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Abstract Consistent with well-documented structural and mi-
crostructural abnormalities in prenatal alcohol exposure (PAE),
recent studies suggest that functional connectivity (FC)may also
be disrupted. We evaluated whole-brain FC in a large multi-site
sample, examined its cognitive correlates, and explored its po-
tential to objectively identify neurodevelopmental abnormality
in individuals without definitive dysmorphic features. Included
were 75 children with PAE and 68 controls from four sites. All
participants had documented heavy prenatal alcohol exposure.
All underwent a formal evaluation of physical anomalies and
dysmorphic facial features. MRI data were collected usingmod-
ified matched protocols on three platforms (Siemens, GE, and
Philips). Resting-state FC was examined using whole-brain
graph theory metrics to characterize each individual’s connec-
tivity. Although whole-brain FC metrics did not discriminate
prenatally-exposed from unexposed overall, atypical FC (> 1
standard deviation from the grand mean) was significantly more
common (2.7 times) in the PAE group vs. controls. In a subset of
55 individuals (PAE and controls) whose dysmorphology ex-
amination could not definitively characterize them as either

Fetal Alcohol Syndrome (FAS) or non-FAS, atypical FC was
seen in 27 % of the PAE group, but 0 % of controls. Across
participants, a 1 % difference in local network efficiency was
associated with a 36 point difference in global cognitive func-
tioning. Whole-brain FC metrics have potential to identify indi-
viduals with objective neurodevelopmental abnormalities from
prenatal alcohol exposure. When applied to individuals unable
to be classified as FAS or non-FAS from dysmorphology alone,
these measures separate prenatally-exposed from non-exposed
with high specificity.

Keywords Fetal alcohol (FAS, FASD) . Brain . Functional
MRI (fMRI), resting-state, connectivity . Neuropsychology

Introduction

Fetal Alcohol SpectrumDisorders (FASD) are associated with
a wide range of underlying neuroanatomical abnormalities as
seen with Magnetic Resonance Imaging (MRI) (Riley et al.
2004). From the earliest studies, it has been clear that the
backbone of the brain’s functional network - the white matter
- is impacted by prenatal alcohol exposure (PAE). Studies
demonstrated that complete corpus callosum agenesis can oc-
cur and also highlighted other more common abnormalities
including thinning, hypoplasia, and partial agenesis (Riley
et al. 1995). Volumetric MRI studies show that PAE is asso-
ciated with widespread abnormalities in white matter macro-
structure throughout the brain (Archibald et al. 2001).
Diffusion Tensor Imaging (DTI) has demonstrated white mat-
ter pathology in PAE, highlighting microstructural abnormal-
ities in regions using multiple methodologies (Donald et al.
2015a, b; Fan et al. 2015; Fryer et al. 2009; Lebel et al. 2010;
Lebel et al. 2008; Ma et al. 2005; Sowell et al. 2008; Sowell
et al. 2010; Taylor et al. 2015; Wozniak et al. 2006; Wozniak
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et al. 2009). These abnormalities have clinical relevance, ev-
idenced by their association with cognitive disturbances (Fan
et al. 2015; Malisza et al. 2012; Sowell et al. 2008;
Spottiswoode et al. 2011; Wozniak et al. 2009). Related dif-
fusion techniques, such as quantitative susceptibility mapping,
have shown similar microstructural abnormalities in a mouse
model of PAE (Cao et al. 2014).

Several studies have demonstrated that white matter
macro- and micro-structural abnormalities in PAE are also
reflected in functional connectivity (FC) disturbances,
using both task-based functional MRI (fMRI) and
resting-state FC methods. Wozniak et al. (2011) showed
inter-hemispheric FC disturbances in PAE corresponding
to microstructural abnormalities (from DTI-tractography),
notably in the posterior aspect of the callosum. In that
study, atypical inter-hemispheric FC was reflected in sig-
nificantly lower correlations between fMRI signal in right
and left para-central cortical regions (regions predomi-
nantly inter-connected by posterior callosal projection fi-
bers). Inter-hemispheric FC abnormalities of this type
may be evident as early as infancy (Donald et al. 2016).
Taking a different approach, Santhanam et al. (2011) ex-
amined the default mode network in PAE - comprising
medial prefrontal cortex, posterior cingulate, pre-cuneus,
inferior parietal, and medial temporal regions. In that
study, the expected network Bdeactivation^ upon starting
an arithmetic task was abnormal in prenatally-exposed
adults. That study highlighted dysfunction in the normal
coordinating process of alternating the resting-state net-
work and various Bactive^ cognitive networks. Another
resting-state FC study in PAE demonstrated abnormalities
in whole-brain connectivity, using graph theory metrics
similar to those utilized in the current study (Wozniak
et al. 2013). Finally, other task-based fMRI studies have
also revealed FC abnormalities in PAE, including alter-
ations in fronto-striatal coupling (Roussotte et al. 2012).

FC represents the brain’s capacity for real-time coordina-
tion of activity across both time and distance. In resting-state
FC studies, correlations in fMRI data are used to Bmap^ brain
networks based on patterns of synchronized activity (Biswal
et al. 1995). In contrast to Btask-based^ networks related to
attention, executive functioning, or stimulus salience for ex-
ample, resting-state networks may be involved in non-task,
off-line activities including memory consolidation and plan-
ning (Raichle and Snyder 2007). From a network analysis
perspective, functional brain activity appears to fit Bsmall
world network^ parameters well (Bassett and Bullmore
2006). Small world networks have highly clustered, modular
processing Bcenters^ – along with a few highly efficient long-
distance communication Bpaths^ (Rubinov and Sporns 2010).
In a small world network, each node (brain region) is densely
connected with its neighboring regions (clustering), but long-
distance communication is enhanced by a few Btrunk-lines^

that facilitate efficient jumps between distant regions without
traversing the many intervening nodes (Watts and Strogatz
1998). In the brain, white matter provides these highly effi-
cient routes between distant grey matter regions where more
modular/clustered processing occurs.

