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Abstract Adaptive social behavior appears to require flexible
interaction between multiple large-scale brain networks, in-
cluding the executive control network (ECN), the default
mode network (DMN), and the salience network (SN), as well
as interactions with the perceptual processing systems these
networks function to modulate. Highly connected cortical
Bhub^ regions are also thought to facilitate interactions be-
tween these networks, including the dorsolateral prefrontal
cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC),
anterior cingulate cortex (ACC), and anterior insula (AI).
However, less is presently known about the relationship be-
tween these network functions and individual differences in
social-cognitive abilities. In the present study, 23 healthy
adults (12 female) underwent functional magnetic resonance
imaging (fMRI) while performing a visually based social
judgment task (requiring the evaluation of social dominance
in faces). Participants also completed both self-report and
performance-based measures of emotional intelligence (EI),
as well as measures of personality and facial perception abil-
ity. During scanning, social judgment, relative to a control
condition involving simple perceptual judgment of facial fea-
tures in the same stimuli, activated hub regions associated
with each of the networks mentioned above (observed clusters
included: bilateral DLPFC, DMPFC/ACC, AI, and ventral
visual cortex). Interestingly, self-reported and performance-
based measures of social-cognitive ability showed opposing
associations with these patterns of activation. Specifically,

lower self-reported EI and lower openness in personality both
independently predicted greater activation within hub regions
of the SN, DMN, and ECN (i.e., the DLPFC, DMPFC/ACC,
and AI clusters); in contrast, in the same analyses greater
scores on performance-based EI measures and on facial per-
ception tasks independently predicted greater activation with-
in hub regions of the SN and ECN (the DLPFC and AI clus-
ters), and also in the ventral visual cortex. These findings
suggest that lower confidence in one’s own social-cognitive
abilities may promote the allocation of greater cognitive re-
sources to, and improve the performance of, social-cognitive
functions.
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Introduction

The neuro-cognitive basis of social functioning has become a
topic of considerable research interest (Adolphs 2009; Van
Overwalle 2009). In particular, a large body of recent literature
has emerged within the field of cognitive neuroscience that
has highlighted specific neural networks engaged by tasks
requiring social perception, theory of mind (ToM; also often
referred to as Bmentalizing^) abilities, and adaptive decision-
making in social situations (e.g., Amodio and Frith, 2006;
Barrett and Satpute, 2013; Decety and Sommerville, 2003;
Frith and Frith, 2006; Heatherton, 2006; Keysers et al.,
2010; Li et al., 2014; Lombardo et al., 2010; Meyer et al.,
2015; Seidel et al., 2010; Zaki and Ochsner, 2012). At present,
this body of literature suggests that the brain is organized into
several functionally distinct—yet highly interacting—neural
networks, and that adaptive social cognition is the result of
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complex, context-specific interactions between these net-
works. Three networks of particular interest are the Bdefault
mode network^ (DMN; also sometimes called the
Bmentalizing^ network), the frontoparietal Bexecutive
control^ network, and the Bsalience^ network (Barrett and
Satpute 2013; Lindquist and Barrett 2012; Yeo et al. 2011).
According to Barrett and Satpute (2013), the DMN’s function
can be understood to involve the high-level conceptualization
of sensory input based on past experience; it includes dorsal
and ventral regions of the medial prefrontal cortex (MPFC),
posterior/retrosplenial cingulate cortex, the temporoparietal
junction (TPJ), and both medial and lateral anterior temporal
regions. The executive control network, which includes dorso-
lateral prefrontal (DLPFC) and posterior parietal (PPC) cortical
regions, is implicated in the top-down modulation (both excit-
atory and inhibitory) of sensory processing associated with se-
lectively attending to, and holding in mind (i.e. working mem-
ory), perceptual information that is relevant to one’s current
goals (Power and Petersen 2013). Finally, the salience network
includes anterior insula (AI) and anterior cingulate cortex
(ACC) regions, and may function to direct attention (and relat-
ed cognitive processing resources) to homeostatically/
emotionally relevant stimuli (Taylor et al. 2009).

In a social cognition task, therefore, appropriate conceptu-
alization of the mental states of others (i.e., ToM) will typical-
ly recruit DMN regions (Frith and Frith 2006). However, ex-
ecutive control network regions will be needed to selectively
modulate sensory processing in a goal-appropriate manner
(Sripada et al. 2014), and the selective deployment of cogni-
tive processing resources (such as those proximally controlled
by the executive control network) will also need to be guided
by salience network regions, such that their allocation remains
based on current needs/goals, as well as estimations of the
uncertainty of current perceptual estimates (Barrett and
Simmons 2015; Brown et al. 2011; Feldman and Friston
2010; Gu et al. 2013). Due to the observation that the brain
exhibits a Bsmall-world^ network architecture in which net-
works interact through Brich club hubs^ (van den Heuvel et al.
2008; Zippo et al. 2013), some regions would also be expected
to make more important contributions to network interactions
than others. Specifically, the AI, dorsal MPFC/ACC
(DMPFC/dACC), and DLPFC appear to represent important
hub regions that allow for the network interactions described
above (van den Heuvel and Sporns 2011, 2013).

