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Abstract Assessing functional brain activation patterns in
neuropsychiatric disorders such as cocaine dependence (CD)
or pathological gambling (PG) under naturalistic stimuli
has received rising interest in recent years. In this paper,
we propose and apply a novel group-wise sparse represen-
tation framework to assess differences in neural responses
to naturalistic stimuli across multiple groups of participants
(healthy control, cocaine dependence, pathological gambling).
Specifically, natural stimulus fMRI (N-fMRI) signals from all
three groups of subjects are aggregated into a big data matrix,
which is then decomposed into a common signal basis dictio-
nary and associated weight coefficient matrices via an effective
online dictionary learning and sparse coding method. The
coefficient matrices associated with each common dictionary
atom are statistically assessed for each group separately. With
the inter-group comparisons based on the group-wise corre-
spondence established by the common dictionary, our experi-
mental results demonstrated that the group-wise sparse coding

and representation strategy can effectively and specifically de-
tect brain networks/regions affected by different pathological
conditions of the brain under naturalistic stimuli.
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Introduction

In recent years, assessing group differences of functional brain
activity by functional resonance imaging (fMRI) has drawn
increasing attention (Lv et al. 2015c; Gur et al. 2000; Baron-
Cohen et al. 1999; Manoach et al. 2000; Tapert et al. 2001;
Codispoti et al. 2008; Kober et al. 2016; Kret and De Gelder
2012). However, most previous studies were based on task
fMRI with abstracted and repeated stimuli (Lv et al. 2015a,
b, c; Gur et al. 2000; Baron-Cohen et al. 1999; Manoach et al.
2000; Tapert et al. 2001), while only a handful of studies
employed natural stimuli fMRI (N-fMRI) such as video
watching (Codispoti et al. 2008; Kober et al. 2016; Kret and
De Gelder 2012). Compared to task fMRI, N-fMRI is more
complex, dynamic and closer to human brain’s daily percep-
tion, which provides multiple cognitive loads in an uncon-
trolled environment and thus alternative, new opportunities
to better understand the brain’s functional activities (Hasson
et al. 2010). One of the underlying difficulties of N-fMRI
analysis is that it’s hard to build correspondence between the
input naturalistic stimuli and any specific brain function
(Bordier et al. 2013). Thus it is challenging to use popular
model-driven methods like general linear model (GLM) to
analyze N-fMRI data (Bordier et al. 2013). Although there
are already a few studies applying GLM on N-fMRI data,
prior manual rating processes are typically required for each
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feature of video stimuli, which is a complex, time-consuming
procedure and might lead into inter-rater difference and/or
artefacts (Lahnakoski et al. 2012). Meanwhile, data-driven
methods such as independent component analysis (ICA) has
been another school of widely used methodologies in explor-
ing functional brain networks in N-fMRI, which aims to de-
compose fMRI signals into meaningful components and does
not need any priori hypothesis of possible incentives of brain
responses (Bartels and Zeki 2004).

Recently, there are growing numbers of research studies that
decompose fMRI data into linear combinations ofmultiple com-
ponents via sparse representation of whole-brain fMRI signals
(Lv et al. 2015a; Lv et al. 2015b). The basic idea of this frame-
work is to extract whole-brain fMRI signals of one subject and
aggregate them together into a big data matrix, which is then
decomposed into an over-complete dictionary matrix and a
weight coefficient matrix by effective dictionary learning and
sparse coding algorithms (Mairal et al. 2010). In this framework,
each dictionary atom stands for the representative signal pattern
and functional activities of a brain network and its associated
weight coefficient vector stands for the spatial distribution of this
dictionary atom. One interesting characteristic of this framework
is that the decomposed weight coefficient matrix naturally indi-
cates the spatial overlap/interaction pattern among reconstructed
brain networks. This novel data-driven method naturally con-
siders that a brain region might be involved in multiple
functional processes/domains (Gazzaniga 2004; Pessoa
2012), and therefore, each fMRI signal is factorized into
several network atoms (Lv et al. 2015a; Lv et al. 2015b).

However, one notable challenge of previous studies of
sparse representation of whole-brain fMRI signals is how to
establish the correspondence of different dictionary atoms
across individual subjects (Lv et al. 2015c). It would be diffi-
cult to assess group differences of functional brain activities in
different brain conditions such as CD, PG and healthy controls
in this paper without established group-wise correspondence
of such dictionary atoms. Responding to this challenge, in this
paper, we propose a novel computational framework of group-
wise sparse coding and representation of the N-fMRI data of
multiple groups of subjects (healthy control, CD, PG in this
work) and assess the group differences of functional brain
networks. Comparing with previous work that applied
group-wise sparse representation approach to task fMRI data
(Lv et al. 2015c), we employed and expanded this effective
framework to N-fMRI data with more complex and dynamic
stimuli frommultiple individuals, which is the major technical
novelty of our study. Although N-fMRI involves dynamic
multimodal stimuli with rich contexts, it has been reported
that different individuals tend to respond in similar way under
complex naturalistic stimuli (Hu et al. 2015; Han et al. 2015).
In addition, the multiple cognitive loads in naturalistic
stimuli provide us the opportunities to have better understand-
ing of brain activation patterns in different brain conditions.