Graph theory provides a set of robust metrics for evaluating
the properties of small-world networks (Achard and Bullmore
2007). One advantage of applying these methods to the study
of a clinical condition like PAE is that each individual’s net-
work status can be specifically characterized – allowing for
analyses at both the group level and the individual level. The
ability to identify individual functional network pathology
could be valuable in PAE – a condition for which there is
substantial heterogeneity in presentation. For example, dys-
morphic facial features are only present in a portion of affected
individuals who show cognitive deficits, complicating the di-
agnosis of FASD (Green et al. 2009; Jacobson 1998; Mattson
et al. 1997). The ability to characterize an individual’s func-
tional connectivity as Btypical^ or Batypical^ could potentially
be harnessed in the search for better diagnostic tools.
Furthermore, examining relationships between individual net-
work connectivity and cognitive functioning will add to the
overall understanding of how alcohol exposure manifests
clinically. In a previous small study examining graph theory
connectivity metrics in FASD, Wozniak et al. (2013) found
preliminary trend-level associations between FC and
neurocognitive functioning – including verbal memory and
executive functioning; other studies have demonstrated asso-
ciations between functional connectivity and intelligence in
children (Wu et al. 2013).

The current study (which does not contain any of the same
participants as Wozniak et al. 2013), is comprised of data col-
lected at four sites in the Collaborative Initiative on Fetal
Alcohol Spectrum Disorders (CIFASD). It utilized whole brain
FCmethods in a large sample, seeking to extend the understand-
ing of brain-cognition relationships in PAE. The rationale for
examining whole-brain FC in this study is based on the follow-
ing: 1) the effects of alcohol on the developing brain have been
shown to be widespread rather than discrete; 2) there is value in
characterizing the overall severity of brain effects of PAE; and 3)
measures of global brain functioningmay ultimately have utility
in addressing diagnostic challenges and as outcome measures in
FASD intervention studies.

Based on what is known about the widespread effects of
PAE on both grey and white matter development, we hypoth-
esized that global cortical FC would be disturbed in children
and adolescents with PAE. Low network efficiency and evi-
dence of disconnectivity were predicted. Summary measures
of network connectivity were expected to correlate with cog-
nitive functioning including components of IQ, memory, and
executive functioning. In all cases, we expected to see low
network efficiency and poor overall connectivity to be associ-
ated with greater cognitive impairment.
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Methods

Participants

Background information about the CIFASD project is avail-
able in a separate publication (S. N.Mattson et al. 2010) and at
www.cifasd.org. For the current study, participants were
recruited from four CIFASD sites (Los Angeles, San Diego,
Minneapolis, Atlanta) between 2012 and 2014. Prenatal
alcohol exposure histories were obtained through
retrospective maternal report or social service, legal, or
medical records. Participants were included in the PAE
group if there was a history of heavy prenatal alcohol
exposure (>13 drinks/week or >4 drinks/occasion during
pregnancy) or when such exposure was suspected in a child
with an FAS diagnosis. In many cases, detailed history about
exposure amounts or patterns of exposure was unattainable;
children were considered to have heavy prenatal alcohol ex-
posure if mothers were known to be Balcoholic^ or alcohol-
abusing during pregnancy. In all cases, alcohol was the pre-
dominant substance of abuse. Participants were included in
the non-exposed control group if there was a reliable history
of only minimal (<1 drink/week, never >2 drinks/occasion) or
no exposure in pregnancy.

The majority of participants (PAE and controls) were eval-
uated using a standardized dysmorphology examination con-
ducted by the CIFASDDysmorphology Core (KLJ). Based on
criteria outlined previously (Kenneth Lyons Jones et al. 2006;
Sarah N. Mattson et al. 2010), the evaluation resulted in a
determination of 1) Fetal Alcohol Syndrome (FAS); 2) non-
FAS; or 3) a Bdeferred^ status due to some criteria being met,
but not enough to diagnose FAS. FAS was diagnosed on the
basis of two or more of the following key facial features: thin
vermillion border, smooth philtrum, and short palpebral fis-
sure length – together with either microcephaly (occipital-
frontal circumference ≤ 10 %) or growth deficiency (height
or weight ≤ 10 %) or both. The deferred status was applied
when an individual had A.) One key dysmorphic facial feature
as described above or B.) Microcephaly and growth deficien-
cy, or C.) Microcephaly or growth deficiency and one addi-
tional minor non-facial physical malformation (railroad track
ear, hockey stick palmar crease, etc.). A significant number of
individuals without PAE (i.e. controls) received a Bdeferred^
classification – highlighting the fact that the presence of one
dysmorphic feature is relatively common and not diagnostic in
and of itself (K. L. Jones et al. 2010).

Additional exclusion criteria for all subjects were another
developmental disorder (ex. Autism), very low birthweight
(<1500 g), traumatic brain injury (including head injury with
loss of consciousness >30 min), other medical condition af-
fecting the brain (ex. Epilepsy), severe psychiatric disability
that would prevent participation (ex. psychosis or mania),
substance use by the participant, English as a second

language, international adoption after age 5 or within 2 years
of study visit, or contraindications to MRI scanning.

Control participants were excluded for parent-reported his-
tory of prenatal substance exposure and for diagnosed psychi-
atric conditions. Parents or caregivers of all participants were
administered the Diagnostic Interview Schedule for Children-
IV (C-DISC-4.0; (Shaffer et al. 2000). Because pre-screening
was utilized during recruitment, the DISC data for enrolled
participants revealed only minimal parent-reported symptoms
in the control group (2 controls had ADHD symptoms, 5 had
Oppositional Defiant symptoms, and 3 had Conduct Disorder
symptoms; no controls had anxiety or depressive symptoms or
other major psychiatric symptoms). Psychiatric co-morbidity
was not an exclusion criterion for participants with PAE be-
cause it is well-recognized that co-morbidity is high in FASD
(Streissguth and O’Malley 2000). Based on the C-DISC-IV
data, 54 participants in the PAE group had ADHD symptoms,
34 had Oppositional Defiant symptoms, 13 had Conduct
Disorder symptoms, 6 had anxiety disorder symptoms, and 4
had depressive disorder symptoms.