Although, this broad account of the neural basis of social
cognition has considerable support, many details remain to be
explored. One particular area that deserves considerable fur-
ther attention pertains to the potential factors (e.g., intelli-
gence, personality factors, emotion recognition ability) that
may explain individual differences in social cognition ability.
Researchers interested in the concept of emotional intelligence
(EI), for example, have designed multiple measures for
assessing, and have observed, individual differences in the

cognitive abilities needed to function adaptively in social sit-
uations (Davis and Humphrey 2012; Fernández-Berrocal et al.
2006; Hertel et al. 2009; Lopes et al. 2005; Mayer et al. 2004;
O’Boyle et al. 2011; Pérez et al. 2005; Schutte et al. 2010).
However, studies of the neural basis of EI have thus far met
withmixed results; this is in part due to a fairly limited number
of studies performed that have attempted to directly relate EI
measures to differences in neural structure/function (Bar-On
et al. 2003; Barbey et al. 2014; Killgore et al. 2012; Takeuchi
et al. 2011; Takeuchi et al. 2013a, b; Takeuchi et al., 2013a, b;
Webb et al. 2013) and in part due to disagreement over the
most valid and useful way to conceptualize EI (e.g., Conte,
2005; Locke, 2005; Petrides, 2011). Specifically, different
proposed measures conceptualize EI in different ways, and it
is unclear at present how distinct the construct of EI is from
standard intelligence (i.e., IQ) on the one hand, and how dis-
tinct it is from standard personality measures on the other
(Harms and Crede 2010; Locke 2005; Mayer et al. 2001;
Webb et al. 2013). Measures of self-perceived vs. actual per-
formance on EI-related tasks also often disagree with one
another (Brackett et al. 2006; Goldenberg et al. 2006), and
this further highlights the question of what measures of EI
are appropriate to use in neuroimaging studies. In general,
therefore, it remains unclear what cognitive and personality
factors explain differences in social cognition abilities, and
how these relate to the neural networks supporting these
abilities.

In the present study, we were interested in exploring the
neural correlates of social cognitive ability, with a specific
focus on examining what cognitive- and/or personality-
related factors may explain individual differences in these
abilities. In particular, based on the tension between self-
reported and performance-based measures of social-
cognitive abilities described above (Brackett et al. 2006;
Goldenberg et al. 2006), we were interested in exploring the
possibility that self-reported beliefs about one’s own social
characteristics/abilities might show distinct relationships with
neural network activations from performance-based social
ability measures. To do so, we first designed a visually based
social judgment task, which we predicted would engage re-
gions of the DMN, executive control network, salience net-
work, and visual cortex that were previously observed in the
neuroimaging studies on social cognition discussed above.
Second, we had participants complete multiple self-report
and performance-based measures of social and cognitive abil-
ities. Self-report measures included widely used personality
(Costa and McCrae 1992) and EI questionnaires (Bar-On
2006; Brackett et al. 2006), whereas performance measures
included a standard cognitive intelligence (IQ) test (Wechsler
1999), a widely used performance-based EI measure (Mayer
et al. 2002), and independent measures of the ability to per-
ceive state- and trait-related psychological attributes in others
(Ekman and Friesen 1976). Finally, we ran step-wise multiple
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regression analyses, using regional brain activation differ-
ences as outcome variables and our self-report and
performance-based measures as predictor variables. The brain
regions we focused on were the task-activated Bhub^ regions
(AI, DMPFC/dACC, and DLPFC) believed to serve large-
scale network interactions, as well as task-related regions of
visual cortex. The regression analyses described above were
done in order to explore whether differences in large-scale
brain network activation during a social cognition task can
be explained by these other widely used individual differences
measures of both cognitive/emotional abilities and self-
reported beliefs regarding one’s own social characteristics/
abilities. We first predicted that self-report measures would
explain significant portions of the variance in activation levels
within DMN and salience network hub regions (i.e., AI and
DMPFC/dACC), due to the fact that such measures plausibly
reflect the consciously accessible beliefs/values contributing
to conceptualization and the evaluation of current needs/goals
(i.e., the functions most associated with those networks). We
further predicted that performance-based measures would in-
stead explain significant portions of the variance in activation
levels within executive control network hub regions (i.e., left
and right DLPFC) and in visual system activation. This sec-
ond hypothesis was based on the idea that actual performance
should depend on the degree to which executive control sys-
tems modulate visual processing in a goal−/task-appropriate
manner.

Materials and methods

Participants

23 healthy adults (12 female) participated in the present study.
These participants ranged in age from 21 to 43 years
(M = 30.78, SD = 6.76). Participants did not have any history
of psychiatric, neurological or substance use disorders, and all
provided written informed consent prior to participating.
Although a subset of behavioral data from some of these par-
ticipants has been reported elsewhere (Killgore et al. 2012,
2013; Webb et al. 2013), the primary data from the fMRI task
and its correlations with behavioral variables are novel and
have never been published in any forum. The research proto-
col of the present study was also reviewed and approved by
the US Army Human Research Protections Office, as well as
by the Institutional Review Board of McLean Hospital.

Procedure

Social judgment task

While undergoing fMRI scanning, participants were asked to
complete a social judgment task. In this task, participants were

simultaneously presented with pictures of three male faces per
trial (See Fig. 1a), and asked to make a particular condition-
specific judgment. In the two Bsocial judgment^ conditions,
participants were asked to press the button (i.e., out of buttons
1, 2, or 3) corresponding to which of the faces appeared to be
the Bstrongest^ or Bweakest^ of the three. In these conditions,
each face set consisted of one strong-dominance, one weak-
dominance, and one average-dominance face. Aside from
these conditions, there was also a Bdifferent^ condition in
which two of the three faces presented on each trial were
identical, whereas the third face was different. Participants
were asked to press the button that corresponded to the face
that was different from the other two. All faces used in this
task were taken from a validated database of computer-
generated faces manipulated in shape and reflectance for per-
ceived dominance from low-dominance (−3 SD) to high-
dominance (+3 SD) (freely available at: http://tlab.princeton.
edu/databases/dominancefaces/) using the FaceGen Modeller
program (http://facegen.com) Version 3.1 (Todorov and
Oosterhof 2011; Todorov et al. 2013); the use of high-
dominance (+3 SD), low-dominance (−3 SD), and average-
dominance (0 SD) faces, and their location of visual presen-
tation (i.e., left, right, middle) was counterbalanced across
conditions. Twenty-five facial identities were used and
counterbalanced in similar fashion. During the task run (inside
the scanner), each face set was shown for 4.75 s (followed by a
0.25 s black screen) in a condition-specific block-design for-
mat. There were 4 face sets shown in each Bdifferent^ block
(D), whereas there were 6 face sets shown in each Bstrong^ (S)
and Bweak^ (W) block. The block order was: D, W, D, S, D,
W, D, S, D, W, D, S. Task stimuli were presented using
ePrime2 presentation software (http://www.pstnet.com/
eprime.cfm).