Therefore, by applying our effective group-wise sparse repre-
sentation method to N-fMRI can not only identify the func-
tional brain networks of interest, but also can uncover group-
wise differences in brain activation patterns among different
conditions. More specifically, our computational framework
aims to learn a common time series dictionary matrix from
the aggregated fMRI signals of all three groups of subjects,
and subsequently assess weight coefficient matrices corre-
sponding to each common dictionary atom for each group
separately. With comparisons of the inter-group differences
based on the correspondence established by common dictio-
naries, our experimental results demonstrated that the group-
wise sparse coding strategy can effectively reveal different
brain responses of CD, PG and healthy controls under different
naturalistic stimuli in a collection of brain networks/regions.

Methods

Overview

The overview of our framework is summarized in Fig. 1. First,
subjects from 3 groups (HC: healthy control, CD: cocaine
dependence, PG: pathological gambling) are spatially nor-
malized into the standard MNI template. Then a standardized
group common brain mask is used to extract the whole brain
fMRI signals of each subject (Lv et al. 2015c), and the ex-
tracted signals are stacked into 2D signal matrix Sx∈ Rt�nx , as
shown in Fig. 1(a). Then all extracted signal matrices form 3
groups of subjects are pooled into a big matrix S∈ Rt�n ,
which is composed of three groups of subjects: GCD, GHC

and GPG (Fig. 1(b)). The online dictionary learning and sparse
coding is adopted (Mairal et al. 2010), and the signal matrix S
is decomposed into a common signal dictionary matrix D
and associated coefficient matrix A (Fig. 1(c)). Specifically,
D is commonly shared by three groups, and A has the
same spatial voxel organization and group correspondence
as S, i.e., A ¼ AGCD ;AGHC ;AGPG½ �∈Rm�n (Fig. 1(c)). The
group-wise correspondence established by the common dic-
tionary D provides the opportunity for group-wise statistical
analysis and comparison (Fig. 1(d)). To compare brain activation
among three groups, a statistical coefficient mapping method is
applied to sub-coefficient matrix of each group to derive statis-
tical coefficient maps (z-score maps) as shown in Fig. 1(e)
(Lv et al. 2015c). Then, the z-score maps are employed for
group comparison analysis to identify brain regions/networks
related to different brain conditions (Fig. 1(d)).

Data acquisition and pre-processing

Video stimuli Three videos are selected including cocaine,
gambling and sad scenarios presented in a counter-balanced
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order. In each video, a female actor was shown speaking
to the participants and describing a cocaine-use, gambling,
or sad experience (Kober et al. 2016). The lengths of
cocaine, gambling and sad experience videos are 198, 217,
and 218 s respectively. There was a 30–45 s of baseline (gray
screen) before and after each tape.

Participants Forty-four participants (20 females) were
included in this study, of whom 14 were CD (7 female), 15
were PG (5 female), and 15 HC were neither (8 female).
Participants were inspected by phone-screening to determine
initial eligibility and were excluded if they were left-handed,
did not speak English, were treatment-seeking, or reported
head trauma with loss of consciousness, pregnancy, claustro-
phobia, or any implants or non-removable metal contraindi-
cated in MRI. Eligible participants were administered a struc-
tured clinical interview for DSM-IV (SCID) and participants
who met criteria for an active (past-3-month) axis I disorder
(except past/present CD, PG, or nicotine dependence), were
reported a history of neurological illness, psychiatric hos-
pitalization in the last 6 months (except for CD), or use of
psychotropic medications were excluded from the study.
Written informed consent was obtained from all partici-
pants after complete description of the study. The study was
approved by the Yale Human Investigation Committee. This
study employed two widely-used, valid and reliable measures,
the South Oaks Gambling Screen (Lesieur and Blume 1987)
and Fagerstrom Test for Nicotine Dependence (Heatherton
et al. 1991) to assess gambling and smoking, respectively.

Imaging data acquisition and preprocessing

Participants were scanned in a 3 T Siemens Trio MRI system.
Functional images were acquired in the axial plane parallel
to the AC-PC line (TR/TE = 1500/27 ms, flip angle = 60°,
field of view = 220x220mm, and 25x5mm slices). Each

type of video was presented to all three groups of subjects
in scanner with same sequence, and the time points of
functional images corresponding to cocaine-use, gambling,
and sad experience videos were 198, 217, and 218. In
addition, high-resolution 3D Magnetization Prepared Rapid
Gradient Echo structural images were acquired for multi-
subject registration (TR/TE = 2530/3.34ms; flip angle = 7°, field
of view = 256 × 256 mm, and 176x1mm slices). The prepro-
cessing pipeline is implemented using Data Preprocessing
Assistant for Resting-state FMRI (DPARSF, http://rfmri.
org/DPARSF). The preprocessing pipeline includes motion
correction, slice time correction, spatial smoothing, band-
filtering (0.008–0.3), and normalization. We generated a group-
wise commonmask by conducting all single masks together and
use this common mask to extract whole brain signals of each
subject (Lv et al. 2015c).