Participants were 7–17 year old at the time of neurocognitive
evaluation and MRI scanning. The vast majority of participants
completed the neurocognitive evaluation and MRI on the same
day. In a few cases, they were separated by a few days or weeks.
A total of 165 participants (87 with PAE & 78 Controls) met
inclusion criteria. Table 1 contains the demographics for the
participants who were included in the analyses after eliminating
those with excessive movement and incomplete networks (see
results for complete description).

All participants underwent an Institutional Review Board
(IRB)-approved informed consent process involving a parent
or guardian as well as a separate assent process with the child.
All study procedures were approved by the IRBs at each of the
four sites. Participants were compensated for their time.

Neurobehavioral evaluation

Primary caregivers were administered specific modules from
the C-DISC-4, a computerized structured interview based on
the DSM-IV (Shaffer et al. 2000). Neuropsychological testing
was conducted during one or two sessions by trained research
assistants who were blind to exposure status. Quality control
methods included a video review of test administration proce-
dures and a scoring check for every 10th administration. From
a larger battery of neuropsychological measures administered
in CIFASD, specific measures were chosen for analyses here
based on domains that showed relationships with FC in pre-
vious studies. These include the Differential Ability Scales –
Second Edition (DAS-II) (Elliott 2007), the California Verbal
Learning Test – Children’s Edition (CVLT-C) (Delis et al.
1994), the Delis-Kaplan Executive Functioning System (D-
KEFS) (Delis et al. 2001), and the NEPSY-II Developmental
Neuropsychological Assessment (Korkman et al. 2007).
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MRI acquisition procedures

MRI data were acquired at four sites on scanners from three
vendors: Children’s Hospital of Los Angeles (Philips
Achieva); University of California – San Diego (General
Electric MR750); University of Minnesota and Emory
University (both Siemens Tim Trio). Acquisition sequences
were modeled on protocols developed for multi-site imaging
by the Pediatric Imaging Neurocognition and Genetics (PING)
group (Table 2) (http://ping.chd.ucsd.edu). The sequence
included high resolution T1-weighted images, a T2-weighted
set, 30-direction DTI, and gradient-echo EPI scans for resting-
state fMRI. The acquisition parameters in Table 2 are just those
for data examined in the current set of analyses (T1 and fMRI).
Participants were not sedated for the MRI scan nor were their
usual medications modified. During the resting-state fMRI scan,
participants were instructed to close their eyes and remain still.
Table 2 contains details of the acquisition sequences by site.

MRI processing

T1 cortical parcellation

Cortical parcellation of the T1 volume was performed using
FreeSurfer version 5.3.0 (surfer.nmr.mgh.harvard.edu) (Dale
et al. 1999) and the default Desikan-Killiany atlas. Processing

included removal of non-brain tissue, automated Talairach trans-
formation, segmentation, intensity normalization, tessellation of
the grey matter / white matter boundary, topology correction,
surface deformation, and automated parcellation of the cortical
greymatter into 34ROIs per hemisphere. Each subject’s datawas
visually inspected by a trained operator to ensure accuracy of the
cortical parcellation, but manual editing was not employed.

Resting-state fMRI processing

FMRI data processing was carried out using the FEAT tool
from the FMRIB Software Library (FSL) version 5.0.7
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Smith et al. 2004;
Woolrich et al. 2009). The following pre-statistics processing
was applied: motion correction, brain extraction, spatial
smoothing (6 mm FWHM), grand-mean intensity normaliza-
tion, and high pass temporal filtering (sigma = 50s).
Correction for geometric distortion caused by magnetic field
inhomogeneity was carried out on a subset of data: those data
that were collected along with a reverse phase-encoded gradi-
ent echo fMRI scan acquired for this purpose (all Minnesota
data and a subset of the Atlanta data). ICA-based data analysis
was also carried out during the FEAT processing step using
the FSL tool MELODIC. The FSL tool fsl_fix was then used
to perform automated ICA de-noising of the fMRI data.

Table 1 Demographic
characteristics of participants
included in analyses

PAE (n = 75) Control (n = 68) Statistical Test

Age [M (SD)] 12.7 (2.5) 13.8 (2.4) t(141) = −2.66, p = .009

Sex [n (%Female)] 34 (45 %) 35 (52 %) χ2 = .54, p = .505

Race [n (%White)] 51 (68 %) 43 (63 %) χ2 = .34, p = .599

Ethnicity [n (%Hispanic}] 13 (17 %) 9 (13 %) χ2 = .80, p = .672

Handedness [n (%)Right)] 66 (88 %) 58 (85 %) χ2 = 1.18, p = .759

Fetal Alcohol Syndrome Diagnosis [n (%)] 12 (17 %) 0 (0 %) χ2 = 22.1, p < .001

Physical manifestations
AGrowth Deficiency 18 (24 %) 5 (7 %) χ2 = 9.92, p = .007
BMicrocephaly 14 (19 %) 0 (0 %) χ2 = 16.58, p < .001
CDysmorphic Face 28 (37 %) 8 (11 %) χ2 = 14.09, p = .001

Site [n]

Los Angeles 16 (21 %) 14 (21 %)

San Diego 20 (27 %) 15 (22 %)

Minneapolis 25 (33 %) 29 (43 %)

Atlanta 14 (19 %) 10 (14 %)

Shown here are 143 participants included in the analyses only. Of the initial eligible pool of 165 participants, 20
participants (12 with PAE and 8 controls) were eliminated for excessive motion during MRI; an additional 2
controls were eliminated for networks that did not completely connect within the cost parameters set for the study

PAE Prenatal Alcohol Exposure group
AHeight or weight ≤ 10%ile
BHead circumference ≤ 10%ile
CAt least two of the following: Palpebral Fissure Length ≤ 10%ile, thin vermillion border, smooth philtrum (4 or 5
on lipometer scale)
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Registration of the T1 volume to the fMRI data was per-
formed using the FreeSurfer tool bbregister (Greve and Fischl
2009). White matter and CSF masks were created on the fMRI
data by registering the bilateral FreeSurfer lateral ventricle and
white matter ROIs using the bbregister-determined transform ap-
plied using the FSL tool FLIRT. Timecourses from the CSF and
white matter ROIs along with the six motion parameters were
then used as voxel-wise nuisance regressors in processing the
fMRI data with the FSL tool film_gls. To further reduce artifac-
tual correlations within the fMRI data, volume scrubbing was
applied to the data using methods outlined in Power et al. (2012).

