
ORIGINAL RESEARCH

Discriminative multi-task feature selection for multi-modality
classification of Alzheimer’s disease

Tingting Ye1 & Chen Zu1
& Biao Jie1 & Dinggang Shen2,3

& Daoqiang Zhang1 &

the Alzheimer’s Disease Neuroimaging Initiative1

Published online: 27 August 2015
# Springer Science+Business Media New York 2015

Abstract Recently, multi-task based feature selection
methods have been used in multi-modality based classifica-
tion of Alzheimer’s disease (AD) and its prodromal stage, i.e.,
mild cognitive impairment (MCI). However, in traditional
multi-task feature selection methods, some useful discrimina-
tive information among subjects is usually not well mined for
further improving the subsequent classification performance.
Accordingly, in this paper, we propose a discriminative multi-
task feature selection method to select the most discriminative
features for multi-modality based classification of AD/MCI.
Specifically, for each modality, we train a linear regression
model using the corresponding modality of data, and further
enforce the group-sparsity regularization on weights of those
regression models for joint selection of common features
across multiple modalities. Furthermore, we propose a dis-
criminative regularization term based on the intra-class and

inter-class Laplacian matrices to better use the discriminative
information among subjects. To evaluate our proposed meth-
od, we perform extensive experiments on 202 subjects, in-
cluding 51 AD patients, 99 MCI patients, and 52 healthy
controls (HC), from the baseline MRI and FDG-PET image
data of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). The experimental results show that our proposed
method not only improves the classification performance,
but also has potential to discover the disease-related bio-
markers useful for diagnosis of disease, along with the com-
parison to several state-of-the-art methods for multi-modality
based AD/MCI classification.

Keywords Alzheimer’s disease .Multi-task feature
selection .Multi-modality based classification .

Discriminative regularization . Group-sparsity regularizer

Introduction

As the common form of dementia worldwide, Alzheimer’s dis-
ease (AD) is a primary neurodegenerative brain disease occur-
ring in elderly people. It was first described by a German psy-
chiatrist and neuropathologist Alois Alzheimer in 1906 and was
named after him (Berchtold and Cotman 1998). It was reported
that there were 26.6 million AD patients in the world in 2006
(Berchtold and Cotman 1998). Also, it is predicted that 1 in 85
people will be affected by AD by 2050 (Brookmeyer et al.
2007). There is a prodromal state between normal aging and
AD, called mild cognitive impairment (MCI). Most individuals
with MCI will eventually progress to dementia within 5 years
(Gauthier et al. 2006). There is no cure for AD and no treatment
to reverse or halt its progression. Therefore, accurate diagnosis
of AD and MCI is very important to delay the disease progres-
sion. However, since the change of AD-related brain is prior to
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the symptom of AD, it is critical to detect those changes for
early diagnosis of AD. Recently, neuroimaging technology is
increasingly used to identify such abnormal changes in the early
stage of AD (Cheng et al. 2012; Petersen et al. 1999; Sui et al.
2012; Ye et al. 2011; Zhang et al. 2011).

Early studies on AD/MCI classification mainly focus on
using a single modality of biomarker, such as magnetic reso-
nance imaging (MRI) (De Leon et al. 2007; Fan et al. 2008;
McEvoy et al. 2009), fluorodeoxyglucose positron emission
tomography (FDG-PET) (Higdon et al. 2004; Morris et al.
2001; De Santi et al. 2001), cerebrospinal fluid (CSF)
(Mattsson et al. 2009; Shaw et al. 2009), etc. However, in those
studies, some useful complementary information across differ-
ent modalities of biomarkers is ignored, which is helpful for
further improving the accuracy of classification. Recently, sev-
eral researchers have explored to combine multiple modalities
of biomarkers (Apostolova et al. 2010; Fjell et al. 2010; Landau
et al. 2010; Walhovd et al. 2010; Jie et al. 2013). For instance,
Hinrichs et al. (Hinrichs et al. 2009) combined two modalities,
i.e., MRI and PET, for classification of AD. Bouwman et al.
(Bouwman et al. 2007) proposed to combine two modalities of
MRI and CSF to identify MCI patients from healthy controls
(HC). Fellgiebel et al. (Fellgiebel et al. 2007) used PET and
CSF to predict cognitive deterioration in MCI. Zhang et al.
(Zhang et al. 2011) combined three modalities, i.e., MRI,
FDG-PET and CSF, to classify AD/MCI from HC. Gray et al.
(Gray et al. 2013) used four modalities, i.e., MRI, FDG-PET,
CSF and genetic information, for AD classification. These
existing studies have suggested that different modalities of bio-
markers can provide the inherently complementary information
that can improve accuracy in disease diagnosis when used to-
gether (Apostolova et al. 2010; Fjell et al. 2010; Landau et al.
2010; Walhovd et al. 2010; Foster et al. 2007).