Dictionary learning and sparse representation
of whole-brain fMRI signals

As many previous studies have reported, a variety of brain
regions and networks exhibit strong functional diversity and
heterogeneity, which means that a cortical region could
involve in multiple functional processes and a functional
networks might contain various heterogeneous neuro ana-
tomic regions (Gazzaniga 2004; Pessoa 2012). The sparse
representation of whole-brain fMRI signals can effectively
and robustly identify concurrent functional networks, not
only for task-evoked networks but also for resting-state
networks (Lv et al. 2015a; Lv et al. 2015b). Despite the
successful applications of sparse representation of whole-
brain fMRI signals, conducting sparse representation method
to whole-brain naturalistic stimulus fMRI of brain conditions
has rarely been explored yet, as far as we know.

Applying dictionary learning and sparse coding method to
a big signal set from whole brains of all the subjects aims at

Fig. 1 The computational framework of our group-wise sparse representation of whole-brain fMRI signals from three different groups of subjects (CD:
Cocaine dependence, HC: Healthy control, PG: Pathological gambling)
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minimizing the representation error and learning an efficient
dictionary to represent each signal by a sparse set of relevant
dictionary components. The empirical cost function is
summarized in Eq. (1) where the average loss of n signals
is taken into consideration. The loss function of each sig-
nal is defined as Eq. (2). The L1 regularization is adopted
for sparsity control.

f n Dð Þ≜ 1

n

X n

i¼1
l si;Dð Þ; ð1Þ

l si;Dð Þ≜minai∈Rm
1

2
si−DAik k22þ2λ Aik k1 ð2Þ

Notably, each si in S is normalized with zero mean and
standard deviation of 1 to ensure the coefficients in A compa-
rable. Also, each column in D is constrained with Eq. (3).

C≜ D∈Rt�ms:t:∀ j ¼ 1;…m; dTj d j≤1
n o

minD∈C;a∈Rm�n
1

2
S−DAk k2FþFλ Ak k1;1

ð3Þ

In short, dictionary learning and sparse coding can be sum-
marized as Eq. (3) (Mairal et al. 2010). The online dictionary
learning method provides us a platform to learn the dictionary
and representation efficiently and optimally. In our studies,
each group of subjects (CD, HC, PG) viewed the same three
videos (cocaine-use, gambling, and sad experience), thus we
conduct group-wise dictionary learning and sparse coding on
aggregated N-fMRI datasets from three groups of subjects
under each video stimulus, respectively. In our framework,
the whole-brain fMRI signals of each subject for one video
are extracted and stacked into a 2D matrix Si, in which a
column represented the signal for a voxel. Then signal matri-
ces from all the subjects for one video are pooled and arranged
into a big signal matrix S, which consists of three groups of
subjects:

S ¼ SGCD ; SGHC ; SGPG½ �; SGCD ¼ SCD1;…; SCDk½ �;SGHC

¼ SHC1;…; SHCk½ �; SGPG ¼ SPG1;…; SPGk½ � ð4Þ
A ¼ AGCD ;AGHC ;AGPG½ �;AGCD ¼ ACD1;…;ACDk½ �;AGHC

¼ AHC1;…;AHCk½ �;AGPG ¼ APG1;…;APGk½ � ð5Þ

By applying the effective online dictionary learning meth-
od on the input fMRI signals matrix, we can learn a dictionary
matrix D shared by all three groups of subjects and associated
coefficient matrix A that inherit the spatial voxel organization
and group correspondence of signal matrix S as Eq. (5), which
provides us an effective way to conduct group-wise statistical
analysis and comparison. Specifically, each column of D is a
representative fMRI signal pattern, and each row in Ax corre-
sponds to the associated coefficient vector that is the spatial
distribution among the whole-brain voxels of corresponding

dictionary atom and can be mapped back to brain volume
image (Ax represents ACDk, AHCk or APGk called individual
coefficient matrix).

Group-wise statistical coefficient maps

As previous studies applying sparse representation method to
single brain fMRI signals, establishing the correspondences of
different dictionary atoms across subjects and groups is still an
open problem. Although methods such as template matching
have been adopted to establish group correspondence, the
brain networks analyses for groups are constrained by a lim-
ited number of functional brain network templates. In this
paper, we employed a group-wise sparse representation meth-
od to the N-fMRI datasets of multiple groups of subjects (CD,
HC, PG), which can automatically establish group correspon-
dence of different dictionary atoms. Since the dictionary learn-
ing and sparse coding strategy does not change the spatial
organization and group correspondence of input signal matrix
S, the weight coefficient matrix A will maintain the spatial
voxel organization as well as group information of S, which
provides us a convenient way to conduct group statistical
analysis to assess group differences in functional brain net-
works (Lv et al. 2015c), which is quite different from previous
single subject sparse coding. Therefore, the weight coefficient
matrix A consists of 3 matrices corresponding to 3 groups, and
the matrix corresponding to each group is composed of sub-
matrices of subjects (Fig. 1e).