Time-series extraction

The 68 Freesurfer cortical ROIs (34 per hemisphere) were
registered to the processed fMRI data using bbregister. The
parcellations were dilated during registration, but none were
allowed to overlap and voxels outside the brain-mask were
excluded. ROIs that contained fewer than 10 fMRI voxels
for any participant were excluded from the final analysis.
This resulted in the exclusion of 6 ROIs (bilateral entorhinal,
frontal pole and temporal pole), leaving a total of 62 ROIs (31
per hemisphere). The mean fMRI time-series of all voxels
within each ROI were then extracted for each participant.

Computation of the network metrics

Pearson correlations were computed between the time-series
from all possible pairs of the 62 cortical ROIs using

MATLAB (Mathworks, Natick, MA). Graph theory network
metrics were computed for each subject’s Pearson correlation
matrix (Bullmore and Sporns 2009; Rubinov and Sporns 2010)
utilizing tools from the BCT toolbox (http://sites.google.
com/a/brain-connectivity-toolbox.net/bct/Home). Cortical
ROIs served as network nodes and correlation values served
as the connections (edges). The cost of a network is defined as
the ratio of existing connections to the total number of possible
connections in the graph ((62*61) / 2 = 1891 for a 62 node
network). Binary, non-weighted and non-directional adjacency
matrices were determined by applying a participant-specific
threshold to each participant’s data across a range of costs from
0.1 to 0.5, with 0.05 step increments. Four metrics of interest
were derived: characteristic path length, mean clustering
coefficient, local efficiency and global efficiency (Latora and
Marchiori 2001; Watts and Strogatz 1998).

Path length is the smallest number of connections that must
be traversed to connect any pair of nodes in the network. The
characteristic path length (CPL) is the average path length
between all pairs of nodes in the network. A higher than nor-
mal CPL implies less reliance on highly efficient Btrunk-lines^
for long distance communication and more reliance on multi-
ple smaller Bjumps^ between regions. The mean clustering
coefficient (MCC) reflects the density of local connections.
Global efficiency (GLOB), inversely related to path length,
reflects properties of the network associated with long-range
connections that facilitate rapid communication between re-
mote brain regions; it is thought to reflect the network’s ca-
pacity for parallel information propagation and processing. In

Table 2 MRI sequence and parameters

Platform Sequence Imaging parameters Purpose

Philips (Los Angeles)

T1-weighted MPRAGE TR = 6.8 ms, TE = 3.2 ms, TI = 845 ms, 170 slices,
voxel size = 1x1x1.2 mm, FOV = 256 mm, flip angle = 8 degrees

Segmentation & cortical parcellation

Resting fMRI TR = 2500 ms, TE = 30 ms, 50 ascending slices, no skip,
voxel size = 2.67 × 2.67x3mm, FOV = 256 mm,
flip angle = 75 degrees, 156 or 232 measures*

Measurement of BOLD signal

San Diego (General Electric)

T1-weighted IRSPGR TR = 7.38 ms, TE = 2.984 ms, TI = 640 ms, 166 slices,
voxel size = 0.94 × 0.94 × 1.2 mm, FOV = 240 mm,
flip angle = 8 degrees

Segmentation & cortical parcellation

Resting fMRI TR = 2000 ms, TE = 30 ms, 33 interleaved slices, no skip,
voxel size = 3.4 × 3.4x4mm, FOV = 220 mm,
flip angle = 75 degrees, 180 measures

Measurement of BOLD signal

Siemens (Minnesota & Atlanta)

T1-weighted MPRAGE TR = 2170 ms, TE = 4.33 ms, TI = 1100 ms, 192 slices,
voxel size = 1x1x1mm, FOV = 256 mm, flip angle = 7 degrees

Segmentation & cortical parcellation

Resting fMRI TR = 2000 ms, TE = 30 ms, 33 interleaved slices, 1 mm skip,
voxel size = 3.4 × 3.4x4mm, FOV = 220 mm,
flip angle = 75 degrees, 180 measures.

Measurement of BOLD signal

*A total of 21 subjects underwent a single resting-state fMRI run of 156 volumes. An additional 9 subjects underwent two consecutive resting-state fMRI
runs of 116 volumes each, which were ultimately concatenated
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contrast, local efficiency (LOC) is thought to reflect properties
of the network associated with modular processing within
more localized brain regions (Latora and Marchiori 2001).

In network graph mathematics, cost has implications for
overall topography of the network and there are multiple costs
at which the network metrics can be examined. We examined
the networks at a cost at which all participants had fully-
connected networks. A fully-connected network contains at
least one possible pathway between every node.

Statistical analyses

Demographic data were tested for group differences using
independent-samples t-tests and chi-square analyses. T-
tests and chi-square analyses tested for differences be-
tween participants who were included in the study vs
those who were excluded. T-tests were used to test for
differences in motion parameters between the PAE group
and controls. Prior to the primary analyses, a number of
potential confounding factors were examined by testing
for group differences using ANVOA. If no significant
group differences were found across levels of the poten-
tially confounding variable, the variable was not con-
trolled for in subsequent analyses. Primary analyses com-
paring groups (PAE vs. control) on network connectivity
measures consisted of independent samples t-tests. The
impact of multiple comparisons was addressed with
Benjamini and Hochberg False Discovery Rate (FDR)
correction (Benjamini and Hochberg 1995). A multiple
ANOVA was utilized to test for group differences (PAE
vs. control) in neurocognitive functioning. Lastly, Pearson
correlations were used to directly examine relationships
between network connectivity metrics and performance
on neurocognitive tests.