In multi-modality based classification methods, traditional
feature selection approaches, such as the least absolute shrinkage
and selection operator (Lasso) and t-test, are often performed to
help select the disease-related brain features for training a good
learning model (Tibshirani 1996; Wee et al. 2012). However,
one main disadvantage of those feature selection methods is that
they usually ignore the inherent relatedness among features from
different modalities. Recently, multi-modality based feature se-
lection methods have been proposed to overcome this problem.
For example, Huang et al. (Huang et al. 2011) presented a sparse
composite linear discrimination analysis to recognized AD-
related ROIs from multi-modality data. Liu et al. (Liu et al.
2014) proposed a multi-task based feature selection with each
task corresponding to a learning model using individual modal-
ity of data and embedding inter-modality information intomulti-
task learningmodel for AD classification. Gray et al. (Gray et al.
2013) constructed a multi-modality classification framework
based on pairwise similaritymeasures which come from random
forest classifiers for the classification betweenAD/MCI andHC.
However, in those methods, some useful discriminative

information, such as the distribution information of intra-class
and inter-class subjects, is not well mined, which may affect the
final classification performance.

To address that problem, in this paper, we propose a new
discriminative multi-task feature selection (DMTFS) model,
which considers both the inherent relations among multi-
modality data and the distribution information of intra-class
subjects (i.e., subjects from the same class) and inter-class
subjects (i.e., subjects from different classes) from each mo-
dality. Specifically, we first formulate feature selection on
multi-modality data as multi-task learning problem with each
task corresponding to a learning problem on individual mo-
dality. Then, two regularized terms are included into the pro-
posed DMTFS model. Specifically, the first term is the group-
sparsity regularizer (Ng and Abugharbieh 2011; Yuan and Lin
2006), which ensures only a small number of common brain
region-specific features to be jointly selected from multi-
modality data. Furthermore, we introduce a new Laplacian
regularization term into the proposed objective function,
which preserves the compactness of intra-class subjects and
the separability of inter-class subjects, and hence induces the
more discriminative features. Finally, we adopt the multi-
kernel support vector machine (SVM) technique to fuse
multi-modality data for performing classification of AD/
MCI. To evaluate the proposed method, a series of experi-
ments are performed on the baseline MRI and FDG-PET im-
age data of 202 subjects from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), which includes 51 AD pa-
tients, 99 MCI patients, and 52 HC. The experimental results
show the superiority of our proposed method, in comparison
with the existing multi-modality based methods.

Methods

Figure 1 shows the overview of our proposed framework,
which contains three major steps, i.e., image pre-processing
and feature extraction, discriminative multi-task feature selec-
tion, and multi-kernel SVM classification. In this section, be-
fore giving the detailed descriptions of these steps, we will
first introduce the subjects used in this study.

Subjects

The dataset we used in this study is obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (www.adni-info.org). ADNI is a non-profit organization
which was founded in 2003 by the National Institute of
Biomedical Imaging and Bioengineering. Many researchers
of institutions work together to achieve this organization.
The ADNI is committed to evaluate the progression of early
Alzheimer’s disease, i.e., MCI, by combining some technolo-
gy such as magnet ic resonance imaging (MRI) ,
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fluorodeoxyglucose positron emission tomography (FDG-
PET), Cerebrospinal fluid (CSF) and other clinical diagnosis,
which greatly improve the efficiency of diagnosis, and save
the time of treatment and the cost to the patients.

Following our previous works (Zhang et al. 2011, 2012), we
evaluate the proposed method on the baseline MRI and FDG-
PET data of 202 ADNI subjects, which contain 51 AD patients,
99MCI patients (including 43MCI converters (MCI-C) and 56
MCI non-converters (MCI-NC)), as well as 52 healthy controls
(HC). Specifically, we build multiple binary classifiers to con-
firm the classification performance of our proposed method,
including AD vs. HC, MCI vs. HC, and MCI-C vs. MCI-NC.