Since the same common mask is adopted to extract fMRI
signals of each subject, each voxel has group correspondence
among all the subjects, e.g., the reference coefficient of jth

voxel to ith dictionary atom in D is preserved in element
(i, j) of each sub-matrix (Fig. 1e). For each group respec-
tively, we hypothesize that each coefficient element (i,j) is
group-wisely null, and the T-test method is conducted with
T defined in Eq. (6) to test acceptance or rejection of null
hypothesis for each element (i,j). The threshold is set to
be P < 0.01. The derived T-value is transformed to the
standard z-score (Friston et al. 1994).

T i; jð Þ ¼ A d
Gx l; jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var A d
Gx l; jð Þ

� �r ;A d
Gx l; jð Þ

¼
X xk

n¼1
An i; jð Þ; x ¼ CD or HC or PGð Þ ð6Þ

Here, we select P < 0.01 (Z > 2.3) as the threshold without
multiple comparison correction, which is relatively lower than
traditional activation analysis. That’s because the online dic-
tionary learning and sparse coding algorithm (Mairal et al.
2010) results in the sparsity of weight coefficient matrix A,
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and if one network is not significantly consistent the coeffi-
cient is punished to be zero, which is a strict false positive
control. Thus, with a relative low but meaningful threshold,
we could possibly detect accurate network spatial maps. Also,
the t-test result of AGX is sparse, in which the row represents
the non-distribution to the whole brain of each dictionary atom
(Fig. 1e). Thus each row can be projected to brain volume
image and indicates the distribution of the associated dictio-
nary atom. We define the distribution map of each dictionary
atom as a component network. In order to make each compo-
nent network comparable, we transform the T-value to the
standard z-score, color code the z-scores of each component,
and then derive the statistical coefficient map. The z-scores
can reflect the significance of the contribution of each net-
work. For each type of video stimuli, we conduct the t-tests
for AGCD, AGHC, and AGPG, separately. However, the derived
statistical coefficient maps for three groups of subjects have
group-wise correspondence of the same dictionary atom, thus
can be compared cross groups to assess functional brain ac-
tivities in different brain conditions (Fig. 1e).

Results

In our study, participants viewed three types of videos
depicting cocaine, gambling, and sad stories. Cocaine and
gambling stories are employed to induce urges for cocaine
and gambling in CD and PG groups, respectively. We adopt
sad stories video as an emotional active control condition and
examine the group differences in emotional processing among
three groups of subjects. First, we detect diverse meaningful
brain networks in three groups via our group-wise sparse rep-
resentation method under three types of naturalistic stimuli. In
total, 45 functional networks of interest are identified from all
the groups under three types of stimuli. Specifically, 15 func-
tional networks are generated from three groups of subjects
under sad stories stimuli, and 16 networks are detected under
cocaine-use video stimuli. Moreover, 14 functional networks
of interest are identified under gambling-use video stimuli.
Specifically, the dominant meaningful networks detected in
HC, CD and PG groups corresponding to the same dictionary
atom have the similar active patterns under each type of video
stimuli, respectively. We postulate that CD, PG and HC
exhibit similar composition patterns in corresponding net-
works. Our method characterizes several common brain
networks reported previously under each video stimuli,
including auditory (sad stories #32, #122; cocaine stories
#179; gambling stories #21, #154), visual (sad stories #35,
#146; cocaine stories #132, #133; gambling stories #13,
#114, #132), and default mode network (sad stories #153;
gambling stories #188). Moreover, since the input stimuli of
video viewing are quite complex, our method can also identify

some meaningful networks with several associated brain re-
gions, as discussed in each subsection.

Then, we investigate if our group-wise sparse representa-
tion method can effectively detect group differences in brain
activities during different types of videos viewing. Cross-
group comparisons of statistical coefficient maps for three
groups of subjects under three types of naturalistic stimuli
are conducted. Specifically, we use experimentally deter-
mined threshold Z > 2.3 to all the detected networks of three
groups and compare their voxel numbers (as a metric of spatial
distribution) under each stimuli respectively. Furthermore, to
test if the networks in one group that exhibit highest voxel
numbers also have highest average z scores, we hence com-
pare the average z scores in these networks after thresholding
at Z > 2.3 among three groups. Specifically, we conduct two-
sample t-tests to statistically compare z scores across groups
(P < 0.05 with FDR correction) under each stimuli, respec-
tively. The result reveals that identified meaningful networks
can be used to discriminate different groups of subjects under
different video viewing conditions.