Results

Participants eliminated for excessive motion during MRI

A total of 20 participants were excluded from the analyses re-
ported here because of excessive motion in 30 % or more of the
volumes. The excluded participants were as follows: 12 PAE
and 8 Controls; 14 male and 6 female; 7 from Los Angeles, 6
from San Diego, 3 from Minneapolis, 4 from Atlanta. Among
the included participants, there was not a significant difference
in relative root mean square (RMS) translation between the PAE
group (m = .082, sd = .037) and the control group (m = .072,
sd = .032), [t(141) = 1.44, p = .153]. There was also not a
significant difference in absolute RMS translation between the
PAE group (m = .505, sd = 1.12) and control group (m = .450,
sd = .713), [t(141) = .349, p = .728]. Furthermore, there was not
a significant difference in volumes rejected because of motion

between the PAE group (m = 11.4 volumes, sd = 14.1) and the
control group (m = 9.1 volumes, sd = 12.9), [t(141) = 1.00,
p = .319].

Participants eliminated for less-than-fully connected
networks

Of the participants who had motion within the allowable
range, 2 (both controls) had networks that did not fully con-
nect at a cost of .30 or below and were excluded as a result. At
costs above 0.30, numerous subjects’ networks no longer
retained small world properties (sigma <1.5) (Bassett and
Bullmore 2006). The remaining sample comprised 143 partic-
ipants with analyzable fMRI data (75 PAE, 68 Controls).

Testing for differences between included and excluded
participants

Several analyses were conducted to determine how participants
who were excluded for motion or for having un-connected net-
works (n = 22) differed from included participants (n = 143).
There was a significant difference in age between included
(m = 13.2 years, sd = 2.52) and excluded (m = 11.9 years,
sd = 2.6) participants [t(163) = 2.21, p = .029]. There was not
a difference between included and excluded participants in sex
[χ2 = 2.07, p = .112], race [χ2 = 5.07, p = .534], ethnicity
[χ2 = 3.59, p = .166], history of prenatal alcohol exposure
[χ2 = .034, p = .854], FAS Diagnosis [χ2 = .025, p = .988],
nor DAS General Conceptual Ability [t(161) = 1.56, p = .120].

Testing for confounding factors

After eliminating those with obvious excessive motion, par-
ticipant motion during fMRI can still lead to spurious correla-
tions in voxel intensity, even after the processing stream is
applied (motion correction followed by regression against
the CSF, WM, and six motion timecourses). In order to test
for a potential confounding influence of motion, Pearson cor-
relations were computed between the number of fMRI vol-
umes that were rejected because of motion and the network
metrics of interest. None of these correlations was significant:
(CPL = −.11, p = .21; MCC = −.05, p = .60; GLOB = −0.1,
p = .96; LOC = −.10, p = .15). For this reason, the motion
correction parameters were not entered as covariates in any of
the remaining statistical analyses. As indicated above, motion
was regressed out as part of the pre-processing.

Age was also considered as a potential confounding factor
to the network metrics because some studies have shown age-
related resting-state FC patterns (Fair et al. 2009). Pearson
correlations were computed between age and the network
metrics, but none were significant (CPL = .06, p = .49;
MCC = −.07, p = .43; GLOB = −.08, p = .32; LOC = −.10,
p = .22). Therefore, age was not included as a covariate.
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Collection site (Los Angeles, San Diego, Minnesota, Atlanta)
was also examined as a potential confounding factor. ANOVAs
revealed no significant site effects for any of the four network
metrics (CPL: F(3139) = .38, p = .77; MCC: F(3139) = .48,
p = .71; GLOB: F(3139) = .63, p = .60; LOC: F(3139) = .55,
p = .65). Therefore, site was not included as a covariate.

Due to protocol changes midway through the study (imple-
mented to address participant motion) the data include three
different fMRI run compositions: 113 participants had a single
run of 180 volumes; 21 participants had a single run of 156
volumes, and 9 participants had two runs of 116 volumes each
which were concatenated into a single 232-volume run.
ANOVAs revealed no significant effect of run composition on
any of the four network metrics (CPL: F(2140) = .546, p = .58;
MCC: F(2140) = .881, p = .417; GLOB: F(2140) = .494,
p = .611; LOC: F(2140) = 1.19, p = .307). Therefore, fMRI
run composition was not included as a covariate.

Network characteristics of prenatal alcohol exposed (PAE)
vs. control participants

As shown in Table 3, there was not a significant group differ-
ence in minimum cost to achieve a fully-connected network,
[t(1141) = .664, p = .51] nor in small-world index (sigma),
[t(1, 141) = .121, p = .90]. Thus, the graph theory metrics in
the following analyses can be considered to represent net-
works with equivalent parameters across the two groups.
Table 3 contains means and effect sizes (Cohen 1992) for
the network FC measures with adjacency matrices evaluated
at a cost of 0.30. AlthoughMCC was 1.3 % higher in the PAE
group compared to the control group, none of the network
indices showed a statistically significant difference by group
(PAE vs. controls). Thus, at the group level, the network met-
rics were not sensitive to a simple binary categorization of
prenatally exposed vs. non-exposed.

Examining individuals with atypical network connectivity

Although the network metrics did not distinguish alcohol-
exposed children from non-exposed children at the group

level, an alternative approach of examining individuals with
atypical network characteristics was undertaken. For each of
the four network metrics (CPL, MCC, GLOB, and LOC),
grand means and standard deviations were computed for the
whole sample (including PAE and controls). For each of the
four metrics, individuals were identified as having Btypical^
(within 1 standard deviation of the grand mean) or Batypical^
(outside of 1 standard deviation from the grandmean) network
connectivity. Because the intention was to identify individuals
with inefficient networks, Batypical^was defined directionally
(High CPL, highMCC, and high LOC all represent a Bbias^ in
the network toward highly integrated localized connectivity
that is prioritized over efficient long-distance connectivity;
low GLOB, similarly, represents a bias toward higher local-
ized connectivity prioritized over more efficient long-distance
connectivity). Table 4 shows the distribution of participants
with typical and atypical network connectivity. There was a
trend-level (p = .05) difference for MCC: those with atypically
high MCC were 2.4 times more likely to be in the PAE group
than in the control group. In addition, there was a significant
(p = .02) difference for LOC: those with atypically high LOC
were 2.7 times more likely to be in the PAE group than in the
control group. Applying the Benjamini and Hochberg False
Discovery Rate (FDR) correction (Benjamini and Hochberg
1995) to these four analyses results in none of the four null
hypotheses being rejected. It should be noted that correcting
for this relatively small number of non-independent compari-
sons that were pre-planned is a conservative approach. The
results of the uncorrected analyses remain potentially of inter-
est given the novelty of the data and the consistency with the
more robust findings in the next set of sub-group analyses.