In addition to the fMRI task described above, participants
were also asked to complete a series of other self-report and
performance-based measures of both cognitive/emotional
abilities and self-reported personality traits.

Cognitive measures

Emotional Intelligence (EI) In order to assess the role of
emotional intelligence in social judgment, participants com-
pleted previously validated, commercially available tests of
distinct models of EI. One test – the Mayer–Salovey–Caruso
Emotional Intelligence Test (MSCEIT) – is based on the
BAbility model,^ which defines emotional intelligence in
terms of the cognitive capacities that allow one to reason about
and solve emotion-related problems, and assesses EI based on
participants’ performance on a range of different tasks/
assessments (Mayer et al. 2002). It therefore treats EI as sim-
ilar to traditional notions of intelligence (Mayer et al. 2001). It
uses computer-administered items that are designed to mea-
sure abilities such as identifying emotions, understanding the
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causes of emotions, and utilizing emotions to guide behavior
and accomplish goals. TheMSCEIT provides a total emotion-
al intelligence score (as well as several subscale scores). For
this study, raw scores were converted to scaled scores on the
basis of the general normative group, without adjustment for
sex. There is also a validated self-report inventory designed to
tap into similar EI capacities as the MSCEIT, called the Self-
Rated Emotional Intelligence Scale (SREIS) (Brackett et al.
2006), which we used to assess the agreement between actual
performance on the abilities measured by the MSCEIT and
self-perceived performance with regard to those same abili-
ties. The SREIS is a 19-item self-report questionnaire with
items such as BBy looking at people’s facial expressions, I
recognize the emotions they are experiencing^ that are rated
on a 5-point Likert scale ranging from 1 (Bvery inaccurate^) to
5 (Bvery accurate^).

In contrast, the other major test of EI we used – the Bar-On
Emotional Quotient Inventory (EQ-i) – is based on the BTrait
model,^ which uses self-report inventories (as opposed to
problem solving tests), and views EI as set of personal com-
petencies reflecting an individual’s potential to cope with en-
vironmental demands (Bar-On 2006). It contains 125 items,
and provides a total EI score (as well as several subscale
scores). Items consist of statements such as ‘I am aware of

the way I feel’ and ‘I do not hold up well under stress’, which
must be answered on a five-point Likert scale ranging from
‘Very Seldom or Not True of Me’ to ‘Very Often True of Me
or True of Me.’

Standard intelligence Intelligence quotient (IQ) was assessed
with the Wechsler Abbreviated Scale of Intelligence (WASI;
Pearson Assessment, Inc., San Antonio, TX) (Wechsler 1999)
in order to assess the role of standard intelligence in social
judgment. This test provides scores for Full Scale IQ (and also
subscale measures of Verbal IQ and Performance IQ). The
WASI is a widely used intelligence scale with reported reli-
ability of .98 for Full Scale IQ, with extremely high test-retest
reliability; it also correlates .92 with the more comprehensive
Wechsler Adult Intelligence Scale-III (WAIS; Pearson
Assessment, Inc., San Antonio, TX). A trained and experi-
enced bachelor’s level research assistant (blind to study hy-
potheses) administered the WASI under the supervision of a
licensed doctoral level neuropsychologist.

Emotional facial recognition As an independent means of
assessing the ability to perceptually detect state-related infor-
mation in others’ faces, participants were asked to complete
the Ekman 60 faces test (Ekman and Friesen 1976). This is a

Fig. 1 a Examples of average-dominance (left), high-dominance
(middle), and low-dominance (right) faces used in the Social Judgment
Task. b Examples of high-trustworthiness (left) and low-trustworthiness
(right) faces used in the Trustworthiness Judgment Task. c FMRI results

of Social > Perceptual Judgment. Visible clusters are present within the
DMPFC/dACC, left and right DLPFC, left and right AI, left and right
ventral visual cortex, left PPC, right thalamus, posterior midbrain, and
cerebellum
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computerized emotional recognition task during which partic-
ipants are presented with photographs of 10 different actors (6
photographs of each), all displaying each of the basic emo-
tions one time (happiness, anger, disgust, fear, surprise, and
sadness). Participants are asked to choose which emotion best
describes the facial expression shown (from a presented list).
Photographs were presented in a pseudorandom order, and a
total score (0–60) of correct responses for each participant was
calculated.