Specifically, by using our proposed group-wise sparse rep-
resentation framework to the three groups of subjects, we can
identify networks of interests during video viewing. We use
the experimentally determined threshold Z > 2.3 on the statis-
tical coefficient maps defined in Section 2.4, and then we can
detect voxels that have significant reference to each dictionary
atom. Specifically, in our study, there are two steps of identi-
fying meaningful networks. First, using the threshold of
Z > 2.3, we calculate the voxel number of each statistical
coefficient maps in control group, where the maps with high
voxel numbers (top 20 %) are selected. Then, we carefully
inspect each network component with high voxel number,
where components with meaningful brain regions are chosen
whereas components without meaningful pattern are discarded.
All the manual steps are conducted by voting of at least three
researchers (SFig. 1). Thus, we identify several meaningful
networks under three types of videos, as shown in the following
subsections.

Sad stories

Figure 2a shows the selected 15 most dominant meaningful
networks from three groups under sad stories video viewing,
which shows similar spatial patterns in corresponding net-
works across groups. Besides the networks commonly detect-
ed under three types of video, our method also identify some
meaningful networks composed of several activated regions
under sad stories stimuli, such as default mode and executive
network (#19), superior temporal gyrus and associated visual
cortex (#23), cerebellum, middle and superior temporal gyrus,
cingulate and insular cortex (#33), superior temporal gyrus
and visual cortex (#47), visual cortex, prefrontal cortex and
anterior cingulate cortex (#52), visual and prefrontal cortex
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(#60), visual, fusiform and prefrontal cortex (#75), putamen,
visual and middle temporal gyrus (#139), visual, motor and
anterior cingulate cortex (#155), insular, anterior and posterior
cingulate, and somatosensory association cortex (#196).

To investigate the responses of different subjects to sad
stories video stimuli, we compare the voxel numbers of sta-
tistical coefficient maps across three groups as shown in
Fig. 2b. The results indicate that most of networks’ region

sizes and functional activations decrease in the PG and CD
groups in comparison with HC group. There are only two
exceptions, network #75 and #196, where the voxel number
of HC decreases compared with CD and PG. Furthermore, we
also compare the average z scores in 15 selected networks of
three groups, using the same threshold Z > 2.3 (SFig. 2(a)),
and find that in all the networks average z scores of HC are
significantly higher than that of CD and PG.

Fig. 2 a The statistical coefficient map (z-score map) comparison of 15 networks from three groups under sad stories video stimuli. b Voxel number
(P < 0.01, Z > 2.3) comparison of these 15 related networks from three groups
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Cocaine stories

Figure 3a illustrates 16 most dominant meaningful networks
from three groups under cocaine stories video viewing. The
similar patterns are adopted in corresponding networks across
groups. Besides the networks commonly detected under three
types of video, there are some additional meaningful networks

identified under cocaine stories stimuli, such as, part of cingu-
late cortex (#130), visual, superior and middle temporal gyrus,
and cerebellum (#14), visual, cerebellum and auditory cortex
(#26), visual and fusiform gyrus (#31), visual, auditory and
insular cortex (#33), somatosensory cortex and supramarginal
gyrus (#64), auditory and middle temporal gyrus (#85), visual,
auditory, anterior cingulate and prefrontal cortex (#117),

Fig. 3 a The statistical coefficient map (z-score map) comparison of 16 networks from three groups under cocaine-use video stimuli. b Voxel number
(P < 0.01, Z > 2.3) comparison of these 16 related networks from three groups
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premotor, primary motor and somatosensory association cortex
(#121), cerebellum, superior and middle temporal gyrus
(#131), middle and superior temporal cortex, as well as anterior
prefrontal cortex, and part of caudate (#134), auditory and
cingulate cortex (#154), cerebellum, visual and prefrontal
cortex (#196).

Using the same threshold of Z > 2.3, we compare the voxel
numbers and active region sizes of all the networks across
three groups (Fig. 3(b)). The results can be sorted into two
categories. In the first category, CD group exhibits larger num-
bers of voxels and active regions compared to HC and PG
groups, where in most of cases PG group possesses the least
number of voxels (network #14, #31, #33, #85, #121, #130).
Moreover, we compare the average z scores in these 6 net-
works thresholded at Z > 2.3, and find that average z scores of
CD are significantly higher than that of HC and PG, while the
HC group has intermediate average z scores and PG group has
the lowest (SFig. 2(b)). In the other category, detected brain
networks of HC have the largest numbers of voxels and the
largest active regions, and the second place is CD, while net-
works of PG have the least number of voxels and the smallest
active brain region (network #26, #64, #117, #131, #132,
#133, #134, #154, #179, #196).

Gambling stories

Figure 4a shows the 14 most dominant brain networks detect-
ed by our method from three groups during gambling stories
video viewing, where similar patterns were detected across
groups. Besides the networks commonly detected under three
types of video, we can also identify some additional meaning-
ful networks under gambling stories stimuli, such as, superior
temporal gyrus (#26) , visual, fusiform and premotor cortex
(#1), visual, insular and prefrontal cortex (#27), executive
control network and posterior cingulate, supramarginal and
somatosensory association cortex (#84), executive control
network, posterior cingulate and somatosensory association
cortex (#99), visual and a part of executive control network
(#103), anterior cingulate, somatosensory and supramarginal
gyrus (#112), visual, fusiform, insular and auditory cortex
(#169).