Image Pre-processing and feature extraction

The same image pre-processing as in (Zhang et al. 2011,
2012) is performed for all MRI and PET images, including
anterior commissure (AC) - posterior commissure (PC) cor-
rection, skull-stripping, removal of cerebellum, and segmen-
tation of structuralMR images into three different tissues: grey
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). With atlas warping, we can partition each subject im-
age into 93 regions of interests (ROIs). For each of the 93
ROIs, we compute the GM tissue volume from the subject’s
MRI image. For PET image, we first rigidly align it with its
respective MRI image of the same subject, and then compute
the average value of PET signals in each ROI. Therefore, for
each subject, we can finally obtain totally 93 features from
MRI image and another 93 features from PET image.

Discriminative Multi-Task Feature Selection (DMTFS)

Before deriving our proposed discriminative multi-task fea-
ture selection (DMTFS) method, we first briefly introduce

the traditional multi-task feature selection (MTFS) model
(Zhang et al. 2012). Suppose Xm=[x1

m,…,xi
m,…,xN

m]T∈RN×d

as training subjects from the m -th modality (i.e., task), and
Y=[y1,…,yi,…,yN]

T∈RN represents the corresponding re-
sponse vector from all training subjects, where d and N are
the numbers of features and training subjects, respectively.
Here, xi

m is a feature vector of the i -th subject from the m -
th modality, and yi∈{+1,−1} is the response class label (i.e.,
patient or healthy control). In addition, wm∈Rd represents the
weight vector of linear function for the m -th task, and
W=[w1,…,wm,…,wM]∈Rd×M denotes the weight matrix in-
cluding all wm. Then, the MTFS model is to optimize the
following objective function:

min
W

1

2

XM
m¼1

Y−Xmwmk k22 þ λ Wk k2;1 ð1Þ

whereM is the number of modalities, ‖W‖2,1=∑j=1
d ‖wj‖2 s the

l2,1 -norm of weight matrix which calculates the sum of l2 -
norm of wj (Yuan and Lin 2006), and wj is the j-th row of W
which represents the weight vector of the j -th feature acrossM

Fig. 1 Overview of proposed method

margin

ba

Original feature space New feature space

Fig. 2 The diagram of discriminative analysis
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tasks. Here, the l2,1 -norm is adopted to enforce the group
sparsity on the weight matrix, i.e., encouraging a number of
rows in the weight matrix being zero. The first term in Eq. (1)
is the empirical loss function, which measures the error be-
tween predicted value obtained from learning model and the
true value. λ is a regularization parameter which balances the
relative importance of both terms. The larger λ value means
the more zero rows appear in the weight matrix, i.e., few of
features are preserved.

In MTFS model, a linear function (i.e., f(x)=wTx) was used
to map the data from the original high-dimensional feature
space to one-dimensional space. This model only focuses on
the relationship between label and subject, and thus ignores
the distribution information of subjects from each modality,
such as the compactness of intra-class subjects and the sepa-
rability of inter-class subjects. This kind of information may
help induce the more discriminative features and thus further
improve the classification performance. Figure 2 illustrates an
example. Here each color denotes a class, and the points with
the same color denote that they come from the same class. The
arrows with green color denote that green points (which are
intra-class nearest neighbors) should be closer to the central
green point in the new feature space. Also, the arrows with
purple color denote that purple points (which are inter-class
nearest neighbors) should be far away from the central green
point in the new feature space. Intuitively, Fig. 2 shows that
intra-class samples should be closer while inter-class samples
should be far away in the new feature space.

To address this problem, inspired by some recent works
(Cai et al. 2007; Xue et al. 2009), we propose a new discrim-
inative regularization term to preserve the distribution infor-
mation of subjects. To be specific, in each modality, for each
subject xi

m, we first seek its k nearest neighbors, i.e., n(xi
m)={-

xi
m,1,xi

m,2,…,xi
m,k}, and define two disjoint subject subsets as

follows:

nw xmi
� � ¼ xm;l

i if xm;l
i and xmi belong to same class; 1≤ l≤k

��n o
ð2Þ

nb xmi
� � ¼ xm;l

i if xm;l
i and xmi belong to different classes; 1≤ l≤k

��n o
ð3Þ

where nw(xi
m) includes the neighbors that have the same label

with the subject xi
m, and nb(xi

m) contains the neighbors having

different labels with the subject xi
m. Then, to discover discrim-

inative structure and geometrical information of the data, we
construct two graphs, i.e., intra-class graph Gw

m and inter-class
graph Gb

m, with each subject as a node for both graphs. Let Zw
m

and Zb
m denote the weight matrices ofGw

m andGb
m, respectively.