Facial trustworthiness judgment task As an independent
means of assessing the ability to perceptually detect trait-
related information in others’ faces, participants were asked to
complete a computerized task, using ePrime2 presentation soft-
ware (http://www.pstnet.com/eprime.cfm), in which they were
shown pairs of faces and asked to decide which of the two
presented faces looked most trustworthy (See Fig. 1B). The
instructions were also clarified by saying Bin other words, if
you were in danger or needed help, which person would you
be more likely to trust?^ Answers were provided by pressing
B1″ or B2″ on a laptop, and participants were asked to answer as
quickly and accurately as possible (no time limit was enforced).
Faces were taken from a validated database of computer-
generated faces manipulated in shape and reflectance for per-
ceived trustworthiness from low-trustworthiness (−3 SD below
average) to high-trustworthiness (+3 SD above average) (freely
avai lable at : ht tp: / / t lab.pr inceton.edu/databases/
trustworthinessfaces/) using the FaceGen Modeller program
(http://facegen.com) Version 3.1 (Todorov and Oosterhof
2011; Todorov et al. 2013). A total of 100 face pairs were
presented, 25 at each of 4 levels of difficulty based on the
difference in SD level of the faces. Difficulty level 1 used face
pairs with values of −3 and +3 SD, level 2 used face pairs with
values of −2 and +2 SD, level 3 used face pairs with values of
−1 and +1 SD, and level 4 used face pairs with values of −1 and
0 SD. The database includes 25 facial identities, and all identi-
ties were used and counterbalanced for location (left/right) and
difficulty level.

The motivation for including the two independent of mea-
sures of social perception ability described immediately above
is that the perception subtests within the MSCEIT have re-
ceived considerable criticism. In particular, studies have found
that scores on these MSCEIT subtests do not correlate with
other validated measures of facial emotion perception
(Roberts et al. 2006). This leads to the concern that they may
not represent sufficiently valid measures of such social percep-
tion abilities. Therefore, we were interested in using these in-
dependent measures to ensure that we acquired reliable
performance-based data regarding individual differences in
the ability to perceptually detect socially relevant information.

Personality inventory To assess the possible role of person-
ality differences in social judgment, participants were asked to

complete a computerized version of the NEO Personality
Inventory – Revised (NEO-PI-R) (Costa and McCrae 1992).
The NEO-PI-R contains 240 items rated on a five-point Likert
scale from Bstrongly disagree^ to Bstrongly agree.^ This test
has been found to have excellent internal consistency and also
shows convergent validity with Eysenck’s personality dimen-
sions (Costa and McCrae 1995; Costa 1996). It provides
scores for five domains of personality (Neuroticism,
Extraversion, Openness to Experience, Agreeableness, and
Conscientiousness), and several Bfacets^ within each domain.

Neuroimaging methods

Neuroimaging was performed using a 3 T (Siemens Tim Trio,
Erlangen, Germany) scanner with a 12-channel head coil. T1-
weighted structural 3DMPRAGE images were acquired (TR/
TE/flip angle =2.1 s/2.25 ms/12 degree) covering 128 sagittal
slices (256 × 256) with a slice thickness of 1.33 mm (voxel
size =1.33 × 1 × 1). Functional T2*-weighted scans were
acquired over 42 transverse slices (3.5 mm thickness). An
interleaved sequence was used (TR/TE/flip angle =2.5 s/
30 ms/90 degree), and the voxel size of the T2* sequence
was 3.5 × 3.5 × 3.5 mm. The field of view (FOV) was
22.4 cm, with a 64 × 64 acquisition matrix.

Image processing

Preprocessing steps on all MRI scans, as well as subsequent
statistical analyses, were performed using SPM8 (Wellcome
Department of Cognitive Neurology, London, UK; http://
www.fil.ion.ucl.ac.uk/spm). Raw functional images were
realigned, unwarped, and coregistered to each subject’s
MPRAGE image in accordance with standard algorithms.
Images were then normalized to Montreal Neurological
Institute (MNI) coordinate space, spatially smoothed (6 mm
full-width at half maximum), and resliced to 2 × 2 × 2 mm
voxels. The standard canonical hemodynamic response func-
tion in SPM was used, low-frequency confounds were mini-
mized with a 128-s high-pass filter, and serial autocorrelation
was corrected using the AR(1) function. The Artifact Detection
Tool (http://www.nitrc.org/projects/artifact_detect/) was also
used to regress out scans as nuisance covariates in the first-
level analysis exceeding 3 SD in mean global intensity and
scan-to-scan head motion that exceeded 1.0 mm.

Statistical analysis

For each participant, a general linear model was specified to
contrast activation within the social judgment task between
trials when social judgments were made (i.e., strong/weak)
and trials when perceptual judgments were made (i.e., differ-
ent). Motion regressors (generated by ART – see image pro-
cessing above) were also added to each of these 1st-level
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designs. These contrast images were then entered into a
second-level SPM analysis (one-sample T-test) to assess
the main effect of our contrast of interest (i.e., Social
Judgment > Perceptual Judgment). Analyses were
thresholded using a height threshold of p < .001
(uncorrected) and family-wise error (FWE) corrected
cluster extent threshold of p < .05.

Contrast estimates (i.e., the first eigenvariates) were
also extracted from select visual system and Bnetwork
hub region^ clusters that were found to activate within
these analyses (see results section). This was done by
first individually selecting the activation clusters of in-
terest within SPM8 and then using SPM8’s built-in
volume-of-interest (VOI) time-series extraction tool.
For each contrast estimate we extracted, the whole acti-
vation cluster defined the volume of interest. These con-
trast estimates were then regressed against our self-
report and performance-based measures, to determine
the relative contribution of these variables in explaining
patterns of brain activation. Specifically, the following
categories of explanatory variables were considered: (i)
Performance-based cognitive-emotional abilities mea-
sures: WASI total IQ score, MSCEIT total score,
Ekman 60 total score, facial trustworthiness judgment
total accuracy score, and (ii) Self-reported cognitive-emotion-
al trait/ability measures: Bar-On EQi total score, NEO person-
ality inventory 5-factor T-scores (Neuroticism, Extroversion,
Openness, Agreeableness, Conscientiousness), and SREIS to-
tal scores. Within SPSS 20, these measures were entered into
stepwise linear regression models with the eigenvariate of
each of our neural activation clusters of interest as the outcome
variable. Results were considered significant at p < 0.05.
Multiple collinearity checks were also run in SPSS (described
further in the results section) to ensure that correlations be-
tween predictor variables in these regression analyses were
not above acceptable limits.