Using the same experimentally determined threshold
Z > 2.3 to three groups, we compare the voxel numbers of
14 defined networks across three groups (Fig. 4(b)). There are
two categories of results. In the first category, PG group has
the largest numbers of voxels and active regions across three
groups, where in all cases CD group possesses the lowest
number of voxels (network #1, #26, #99). Furthermore, we
compare the average z scores in these 3 networks using the
threshold of Z > 2.3 and find that in these 3 networks average z
scores of PG are significantly higher than that of HC and CD,
while the HC group has intermediate average z scores and CD
group has the lowest (SFig. 2(c)). In the second category, brain

networks of HC possess the largest numbers of voxels and the
largest activity brain regions, while networks of CD have the
least number of voxels and the smallest active brain region
(network #13, #21, #27, #84, #103, #112, #114, #132, #154,
#169, #188).

Comparative analysis with tensor independent
component analysis

To evaluate and validate the results of our group-wise sparse
representationmethod, we compare it with tensor ICAmethod
implemented in FSL MELODIC toolbox (Beckmann and
Smith 2005), which is widely used for decomposing the input
data into independent components where stimulus paradigm is
consistent among subjects. We conduct tensor ICA for all
three groups subjects together under each video stimulus, re-
spectively. The number of components in our study is auto-
matically estimated and optimized by MELODIC toolbox.
Here, the estimated numbers of components under sad stories,
cocaine stories and gambling stories stimuli are 24, 19 and 40
respectively. Then we adopt dual regression to project tICA
components to each subject space, which are then used for
calculating group-wise statistical coefficient maps for tensor
ICA. Same method is adopted to conduct group-wise statisti-
cal analyses.

Supplemental Fig. 3 illustrates the spatial distribution and
comparison of voxel number of 8 networks generated from
three groups under sad stories stimuli, where all the networks
in HC group show highest voxel number. Under cocaine-use
video stimuli 7 detected networks and the voxel number com-
parison results are shown in supplemental Fig. 4, where HC
group has highest voxel number, while CD group has inter-
mediate and PG group has the lowest. Moreover, supplemen-
tal Fig. 5 shows 7 functional networks of interest identified
under gambling-use video stimuli and the comparison of
voxel numbers of these networks. PG group shows highest
number of voxel in network #7 compared with HC and
CD group, and in the remaining identified networks, HC
group has highest voxel number, while PG group performs
intermediately and CD group has the lowest.

In summary, similar results as our group-wise sparse rep-
resentation method are achieved, however, the networks de-
tected by our method exhibit more diverse patterns. Under
each stimulus, identified networks of three groups have the
similar active patterns, but the voxel number of networks can
be affected by different brain conditions.

Discussion

Our novel group-wise dictionary learning and sparse represen-
tation framework provides group correspondences established
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by the common dictionary to compare the inter-group differ-
ences under different types of videos stimuli. Relative to HC,
CD and PG patients show weaker response to Bnatural
reward^, that is, sad story. This may be caused by lower do-
pamine response of CD and PG patients (cite). In addition, CD
patients show greater response to cocaine cue in some brain
regions relative to PG and HC subjects, while PG patients
show greater response to gambling cue in some brain regions
compared with CD and HC groups. Our approach can identify
brain regions involved in urge of cocaine for CD patients and

urge of gambling for PG patients, including insula, anterior
cingulate cortex, prefrontal cortex, and posterior cingulate
cortex (Wexler et al. 2001; POTENZA et al. 2003; Crockford
et al. 2005; Garavan 2010; Goldstein et al. 2007; Childress
et al. 1999; Potenza 2008; Goudriaan et al. 2010). Specifically,
insula cortex is directly involved in cocaine craving and
gambling urges (Wexler et al. 2001; Garavan 2010; Goudriaan
et al. 2010). Similarly, anterior cingulate cortex has been shown
to activate during cocaine craving and gambling urges (Wexler
et al. 2001; Goldstein et al. 2007; Childress et al. 1999;

Fig. 4 a The statistical coefficient map (z-score map) comparison of 14 networks from three groups under gambling stories video stimuli. b Voxel
number (P < 0.01, Z > 2.3) comparison of these 14 related networks from three groups
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Potenza 2008). Also, studies show that decreased activation
can be detected in anterior cingulate cortex and prefrontal
cortex when cocaine users engaged in GO-NOGO response
inhibition task with working memory demands (Hester and
Garavan 2004), while both dorsal and ventral regions of
mPFC/ACC exhibit relatively more activation during craving
in men with CD compared to PG (Potenza 2008). In addition,
studies have observed that PG male subjects shows increased
activation to video and picture gambling cues in posterior
cingulate cortex and dorsolateral PFC (Crockford et al. 2005;
Goudriaan et al. 2010). Also, there are studies showing that
posterior cingulate activation during viewing of cocaine video
is associated with treatment outcome in CD subjects, with
those who are able to abstain showing greater activation of
this brain region (Kosten et al. 2006).