Atypical network connectivity and diagnosis

Out of the 143 participants with good fMRI data, a total of 126
underwent full dysmorphology examinations. The remaining
17 participants did not complete the separate visit for the
dysmorphology exam. The dysmorphologist (KLJ) was blind
to pre-natal alcohol exposure status (PAE vs. control). Of the
126 examined, 12 (8%)were identified as FAS, 59 (41%)were

Table 3 Group differences in network properties for FASD and control groups at cost = 0.30

Mean ± SD PAE (n = 75) Control (n = 68) Statistic, sig. % Difference Cohen’s d
Effect size

Minimum cost to connect .146 ± .06 .140 ± .06 t = .664, p = .51 4.4 % 0.11

Sigma (small world index) 1.57 ± .16 1.57 ± .15 t = .121, p = .90 0.2 % 0.20

Characteristic Path Length (CPL) 1.85 ± .06 1.84 ± .05 t = .615, p = .54 0.3 % 0.10

Mean Clustering Coefficient (MCC) .620 ± .04 .612 ± .03 t = 1.25, p = .21 1.3 % 0.21

Global Efficiency (GLOB) .620 ± .01 .621 ± .01 t = .322, p = .75 0.1 % 0.15

Local Efficiency (LOC) .800 ± .02 .795 ± .02 t = 1.42, p = .16 0.6 % 0.24
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non-FAS, and 55 (39 %) were placed into a Bdeferred^ group.
The deferred group contains both participants who have prena-
tal alcohol exposure (n = 37) and participants with no exposure
(n = 18). As mentioned previously, the deferred group is based
on dysmorphology only and reflects the limitations of
dysmorphology as applied to the diagnosis of FASD.

A set of analyses focusing on the 55 participants in the
deferred group alone reveals that the network FC measures
may have potential for further parsing this group in a clinically
relevant manner. As shown in Table 5, atypical connectivity
was significantly more common among those in the deferred
group who were exposed to alcohol vs. those in the deferred
group who were not exposed to alcohol. Applying the

Benjamini and Hochberg FDR correction to these data results
in rejection of two null hypotheses (LOC and MCC). Three of
the metrics (MCC, GLOB, and LOC) were highly specific such
that atypical connectivity was seen only in participants with
known PAE and not in any without exposure (there were no
false positives). Setting a criteria of at least one of these con-
nectivity measures being Batypical^ (MCC, GLOB, or LOC),
atypical FC identified 15 (27 %) of the original 55 deferred
individuals, all of whom were known to have been exposed
prenatally to alcohol. No unexposed individuals in the deferred
group had atypical connectivity. These analyses demonstrate
that network connectivity measures could potentially be used
to identify nearly a third of individuals who do not meet criteria

Table 4 Distribution of typical and atypical network connectivity for PAE and control participants

n (% within network measure) PAE (n = 75) Control (n = 68) Chi-square, sig.

Characteristic Path Length (CPL)

Typical 59 (50.9 %) 57 (49.1 %)

Atypically high 16 (59.3 %) 11 (40.7 %) x2 = 0.62, p = .28

Mean Clustering Coefficient (MCC)

Typical 56 (48.3 %) 60 (51.7 %)

Atypically high 19 (70.4 %) 8 (29.6 %) ×2 = 4.29, p = .05

Global Efficiency (GLOB)

Typical 66 (51.6 %) 62 (48.4 %)

Atypically low 9 (60.0 %) 6 (40.0 %) ×2 = 0.38, p = .37

Local Efficiency (LOC)

Typical 56 (47.9 %) 61 (52.1 %)

Atypically high 19 (73.1 %) 7 (26.9 %) ×2 = 5.42, p = .02

None of the four tests remained statistically significant after applying Benjamini and Hochberg FDR correction

PAE Prenatal Alcohol Exposure

Table 5 Distribution of typical and atypical network connectivity by prenatal alcohol exposure in a group of 55 children with Bdeferred^ diagnostic
status

n (% within network measure) PAE (n = 37) Control (n = 18) Chi-square, sig.

Characteristic Path Length (CPL)

Typical 28 (63.6 %) 16 (36.4 %)

Atypically high 9 (81.8 %) 2 (18.2 %) ×2 = 1.32, p = .307

Mean Clustering Coefficient (MCC)

Typical 25 (58.1 %) 18 (41.9 %)

Atypically high 12 (100 %) 0 (0 %) ×2 = 7.47, p = .005

Global Efficiency (GLOB)

Typical 30 (62.5 %) 18 (37.5 %)

Atypically low 7 (100 %) 0 (0 %) ×2 = 3.90, p = .051

Local Efficiency (LOC)

Typical 25 (58.1 %) 18 (41.9 %)

Atypically high 12 (100 %) 0 (0 %) ×2 = 7.47, p = .004

After applying Benjamini and Hochberg FDR correction, MCC and LOC remained as statistically significant differences

PAE Prenatal Alcohol Exposure
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for FAS, but who clearly have a combination of sub-threshold
physical anomalies and neurodevelopmental abnormalities that
are specifically related to prenatal alcohol exposure.

Atypical network connectivity and neurocognitive
functioning

A multiple analysis of variance (MANOVA) tested for differ-
ences in cognitive ability (global cognitive functioning, mem-
ory, and executive functioning) between childrenwith atypical
FC and those with typical FC – across the whole sample,
including PAE and controls (Table 6). The MANOVA was
significant (Wilks’ Lambda = .856, F(8, 115) = 2.42,
p = .019). Post-hoc univariate tests revealed that those with
atypical connectivity had DAS-II Composite Standard Scores
that were 11.4 % lower than those with typical connectivity.
There was also a trend-level difference suggesting that verbal
memory (NEPSY-II Memory for Names) was lower (13.3 %)
in those with atypical connectivity compared to those with
typical connectivity. A separate MANOVA, including group
(PAE vs. Control), was conducted to determine whether the
relationship between cognition and connectivity differed be-
tween PAE and Control. The interaction term was not signif-
icant [F(7114) = .957, p = .466).