We define:

Zm
w;i j ¼ 1; if xmj ∈nw xmi

� �
or xmi

��� ∈nw xmj

� �
0; otherwisej

(
ð4Þ

Table 1 The comparison of
different methods for AD and
MCI classification

Method AD vs. HC MCI vs. HC

ACC(%) SEN(%) SPE(%) AUC ACC(%) SEN(%) SPE(%) AUC

SFFS 86.78 87.06 86.15 0.93 69.21 82.12 45.38 0.73

MML 92.25 92.16 92.12 0.96 73.84 77.27 66.92 0.77

MTFS 92.07 91.76 92.12 0.95 74.17 81.31 60.19 0.77

DMTFS(proposed) 95.92 94.71 97.12 0.97 82.13 87.68 71.54 0.82

ACC ACCuracy, SEN SENsitivity, SPE SPEcificity

ROC curve of AD vs. HC
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Fig. 3 ROC curves of the classification performance of different
methods in AD/MCI and HC
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Zm
b;i j ¼ 1; ifj xmj ∈nb xmi

� �
orxmi ∈nb xmj

� �
0; otherwisej

(
ð5Þ

Then, to preserve the discriminative and structural infor-
mation of two graphs during linear mapping, we introduce a
new discriminative regularization term as:

Q Wð Þ ¼ σSw− 1−σð ÞSb ð6Þ

Where

Sw ¼
XM

m¼1

X N

i; j
f xmi
� �

− f xmj

� ���� ���2Zm
w;i j

¼ 2
XM

m¼1
wmð ÞT Xmð ÞTLm

wX
mwm ð7Þ

and

Sb ¼
XM

m¼1

X N

i; j
f xmi
� �

− f xmj

� ���� ���2Zm
b;i j

¼ 2
XM

m¼1
wmð ÞT Xmð ÞTLm

b X
mwm ð8Þ

Here, Lw
m=Dw

m−Zwm and Lb
m=Db

m−Zbm represent intra-class
and inter-class Laplacian matrices for the m-th modality, re-
spectively. Dw,ii

m =∑j=1
N Zw,ij

m and Db,ii
m =∑j=1

N Zb,ij
m are the corre-

sponding diagonal matrices. σ is a positive constant which
controls the relative importance of both terms.

With the regularizer in Eq. (6), our proposed discriminative
multi-task feature selection model (DMTFS) has the follow-
ing objective function:

minw
1

2

XM

m¼1
Y−Xmwmk k22 þ λ Wk k2;1

þ
XM

m¼1
wmð ÞT Xmð ÞT σLm

w− 1−σð ÞLm
b

� 	
Xmwm ð9Þ

where λ and σ are positive constants whose values can be
determined via inner cross-validation on the training data.
Below, we give an algorithm to solve the optimization prob-
lem in Eq. (9).

Optimization algorithm

In our study, we use the Accelerated Proximal Gradient (APG)
technique (Chen et al. 2009; Liu 2999) to solve the optimiza-
tion problem in Eq. (9). Specifically, we first separate the
objective function in Eq. (9) into a non-smooth part as:

g Wð Þ ¼ λ Wk k2;1 ð10Þ

and a smooth one as:

h Wð Þ ¼ 1

2

XM
m¼1

Y−Xmwmk k22 þ 2 wmð ÞT Xmð ÞT σLm
w− 1−σð ÞLm

b

� 	
Xmwm

� �

ð11Þ

Then, the function h(W)+g(W) can be approximately
expressed by the following function:

Ωn W ;Wkð Þ ¼ h Wkð Þ þ n

2
W−Wkk kF

þ W−Wk;∇h Wkð Þh i þ g Wð Þ ð12Þ

where ‖⋅‖F denotes the Frobenius norm, h(Wk) represents the
gradient of h(W) at the point Wk in the k -th iteration process,
and 〈W−Wk,∇h(Wk)〉 denotes the inter product of matrixes
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Fig. 4 ROC curves of the classification performance of different
methods in MCI-C and MCI-NC