Moreover, some active brain regions commonly detected
by our method under three types of stimuli are involved in
emotional stimuli processing. For instance, the anterior cingu-
late cortex is involved in rational functions, such as empathy
and emotion (Decety and Jackson 2004; Jackson et al. 2006).
Posterior cingulate cortex (PCC) is associated with emotion
and memory, especially in pain and episodic memory retrieval
(Nielsen et al. 2005). The superior temporal gyrus is involved
in the perception of emotions in facial stimuli (Bigler et al.
2007). Also, insular cortex, which has increasingly drawn
attention for its role in subjective emotional experience, plays
an important role in mapping visceral states that are associated
with emotional experience, giving rise to conscious feelings
(Damasio et al. 2000). Notably, since the naturalistic stimuli
are more complex and dynamic than the traditional block-
based task input, besides several basic functional networks
such as visual, auditory and etc., most of the networks
detected by our method under each natural stimuli are
complex networks with several associated brain regions,
which may indicate interactions between primary functional
brain regions like visual or auditory cortex and higher
functional brain regions like ACC or PCC. The results
indicated that our framework can effectively assess group
differences in brain activity patterns across different brain
conditions (CD, HC, and PG). Although the underlying
mechanism is still under exploration, these results provide
novel clues for the group differences of brain activities in
PG and CD under emotional stimuli.

Sad stories

Based on our results, 15 functional networks are generated
from three groups of subjects under sad stories stimuli. In
summary, the brain regions involved in emotional stimuli pro-
cessing, including anterior cingulate cortex, posterior cingu-
late cortex, superior temporal gyrus, insular cortex and pre-
frontal regions show decreased voxel numbers and decreased
average z-scores in both CD and PG groups (network #19,

#23, #33, #47, #52, #60, #153, #155) (Fig. 2, SFig. 2 (a)).
Moreover, HC group shows greater activation in brain regions
including amygdala and fusiform gyrus (#35), which are in-
volved in emotion and face processing, and also has greater
responses in default mode and executive network (#19),
which is associated with working memory performance
(Wolf et al. 2015). The prefrontal cortex detected in our results
is consistent with results in the previous study (Kober et al.
2016), but they exhibit larger group differences across CD,
PG, and HC under emotional stimuli. Interestingly, the fact
that some brain regions with decreased voxel numbers and
average z scores mentioned above are involved in emotion
processing, may indicate that CD and PG subjects tend to have
weaker responses/reactions to emotional stimuli compared
with HC.

Cocaine stories

In our study, 16 most dominant meaningful networks are
identified from three groups under cocaine stories video
viewing. Note that it has been reported that brain regions
including insula (#33), anterior cingulate cortex (#117),
and prefrontal cortex (#117) identified by our method
can reflect the urge of cocaine for cocaine dependence
individual (Wexler et al. 2001).

Furthermore, the voxel numbers and active region sizes
differ across three groups under cocaine stories video viewing
as shown in Fig. 3b. The results can be sorted into two cate-
gories. In the first category, CD group possesses larger num-
bers of voxels and active regions compared to HC and PG
groups, where in most of cases PG group possesses the least
number of voxels (network #14, #31, #33, #85, #121, #130).
In addition, in these networks CD group also has the
highest average z scores, while HC group performs inter-
mediately, and PG group has the lowest, in all six net-
works (SFig. 2(b)). The insula cortex (#33) is involved in
urge of cocaine for cocaine dependence individual (Wexler
et al. 2001; Garavan 2010), other regions such as cingu-
late and superior temporal gyrus are engaged in emotion
perception, formation and processing (Decety and Jackson
2004; Bigler et al. 2007; Damasio et al. 2000), and re-
gions like fusiform, premotor, primary motor and somato-
sensory association cortex, are responsible for movements
planning and execution. In the second category, detected
brain networks of HC have the largest numbers of voxels
and active regions, and the second place is CD, while
networks of PG have the least number of voxels and the
smallest active brain region (network #26, #64, #117,
#131, #132, #133, #134, #154, #179, #196). Most of these
brain regions correspond to basic functional regions, such
as auditory and visual cortex, while there are also regions
related to visuo-motor coordination, such as somatosensory
and supramarginal cortex (#64). Therefore, we can infer that
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CD subjects have stronger responses to cocaine-use video
stimuli compared with PG subjects, and in some specific emo-
tion and motor related brain regions CD subjects also have
stronger activations compared with HC subjects.

Gambling stories

In summary, we identify 14 most dominant brain networks
detected by our method from three groups during gambling
stories video viewing. Interestingly, the identified brain net-
works including posterior cingulate cortex (#84, #99) and an-
terior cingulate cortex (#112) are involved in the urge of gam-
bling for pathological gambling individual (POTENZA et al.
2003; Crockford et al. 2005).