Across the whole sample, connectivity was associated with
global cognitive functioning as illustrated by a Pearson correla-
tion between LOC and DAS-II Composite Standard Score
(r = −.234, p = .005). In these particular data, illustrated in
Fig. 1, a 1 % difference in local efficiency (LOC) was associated
with a 36.4 point difference in DAS-II Composite Standard
Score. Together, these data suggest that the FCmetrics examined
here may have significant clinical relevance. In a sense, FC ab-
normalities may serve as Bcorroborative^ evidence, together with
neurocognitive deficits, of an underlying neurodevelopmental
abnormality in an individual. This could potentially shed light
on cases in which the FASD diagnosis is equivocal because of
the presence of only minimal dysmorphic features.

Discussion

Efficiency in cognitive functioning is dependent on the brain’s
ability to distribute information processing across its entire
network. This distribution allows for the instantaneous
Bpulling together^ of numerous specialized processing centers
to meet the demands of the task at hand. Distribution in this
manner is also thought to allow for parallel processing, likely
increasing efficiency dramatically. Anatomically, the brain’s
network is comprised of densely connected local processing
nodes (cortical and sub-cortical gray matter regions) that are
inter-connected over relatively long distances by the net-
work’s central backbone – the white matter. Numerous studies
have examined the substrate of the network in PAE – using
structural and microstructural MRI methods (Donald et al.
2015a, b; Mattson et al. 2013; Wozniak and Muetzel 2011) –
in conjunction with assessments of cognition. Here, we exam-
ine functional connectivity, gaining new insights into the ac-
tual interface between anatomy and cognitive performance.

We have known for some time that PAE damages the hard-
ware that allows the brain to process information efficiently.
Some of the earliest studies showed smaller corpus callosum
area (Riley et al. 1995), regional white matter hypoplasia
(Archibald et al. 2001), altered regional white matter density
(Sowell et al. 2001a, b), and callosal shape anomalies in
prenatally-exposed subjects (Bookstein et al. 2005;
Bookstein et al. 2007; Bookstein et al. 2001; Sowell et al.
2001a, b). More recently, DTI studies have reliably demon-
strated alterations in the white matter microstructure in PAE
(Donald et al. 2015a, b; Fan et al. 2015; Fryer et al. 2009;
Lebel et al. 2010; Lebel et al. 2008; Li et al. 2009; Ma et al.
2005; Malisza et al. 2012; Sowell et al. 2008; Spottiswoode
et al. 2011; Taylor et al. 2015; Wozniak et al. 2006; Wozniak
et al. 2009). Overall, this body of work suggests that PAEmay
affect white matter globally rather than regionally, although
work continues in this area. A number of existing studies
tested for relationships between white matter microstructural
abnormalities and physical characteristics of FASD such as

Table 6 Estimated marginal means, standard deviations (SD), and univariate test results (following MANOVA) for neurocognitive measures

Typical Connectivity (n = 94) Atypical Connectivity (n = 30) Univariate tests following MANOVA

Mean SD Mean SD F p Effect size (Cohen’s d)

DAS-II composite standard score 101.3 17.7 90.4 11.3 10.1 .002* 0.73

CVLT-C trials 1–5 total t-score 50.7 10.6 49.1 11.0 0.5 .481 0.14

NEPSI-II Memory for Designs scaled score 8.9 3.7 8.1 3.5 1.3 .260 0.22

NEPSY-II memory for names scaled score 9.6 3.1 8.4 2.4 3.7 .056 0.43

NEPSY-II narrative memory scales score 9.8 3.5 9.5 3.6 0.2 .690 0.08

NEPSY-II memory for faces scaled score 10.1 2.7 10.8 3.5 1.4 .243 0.22

Trail-making switching scaled score 8.6 3.5 7.9 3.4 1.0 .330 0.20

NEPSY-II inhibition scales score 7.7 3.8 7.2 4.0 0.3 .610 0.13
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dysmorphic facial features. The studies that examined corre-
lations between DTI measures and facial dysmorphology re-
ported no significant relationships (Lebel et al. 2008; Li et al.
2009; Ma et al. 2005; Wozniak et al. 2006; Wozniak et al.
2009), suggesting that these measures may be somewhat in-
dependent of each other (i.e. white matter microstructure can
be impacted by PAE even when dysmorphic features are not
present). White matter integrity has been shown to be associ-
ated with cognitive functioning in FASD in a number of do-
mains: executive functioning (Bookstein et al. 2002), inter-
hemispheric transfer / finger localization (Roebuck et al.
2002), processing speed (Ma et al. 2005), intelligence (Li
et al. 2009), working memory (Malisza, et al. 2012;
Wozniak, et al. 2009), and math skill (Lebel et al. 2010). As
one would expect from a prenatal insult, white matter distur-
bances can be detected in the developing fetus (Bookstein,
et al. 2005) and have now been shown to be present and
measurable with DTI at the newborn stage of life as well
(Donald et al. 2015a, b; Taylor et al. 2015).

The existing literature on FC from studies employing fMRI
in PAE remains very small at this time and, therefore, the
current large-scale examination of FC fills a gap in the litera-
ture. Wozniak et al. (2011) initially showed a specific alter-
ation in right-left FC in cortical regions that are heavily inter-
connected by posterior callosal tracts known to be impacted
by PAE. No significant relationship between inter-
hemispheric FC and cognitive functioning was observed in

that study, although perceptual reasoning (from the Wechsler
Intelligence Scale) was associated with FC at a trend-level. A
second study by Wozniak et al. (2013), using a graph theory
approach much like the current study, showed network effi-
ciency disadvantages of 1.3 % to 3.5 % for children with PAE
compared to controls. Cohen’s d effect sizes in that study were
0.33 to 0.63 (small to medium effects). The current study
showed similar but smaller decrements in network efficiency
for those with PAE (0.1 % to 1.3 % and non-significant). The
effect sizes were lower in the current study (0.10 to 0.24)
(small effects). However, in the current data, a 1 % change
in local efficiency was associated with a 36 point change in
global cognitive functioning, highlighting the potential impor-
tance of small network efficiency differences. Furthermore,
the current data also showed that individuals with measurably
atypical connectivity were mostly found in the PAE group;
they were 2.4–2.7 times more common in the PAE group
compared to the control group. Although we do not yet fully
know the implications of these types of FC abnormalities, it is
thought FC may partly reflect Boffline^ processing such as
memory consolidation and planning (Raichle and Snyder
2007; Tambini et al. 2010). Therefore, disruptions in FC
would presumably impact negatively on these important pro-
cesses in a pervasive manner – i.e. not only when engaged in
specific types of tasks.