Results

fMRI activation contrasts

Social judgment > perceptual judgment

As predicted, this contrast revealed significant activationwith-
in clusters spanning the left DLPFC, right and left ventral
visual cortex, right DLPFC/AI, DMPFC/dACC (bilaterally),
left AI, and left PPC. Other activation clusters were also ob-
served within the medial cerebellum and right thalamus (see
Table 1 and Fig. 1c). One further cluster within the posterior
midbrain was noted because it survived FWE-correction at the
peak-level. It did not survive FWE-correction at the cluster
level, but this is likely due to the small size of the gray matter
nuclei within this subcortical region (e.g., the superior
colliculus and periacqueductal gray).

Social judgment task: performance

When required to identify the Bdifferent^ face from among the
sets of three, accuracy scores had a mean of 96 % (+/− 9.8 %),
suggesting that this perceptual judgment condition was fairly
easy for all participants. Accuracy scores when determining
the Bstrongest/weakest^member of each set of three faces had
a numerically lower mean of 82 % (+/− 13 %), suggesting, as
expected, that this social judgment condition was more diffi-
cult than the perceptual judgment condition. Similarly, aver-
age median reaction times across the group were also numer-
ically shorter for the Bdifferent^ condition (1669.89 +/−
408.83 ms) than for the Bstrongest^ or Bweakest^ conditions
(strong: 2311.52 +/− 332.51 ms; weak: 2320.37 +/−
277.88 ms). The median reaction time was used instead of
the mean in order to avoid the possibility that occasional at-
tentional lapses during the task would inappropriately skew
the mean toward longer reaction time estimates.

Table 1 fMRI activation results.
Social Judgment > Perceptual
Judgment (Whole-Brain,
FWE-corrected cluster extent
threshold, p ≤ 0.05)

Brain Region Peak Voxel Coordinate Cluster Size (kE) T-score

L DLPFC −44, 24, 28 1496 10.47

RVentral Visual Cortex 40, −76, −8 1784 8.99

Posterior Medial Cerebellum −8, −76, −38 651 8.54

LVentral Visual Cortex −38, −84, −4 1463 8.32

R DLPFC/AI 46, 32, 18 2152 8.00

Anterior Medial Cerebellum −2, −46, −36 125 6.91

DMPFC/dACC 0, 18, 50 837 6.84

L AI −32, 20, −2 448 6.68

LVLPFC −44, 50, −2 164 6.65

R Thalamus 6, −12, 4 119 6.09

L Posterior Parietal Cortex −24, −64, 46 209 5.37

Posterior Midbrain* 4, −32, −4 69 8.41

*Survived FWE-correction at the peak-level (but not at the cluster-level)
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Performance-based and self-report measures

The mean and standard deviation for scores on each of our
performance-based and self-report measures is listed in
Table 2. Significant predictors of the activation observedwith-
in each of our regions of interest (i.e., DMPFC, right DLPFC/
AI, left and right ventral visual cortex, left DLPFC, and left
AI) are detailed below. These cortical clusters were specifical-
ly chosen due to their known participation as hub regions
within the salience, DMN, and executive control networks,
or, in the case of the visual cortex clusters, because these
regions plausibly reflect the targets of top-down modulation
from these anterior cognitive control networks (Barrett and
Satpute 2013; Barrett and Simmons 2015; Lindquist and
Barrett 2012; Sripada et al. 2014; Yeo et al. 2011).

Greater DMPFC/dACC activation was best predicted by
lower EQi total scores (β = −0.478, p = 0.008) and lower
NEO openness scores (β = −0.418, p = 0.018). EQi scores
accounted for 34 % of the variance (R2 = 0.369, p = 0.002),
and NEO openness scores accounted for an additional 16% of
the variance (R2 change =0.158, p = 0.018) in DMPFC
activation.

In terms of greater right DLPFC/AI activation, the model
that best fit the data included higher facial trustworthiness
judgment scores (β = 0.592, p = 0.001) and lower SREIS
scores (β = −0.592, p = 0.001). Facial trustworthiness judg-
ment scores accounted for 24 % of the variance (R2 = 0.237,
p = 0.019), and SREIS scores accounted for an additional
34 % of the variance (R2 change =0.339, p = 0.001) in right
DLPFC/AI activation. Although MSCEIT scores were ex-
cluded by this stepwise analysis, there was a trend-level pos-
itive relationship between MSCEIT total scores and right
DLPFC/AI activation (β = 0.266, p = 0.076). We therefore
ran a post-hoc correlation, and observed that right DLPFC/AI
activation was significantly positively correlated with
MSCEIT total scores (r = 0.429, p = 0.041).

Greater left ventral visual cortex activation was best pre-
dicted by higher Ekman 60 total scores (β = 0.717, p < 0.001)
and higher facial trustworthiness judgment total accuracy
scores (β = 0.415, p = 0.002). Ekman 60 total scores
accounted for 57 % of the variance (R2 = 0.568, p < 0.001),
and facial trustworthiness judgment total scores accounted for
an additional 17 % of the variance (R2 change =0.171,
p = 0.002) in left ventral visual cortex activation.