Furthermore, the voxel numbers and active region sizes
differ across three groups under gambling stories video view-
ing as shown in Fig. 4. As we discuss above, there are two
categories of results. In the first category, PG group has the
largest numbers of voxels and the largest active regions across
three groups, where in all cases CD group possesses the least
number of voxels (network #1, #26, #99). We also find that
PG group has the highest average z scores in these three net-
works, while HC group has intermediate average z score and
CD group has the lowest (SFig. 2(c)). The posterior cingulate
cortex (#99) is involved in urge of gambling for pathological
gambling individual (POTENZA et al. 2003; Crockford et al.
2005; Goudriaan et al. 2010), other regions such as superior
temporal gyrus and executive control network are involved
in emotion perception, formation and processing (Decety
and Jackson 2004; Bigler et al. 2007), and regions like
fusiform, premotor, and somatosensory association cortex,
are related to movements planning and execution (Gazzaniga
2004). Therefore, we conclude that in these regions PG group
may have the strongest functional activation among three
groups. In the second category, brain networks of HC possess
the largest numbers of voxels and active brain regions, while
networks of CD have the least number of voxels and the
smallest active brain regions (network #13, #21, #27, #84,
#103, #112, #114, #132, #154, #169, #188). Overall, we can
infer that PG subjects have stronger response to gambling
video stimuli compared with CD subjects, and in some
specific brain regions associated with emotion and motor
PG subjects also have stronger activations compared with
HC subjects.

In summary, based on comparisons of voxel size and
average z score in detected brain networks, we can find
that the different brain conditions may lead to different
degrees of decrease of active region size and z score in
response to different naturalistic stimuli. The effect needs
more future interpretation, but it is promising that these
interesting findings can be captured by our group-wise
sparse representation method.

Conclusion

From a technical perspective, in this paper, we presented a
novel group-wise sparse representation and statistical coef-
ficient mapping method to assess group differences in func-
tional brain activations across CD, HC, and PG groups
under different naturalistic stimuli. The basic idea of our
computational framework is to learn a common time series
dictionary matrix from the aggregated N-fMRI signals of
all three groups of subjects, and subsequently assess weight
coefficient matrices corresponding to each common dictio-
nary atom for each group separately. The methodological
advantages of our group-wise sparse representation and sta-
tistical coefficient mapping study are summarized as fol-
lows. First, compared with widely used model-driven meth-
od GLM and data-driven method ICA, our sparse represen-
tation framework not only does not need any priori hypoth-
esis of possible causes of brain responses, but also takes
the intrinsic sparsity of the whole-brain fMRI signals into
consideration. Moreover, the sparse representation of whole-
brain fMRI signals can effectively and robustly identify con-
current functional networks for all of task-evoked fMRI, rest-
ing-state fMRI (Lv et al. 2015a; Lv et al. 2015b) and
natural stimulus fMRI data. Second, compared with previ-
ous sparse representation of single subject fMRI signals
(Lv et al. 2015a; Lv et al. 2015b), our method can auto-
matically establish the correspondences across individuals
and populations of different dictionary atoms, which ben-
efits the group statistical comparison analysis. However, for
single subject sparse representation method, the correspon-
dence for the atoms related to task paradigm was established
by time-frequency analysis, otherwise the template matching
method was adopted to establish correspondence across indi-
viduals for resting-state fMRI, which is constrained by the
limited number of brain network templates. Third, when learn-
ing coefficient, the sparsity constraint regularizes the regressor
selection, consequently the results from group non-zero t-test
will be much stricter. As a result, statistical coefficient maps
are more reliable in measuring the significance of contribu-
tion. Finally, compared with task-based fMRI, naturalistic
fMRI paradigms use more complex and dynamic stimuli to
examine neural processes under more real-life condition. As
far as we know, our study is one of earliest applications of
applying group-wise sparse representation method to N-fMRI
datasets of brain conditions. However, there are also chal-
lenges and weaknesses associated with our studies. Since the
naturalistic fMRI signals have complex and abundant stimuli,
using group-wise sparse representation method, we can learn
and optimize hundreds of interesting brain networks, and con-
sequently identify group differences across different brain
conditions under different natural stimuli. However, due to
the lack of ground truth in fMRI studies, it is difficult to in-
terpret the neural meaning of all the learned brain networks
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and group differences across brain conditions. Thus, more
frequency, temporal and spatial characterization methods
should be developed in the near future for better interpreting
our results. Finally, we should also apply this novel frame-
work in other naturalistic fMRI datasets to examine its repro-
ducibility and robustness.

From a clinical perspective, our experimental results dem-
onstrated that group-wise sparse representation method can
detect multiple meaningful brain networks concurrently, and
these networks consistently exist across three groups under
three types of videos, despite that obvious group differences
in functional activations can be revealed with different brain
conditions of CD, HC, and PG. Although some results and
underlying mechanisms are beyond our current explanation,
they essentially provide novel, important clues for the effects
of CD and PG on the human brain.
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