.8e-01 6.4e-01 6.3e-01 5.1e-01 2.7e-01 4.6e-01

lCerebellum 6.7e-03 1.9e-01 1.7e-03 1.3e-01 2.9e-06 1.9e-01 4.4e-01 6.3e-01 2.8e-02 5.6e-01 4.9e-02 4.8e-01

rFrontal 1.9e-03 5.5e-01 2.7e-04 6.2e-01 8.4e-02 6.4e-01 8.5e-02 6.7e-01 1.1e-01 5.7e-01 2.9e-01 7.6e-01

rParietal 1.1e-03 4.3e-01 6.8e-04 4.9e-01 8.0e-02 5.3e-01 4.2e-01 7.1e-01 2.1e-01 3.3e-01 3.7e-01 6.5e-01

rTemporal 8.1e-04 3.0e-01 1.1e-05 3.8e-01 3.3e-02 4.7e-01 1.6e-01 6.7e-01 9.3e-02 3.8e-01 2.1e-01 7.1e-01

rOccipital 2.7e-04 4.6e-01 9.2e-06 4.0e-01 8.4e-04 4.5e-01 5.7e-01 7.6e-01 3.5e-01 4.2e-01 8.2e-01 8.6e-01

rCentrumSemiovale 5.2e-06 1.7e-01 3.6e-05 1.6e-01 6.6e-04 3.6e-01 1.1e-01 7.1e-01 5.2e-02 4.5e-01 3.1e-02 4.9e-01

rCerebellum 3.2e-07 1.6e-01 7.4e-09 4.6e-02 1.3e-05 2.2e-01 6.3e-01 5.7e-01 1.4e-01 8.0e-01 1.8e-02 6.3e-01

Corpus callosum 2.7e-05 8.1e-01 5.8e-04 8.2e-01 1.8e-01 6.6e-01 2.0e-01 2.5e-01 5.4e-01 5.3e-01 4.3e-01 7.0e-01
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Table 8 P-values before and after harmonization for MD, FA, GFA for different sites and ROIs using test data excluded from training applying
the harmonization method at Mirzaalian et al. (2015)

MD FA GFA

Before After Before After Before After

lFrontal 8.3e-03 0.84 3.4e-05 0.35 3.4e-07 0.20

lParietal 1.2e-06 0.77 6.4e-07 0.22 3.6e-05 0.12

lTemporal 9.3e-08 0.97 1.8e-06 0.53 4.3e-04 0.48

lOccipital 2.4e-03 0.67 6.3e-05 0.20 4.9e-05 0.31

lCentrumSemiovale 1.0e-10 0.48 7.5e-09 0.73 6.6e-03 0.30

lCerebellum 1.0e-04 0.45 5.5e-08 0.69 3.7e-06 0.96

rFrontal 3.3e-03 0.73 1.5e-05 0.18 4.3e-07 0.14

rParietal 1.1e-03 0.73 3.3e-07 0.21 1.2e-08 0.20

rTemporal 3.9e-04 0.73 1.5e-06 0.25 2.9e-08 0.57

rOccipital 9.5e-02 0.69 8.0e-04 0.45 3.5e-08 0.55

rCentrumSemiovale 1.9e-08 0.68 1.5e-07 0.25 8.5e-05 0.53

rCerebellum 0.26 0.87 7.5e-05 0.31 2.3e-10 0.69

BrainStem 2.7e-13 0.08 2.5e-09 0.17 9.7e-01 0.53

Corpus 1.6e-06 0.49 9.9e-05 0.83 2.1e-03 0.39
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