For right ventral visual cortex activation, higher Ekman 60
total scores (β = 0.745, p < 0.001), and higher facial trustwor-
thiness judgment scores (β = 0.343, p = 0.004), were also
significant independent predictors, as well as lower NEO
openness scores (β = −0.305, p = 0.01). Ekman 60 total scores
accounted for 54 % of the variance (R2 = 0.542, p < 0.001),
facial trustworthiness judgment total scores accounted for an
additional 18 % of the variance (R2 change =0.178,
p = 0.002), and NEO openness scores accounted for an addi-
tional 9 % of the variance (R2 change =0.085, p = 0.01) in
right ventral visual cortex activation.

In the model predicting greater left DLPFC activation that
best fit the data, lower NEO openness scores (β = −0.417,
p = 0.048) were found to be the only significant predictor
accounting for 17 % of the variance (R2 = 0.174, p = 0.048).

Lower NEO openness scores (β = −0.457, p = 0.028) were
also found to be the only significant predictor of greater left AI
activation, accounting for 21 % of the variance (R2 = 0.209,
p = 0.028).

For each of the regression analyses described above, we
also took multiple measures to ensure that potential collinear-
ity issues did not threaten the validity of our results. First, as
suggested by Field (2013), we ran correlation analyses be-
tween all predictor variables and confirmed that no predictor
variables were correlated above a value of r = 0.8 (average
correlation value within this correlation matrix was r = 0.04,
SD = 0.26). Second, using SPSS collinearity diagnostics, we
confirmed that the highest variance inflation factor (VIF) in
these analyses was not greater than 10, and that the average
VIF was not substantially greater than 1 (Bowerman and
O’Connell 1990).

Discussion

As predicted, we first observed that social judgment, relative
to perceptual judgment, activated regions associated with the
executive control network (left and right DLPFC, left PPC),
salience network (left and right AI and DMPFC/dACC), the
DMN (anterior portion of the DMPFC/dACC cluster), and left
and right regions of ventral visual cortex known to be in-
volved in facial processing (e.g., Druzgal and D’Esposito,
2001a, 2001b; O’Craven and Kanwisher, 2000; Vuilleumier
et al., 2001). The DMPFC/dACC, in particular, has been as-
sociated previously with visual evaluations of social

Table 2 Cognitive/Self-Report Measures

Measure Mean Standard
Deviation

WASI IQ scores 109.48 16.46

MSCEIT Total Score 103.22 10.89

Ekman 60 Total Scores 48.43 5.16

Facial Trustworthiness Judgment Accuracy .68 .12

EQi Total Scores 97.96 13.13

SREIS 73.13 5.57

NEO-PI-R Neuroticism 52.91 10.46

NEO-PI-R Extraversion 51.65 11.59

NEO-PI-R Openness 53.65 10.46

NEO-PI-R Agreeableness 45.78 9.09

NEO-PI-R Contientiousness 50.78 14.51
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dominance (Freeman et al. 2009). Although not predicted in
advance, social judgment also activated regions of the cere-
bellum, right thalamus, and posterior midbrain. These further
results are, nevertheless, consistent with current models in
which cortical cognitive control networks interact, via subcor-
tical nuclei, with a cerebellar Berror^ network that functions to
optimize cortical network performance through error minimi-
zation processes (Dosenbach et al. 2008; Power and Petersen
2013). The posterior midbrain also includes the superior
colliculi, which are implicated in the control of eye move-
ments and spatial attention during visual tasks (Krauzlis
et al. 2013). Thus, the present findings supported the hypoth-
esized role of the executive control, salience, and default mode
networks in social cognition; they also provided the predicted
clusters of activation within network hub regions (believed to
serve network interactions) that allowed us to explore the re-
lationship between individual difference measures and associ-
ated neural responses. Consistent with our a priori hypotheses
regarding these individual difference measures, we subse-
quently observed that distinct performance-based and self-

report measures were able to explain a significant proportion
of the variance in activation within distinct network regions
(Fig. 2). As we describe in more detail below, a broad trend
was observed across our results, converging on the overarch-
ing theme that lower self-reported confidence in one’s social
abilities may promote the allocation of greater cognitive re-
sources to, and therefore improve performance on, actual
social-cognitive tasks.

Individual differences and large-scale network function

First, self-report measures of personality and EI – NEO open-
ness and total EQi scores – were each negatively associated
with, and explained significant independent portions of the
variance in, activation within the DMPFC/dACC cluster,
which overlaps with regions of both the salience network
and the DMN and may serve as an important hub for interac-
tions between these networks (van den Heuvel and Sporns
2011, 2013). This is consistent with our a priori hypothesis
that self-reportable beliefs/values would be most closely

Fig. 2 Graphical illustration of the overarching theme observed within
our individual difference-based step-wise multiple regression analyses.
These findings suggest that stronger responses within large-scale neural
networks (and the perceptual systems they modulate) are associated with
both better performance (higher MSCEIT, Ekman 60, and Facial
Trustworthiness Judgment scores) and reduced self-reported openness/
confidence in one’s own social cognitive abilities (lower NEO
openness, SREIS, and Bar-On EQi scores). We propose that this may