Resting-state studies, including the current one, show evi-
dence of atypical FC when no task is being performed – the

Fig. 1 Relationship between
local efficiency (LOC) and
Differential Ability Scales –
Second Edition (DAS-II)
Composite Standard Score
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implication of which is that there are inherent limitations to the
network’s hardware. Other studies demonstrate that the PAE-
affected brain is also inefficient and/or dysfunctional when
engaged in specific task performance. For example,
Santhanam et al. (2011) showed that engaging in a math task
resulted in differences in coupling between two brain net-
works (the medial-prefrontal cortical network and the posteri-
or cingulate cortical network) for participants with PAE and
dysmorphic facial features compared to control participants.
They also reported that the cingulum bundle connecting these
two nodes of the default mode network had abnormal
microstructural characteristics as measured by DTI.
Roussotte et al. (2012) showed that individuals with PAE
had abnormal FC in corticostriatal networks compared to con-
trols when engaged in a working memory task. Specifically,
they observed increased connectivity between putamen and
frontal cortex and decreased connectivity between the caudate
and frontal cortex in the PAE group.

In the current study, we performed simple group compari-
sons for the FC measures of interest and found that they were
not sufficiently sensitive to discriminate on their own between
prenatally exposed and non-exposed individuals. The limita-
tions posed by the methodology and specific analytic deci-
sions may have been a factor in this result. For example, we
employed Freesurfer’s cortical parcellation which results in
ROIs of relatively varied size – some of which are large.
Averaging the fMRI signal across relatively large and varied
ROIs could have introduced noise into the analyses, making it
more difficult to detect a group difference. In the future, an
alternative approach might be to employ smaller, more uni-
form ROIs.

In discussing limitations and caveats to the current study, it
is also worth acknowledging that the cutoff we employed for
Batypical^ connectivity (1 standard deviation) was somewhat
arbitrary and a relatively modest cutoff. The cut point was
chosen specifically to identify a reasonable number of indi-
viduals with atypical connectivity so that relationships with
facial dysmorphology and alcohol exposure could be exam-
ined. A two standard deviation cutoff would simply have been
too restrictive. In addition, the current study defined
Batypical^ connectivity in a specific direction (High CPL,
high MCC, high LOC, and low GLOB all represent a degree
of bias in the network toward dense local connectivity prior-
itized above more efficient long-distance connectivity). Future
analyses of the CIFASD dataset, employing more participants,
may be able to examine alternative cutoffs. It is also important
to note that younger participants were more likely to have
been excluded from the study because of in-scanner motion
compared to older participants. This finding suggests that fu-
ture studies may benefit from oversampling younger children
or employing additional motion restriction techniques during
data collection. Also, it is worth considering that the group
distinction employed in this study (PAE vs. control) is not

perfectly precise (we often have imperfect information about
amounts of prenatal alcohol exposure, etc.) and, therefore, this
imprecisionmay also have contributed to the lack of an overall
main effect of prenatal alcohol exposure on network connec-
tivity measures. Lastly, as in nearly all studies of PAE, we
observed high rates of psychiatric co-morbidity in the PAE
group compared to the control group. This reflects the reality
of the population and cannot realistically be eliminated or
controlled, but does need to be considered as important con-
text when interpreting the current results.

Nonetheless, because we observed that atypical FC was
much more common in the PAE group compared to controls,
we further examined the distribution of atypical FC within the
context of other clinical information – in this case, dysmorphic
character is t ics . In a cl inical set t ing, a pediat r ic
dysmorphologist would apply the diagnostic criteria as was
done here, resulting in: 1.) a group diagnosed with FAS; 2.) a
group identified as non-FAS; and 3.) a group for which a clear
decision could not be made because of only partial diagnostic
criteria being present. We examined FC in this sub-group in
order to explore whether an objective measure of
neurodevelopmental abnormality (atypical FC) would be po-
tentially useful in parsing this heterogeneous group.

For three of the FC metrics, atypical FC was seen only in
those who had PAE and not in any of the non-exposed con-
trols in the Bdeferred^ group. Furthermore, atypical FC was
shown to be associated with lower global cognitive function-
ing, also reinforcing its potential clinical relevance. Practically
speaking, it remains unlikely that fMRI will ever be utilized in
the diagnosis of FASD, but these data suggest that FC metrics
may have an important role to play in continuing to push the
development of diagnostic criteria and grounding them in
neuroscience. One could imagine, for instance, that individual
FASD diagnostic criteria or systems of FASD diagnosis could
be evaluated against FC metrics and neurocognitive outcomes
in order to better understand the strengths and limitations of
the criteria and their relevance to outcome. One might also
anticipate that FC metrics, such as those presented here, could
be used to track developmental changes over time and, poten-
tially, to track changes in network efficiency with cognitive or
biological treatments for FASD.

Conclusion

The current study provides insight into both the limitations
and the potential of functional connectivity data in Fetal
Alcohol Spectrum Disorders. In this study, whole-brain con-
nectivity metrics proved to be robust (there were no difference
across site/scanner nor were there age-related differences) and,
thus, potentially useful in the identification of underlying pa-
thology. The data suggest that measures of network integrity /
efficiency may help to identify individuals with clear
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neurodevelopmental abnormalities among individuals with
sub-threshold minor physical anomalies and dysmorphology.
Ultimately, although fMRI is not likely to develop into a di-
agnostic tool itself, this methodology will help to push for-
ward our understanding of how best to identify the full range
of individuals impacted by PAE.
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