reflect the fact that salience network and DMN regions (AI and
DMPFC/dACC) predict the need for increased effort to succeed in
individuals with low openness/confidence, and that this promotes
increased engagement of DLPFC executive control network functions
(which improves performance by promoting additional visual
processing). SREIS Self-Rated Emotional Intelligence Scale, MSCEIT
Mayer–Salovey–Caruso Emotional Intelligence Test, EQi Bar-On
Emotional Quotient Inventory
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associated with networks that function to evaluate one’s
homeostatic/emotional needs and conceptualize sensory input
based on expectations/beliefs derived from background
knowledge and past experience. Overall, these findings are
in line with earlier work showing that self-reported EI was
inversely correlated with activation of the medial prefrontal
cortex and insular regions (Killgore and Yurgelun-Todd
2007). SREIS scores (another self-report EI measure) were
also negatively associated with individual differences in the
activation of the right DLPFC/AI cluster; since the right AI is
part of the salience network, this is also broadly consistent
with what we predicted. However, since this single cluster also
encompassed the right DLPFC (an executive control network
region), these results are not able to differentiate between the
influence of SREIS scores on the salience vs. executive con-
trol network regions. However, as the DLPFC and AI are both
important hub regions serving interactions between these net-
works (van den Heuvel and Sporns 2011, 2013), and given
that they were both activated together in our task, this suggests
that SREIS scores could also relate to important interactions
between salience and executive control networks. The inverse
relationship between self-perceived competencies and brain
activation appears explicable in terms of how self-reported
personality traits and self-related beliefs would be expected
to interact with perceived salience. That is, it seems plausible
that, when trying to evaluate the relative dominance of another
person (as in our fMRI task), this would invoke greater
concern/perceived salience in a person who was less open to
new experiences (i.e., lower NEO openness scores), or less
confident in their ability to adaptively assess and respond to
emotionally charged social situations (i.e., lower EQi and
SREIS scores). This increased salience might also provoke
greater use of background knowledge from past experience
to construct internal models for use inmaking these judgments
(i.e., greater DMN activation). In general then, we suggest that
these findings could be interpreted to indicate that reduced
self-reported confidence/openness may lead to increased con-
cern (and the predicted need for greater effort/resources to
succeed at a social-cognitive task), and therefore increased
salience of task stimuli and motivation to engage greater cog-
nitive control to perform successfully.

We also observed that facial trustworthiness judgment ac-
curacy scores (a performance measure) explained a significant
independent portion of the variance in the right DLPFC/AI
cluster; this is consistent with our hypotheses regarding the
relationship between performance and executive control re-
gions, but it was not a prediction we made regarding the right
AI. In contrast to the SREIS, trustworthiness accuracy scores
were positively associated with right DLPFC/AI activation.
Interestingly, our post-hoc correlation analysis of MSCEIT
total score also demonstrated a significant positive relation-
ship between MSCEITscores and right DLPFC/AI activation;
thus, both of these performance measures increased with

increasing activation. In contrast, we observed a negative re-
lationship between both the left DLPFC and left AI clusters
and NEO openness scores, but no other measure came out
significantly associatedwith these clusters within our stepwise
regression analyses. Thus, self-report measures were consis-
tently negatively associated with, and performance measures
were consistently positively associated with, the activation of
these brain regions believed to serve network interactions.
Similar to our suggestion above regarding the DMPFC/
dACC and right DLPFC/AI, the observation that lower NEO
openness scores were associated with greater left AI and left
DLPFC activation could also reflect the fact that making so-
cial judgments may be perceived as more concerning/salient
(greater left AI activation), and also promote allocation of
greater processing resources to the task (greater left DLPFC
activation), among those who are less open to new experi-
ences. This account could also explain why greater right
DLPFC/AI activation is associated with greater performance
(i.e., higher MSCEIT scores and facial trustworthiness judg-
ment accuracy), and also with lower self-reported abilities (i.e.
lower SREIS scores). That is, greater cognitive/attentional re-
sources may be allocated to task performance in those who are
less confident in their abilities.

Individual differences and sensory cortex function

In further support of the overarching theme we propose, our
analyses regarding the left and right ventral visual cortex clus-
ters demonstrated that facial emotion recognition accuracy (as
measured by the Ekman 60 test), and facial trustworthiness
judgment accuracy, were each positively associated with, and
explained significant independent portions of the variance in,
visual system activation associatedwith facial processing. The
fact that these areas were more activated in social vs. percep-
tual judgment, and that greater activation increases predicted
better scores on performance-based measures, both suggest
that the allocation of additional visual processing resources
was required to infer ToM-related information from facial per-
ception. In addition, however, our results suggest that inde-
pendent portions of the variance in this allocation of additional
processing resources are associated with the ability to accu-
rately infer emotions (a state-related psychological attribute)
and trustworthiness (a trait-related psychological attribute).
The ability to infer these two types of psychological attributes
plausibly allows for distinctly useful influences on decision-
making. For example, the ability to infer a person’s emotional
state has important implications for deciding how to interact
with them in the present moment (e.g., if they are angry vs.
afraid, different strategies would likely be optimal for helping
them feel better), whereas the ability to perceptually infer a
psychological trait plausibly has more long-term decision-
making implications (e.g., if they are not trustworthy, it would
be a better idea to not keep them as a friend). These results

693Brain Imaging and Behavior (2017) 11:685–697



therefore highlight the possibility that different internal con-
trol Bdecisions^ regarding top-down allocation of visual pro-
cessing resources may underlie each of these abilities; future
research should examine what further factors might contribute
to an individual’s ability to learn to infer each of these useful
types of information accurately.

Relation to previous literature

To our knowledge, few studies to date have examined the rela-
tionship between large-scale network interactions and individ-
ual difference measures of social-cognitive abilities, such as EI.
However, our results do appear consistent with, and able to
build upon, several previous findings. For example, earlier
studies have found disagreement between self-report vs.
performance-based measures of EI (Brackett et al. 2006;
Goldenberg et al. 2006); relatedly, previous studies have found
that self-reported EI measures are related to personality vari-
ables, whereas performance-based EI measures are related to
IQ scores (KV Petrides et al. 2007; Webb et al. 2013). Our
findings appear consistent with this work, but also suggest a
way in which the beliefs/values reflected in self-reported EI and
personality measures may promote cognitive resource alloca-
tion in a way that can improve performance. This may therefore
clarify the nature of the disagreements previously observed
between self-reported and performance-based measures, and
highlight how they may influence the neural networks that
implement social-cognitive functions. Our results also build
on previous neuroimaging work that has explicitly examined
correlates of social-cognitive abilities. For example, previous
studies have found that differences in gray matter and white
matter within the insula are related to differences in self-
reported EI (Takeuchi et al. 2011; Takeuchi et al., 2013a, b),
as are resting state functional connectivity estimates associated
with the medial frontal cortex, DLPFC, and visual cortical re-
gions (Takeuchi et al., 2013a, b), as well as cerebellum (Pan
et al. 2014). Measures of ability EI have also been shown to
correlate with gray matter volume of the insular cortex
(Killgore et al. 2012; Tan et al. 2014) and greater functional
responsiveness of the insular cortex to dynamically changing
expressions communicating trustworthiness (Killgore et al.
2013). The visual cortex regions we observed also overlap with
the same regions found in meta-analyses of emotion face pro-
cessing (Fusar-Poli et al., 2009a, b; Fusar-Poli et al., 2009a, b).
Our results appear to offer additional insights, however, regard-
ing the way activity in these regions relates to individual differ-
ences in multiple conceptually distinct performance measures.

Limitations and conclusion

The present study has several limitations. First, the sample
size is only moderate, and therefore future research should

attempt to replicate the relationships we observed between
performance-based/self-report measures and activation of par-
ticular large-scale neural network regions. Given that our
fMRI task only presented male faces, a replication study
(using a larger sample size) might also examine the possibility
that neural responses in some brain regions could show gender
interactions. Second, although our study was guided by some
broad a priori hypotheses, the stepwise multiple regression
approach we used, and the different measures we gathered,
served an exploratory function. These findings should there-
fore be seen as mainly hypothesis-generating, which further
highlights the importance for future studies to replicate the
particular directional relationships we observed. In particular,
it was somewhat surprising that WASI total IQ scores did not
account for a significant proportion of the variance in the
activation of any of the brain regions examined. This could
perhaps suggest that IQ is less relevant to the type of social-
cognitive task we used, or alternatively, it is possible that this
was due to some partially shared variance between IQ scores
and other stronger predictors in our analyses. Therefore, future
studies should employ additional statistical analyses to further
examine such issues. Third, it is notable that none of the clus-
ter activations we observed were associated with accuracy on
the social judgment task itself. This is surprising, as judgments
of dominance appear to reflect a similar trait-related inference
as that of facial trustworthiness, which were in fact, related to
brain activation. We suggest that this is probably best ex-
plained by the fact that the dominance judgments were de-
signed to be considerably easier than facial trustworthiness
judgments, particularly in the difficult conditions of the facial
trustworthiness task in which the faces presented were only
separated by one standard deviation (in terms of the previous-
ly rated trait features). Therefore, the greater difficulty,
reflected in the lower mean accuracy (68 % vs. 82 %), in
trustworthiness vs. dominance judgment may have helped to
bring out more meaningful individual differences. It is also
possible, however, that accuracy differences may be explained
by activations in the midbrain/cerebellar clusters which we
chose not to further examine.

Fourth, although most of our chosen performance-based
and self-report measures are previously validated, it bears
highlighting that the facial trustworthiness task and the social
judgment task were of our own creation. Thus, despite the fact
that the trustworthiness/dominance face sets we used have
been validated in previous work, less is known about the exact
psychometric properties of the particular ways in which we
chose to use them. Fifth, as we also highlighted above, the
activation clusters we observed did not always permit
distinguishing the contributions of neighboring cortical areas.
Specifically, a single cluster spanned the right DLPFC and AI,
and another spanned the left and right DMPFC/dACC, which
created difficulty in discerning the distinct functional contri-
butions of these regions. Therefore, future studies should
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perhaps take specific steps (such as using a smaller smoothing
kernel) to facilitate the ability to observe and analyze more
localized activation clusters in these regions. Finally, as in
previous work (e.g., Oosterwijk et al. 2012), we chose to in-
vestigate network activation through examining the responses
of brain regions known to participate in those networks.
However, this strategy is limited by the fact that it does not
allow inferences about interactions between regions of activa-
tion. Therefore, future work should also perform independent
component analyses (ICA) to further examine the relation
between individual difference measures and the distributed
patterns of correlated neural activity that are detectable with
such methods.

In conclusion, using a social judgment task to activate the
multiple neural networks known to be engaged by, and inter-
act during, successful social cognition, we were able to iden-
tify particular contributions of different individual difference
factors to the functioning of hub regions thought to subserve
interactions between these distinct contributing networks.
First, we found that lower self-reported traits related to social
and emotional competence were associated with greater acti-
vation of network regions that are involved in assessing the
salience of, conceptualizing, and directing cognitive resources
to task-relevant perception. Second, we found that higher
scores on measures of better objective social/emotional per-
formance were associated with greater activation within exec-
utive control regions as well as the visual processing regions
modulated by them. Together these findings suggest that bet-
ter performance is associated with greater allocation of cogni-
tive processing resources, and that the decision to allocate
resources in this way may be promoted by lower subjective
estimates of performance ability (i.e., those who think they are
the least capable may put forth the greatest cognitive effort).
Finally, we found evidence that distinct portions of variance in
activation within visual processing regions may account for
the ability to correctly infer state-related vs. trait-related psy-
chological information about others. If replicated in future
work, these results may have important implications for the
interaction between self-reported beliefs, objective perfor-
mance, and interacting large-scale neural networks within
the context of adaptive social functioning.
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