Table 2 The comparison of different methods for MCI converter
classification

Method MCI-C vs. MCI-NC

ACC(%) SEN(%) SPE(%) AUC

SFFS 56.28 44.42 64.82 0.55

MML 61.67 54.19 66.96 0.61

MTFS 61.61 57.21 65.36 0.62

DMTFS(proposed) 71.12 67.21 73.93 0.68

ACC ACCuracy, SEN SENsitivity, SPE SPEcificity

Table 3 Significance test on the classification accuracies between our
proposed method and other methods

Compared method p-value

AD vs. HC MCI vs. HC MCI-C vs. MCI-NC

SFFS <0.0001 <0.0001 <0.0001

MML 0.0011 <0.0001 <0.0007

MTFS <0.0001 <0.0001 <0.0001
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which equals to Tr((W−Wk)
T∇h(Wk)). Here, n represents the

iteration step size, whose value can be decided by using line
search.

Finally, the iterative process of APG algorithm can be
interpreted as follows:

Wkþ1 ¼ arg min
W

1

2
W−Pkk k22 þ

1

n
g Wð Þ ð13Þ

Where Pk ¼ Wk− 1
n∇h Wkð Þ. According to (Chen et al.

2009; Liu 2999), we can decompose the problem in Eq. (13)
into d separate sub-problems, for which the analytical solu-
tions can be easily obtained. Also, from (Chen et al. 2009; Liu
2999), instead of performing gradient descent based on Wk,
we can compute the following formulation as:

Rk ¼ Wk þ αk Wk−Wk−1ð Þ ð14Þ

where αk ¼ 1−τk−1ð Þτk
τk−1

and τ k ¼ 2
kþ3.

Multi-kernel SVM classification

After selecting the discriminative and common features (i.e.,
brain regions) across multiple modalities, we then use the
multi-kernel SVM method proposed in (Zhang et al. 2011)
for final classification of AD/MCI from healthy controls.
Specifically, based on the features obtained from the proposed
method, we compute a linear kernel across different subjects
for each modality and then use the following function to inte-
grate the multiple kernels:

K xi; x j

� � ¼ X
m
αmK

m xmi ; x
m
j

� �
ð15Þ

where Km(xi
m,xj

m) represents the kernel function over the
m -th modality between the sample xi and xj, and αm≥0
is a weight parameter with constraint of ∑mαm=1. Here,
we find the optimal values of αm by using a coarse-grid
search on the training subjects with range from 0 to 1
and the interval value of 0.1. Finally, the LIBSVM tool-
box (Chang and Lin 2011) is adopted to perform SVM
with the mixed kernel defined in Eq. (15).

Fig. 5 Top 15 brain regions in
MCI vs. HC classification

Table 4 The comparison
between proposedmethod and the
state-of-the-art multi-modality
based classification methods

Methods Modalities AD vs. HC MCI vs. HC MCI-C vs. MCI-NC

Huang et al. MRI+PET 94.30 % – –

Gray et al. MRI+PET+CSF+genetic 89.00 % 74.60 % 58.00 %

Liu et al. MRI+PET 94.40 % 78.80 % 67.80 %

DMTFS(proposed) MRI+PET 95.92% 82.13% 71.12%

ACC ACCuracy, SEN SENsitivity, SPE SPEcificity
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Results

Classification performance

In this paper, we adopt 10-fold cross-validation to evaluate the
classification performance. Specifically, we divide the whole
samples into 10 parts, leaving one part for testing and the
remaining parts as training data in each cross-validation.
This process is repeated for 10 independent times to avoid
the bias in random partition of samples. Four performance
measures, including classification accuracy (ACC) measuring
the proportion of subjects correctly classified among the
whole subjects, sensitivity (SEN) measuring the proportion
of AD or MCI patients correctly classified, specificity (SPE)
measuring the proportion of healthy controls correctly classi-
fied, and the area under receiver operating characteristic
(ROC) curve (AUC), are used to evaluate the classification
performance of different classification methods.

We compare our proposed DMTFS method with several
other methods, including multi-task feature selection method
(denoted asMTFS) (Zhang et al. 2012), and multi-modal clas-
sification method proposed in (Zhang et al. 2011) using the
least absolution shrinkage and selection operator (Lasso) as
feature selection (denoted as MML). For further comparison,
we also concatenate the MRI and PET features into a long
feature vector, followed by the sequential forward floating
selection (SFFS) (Pudil et al. 1994) for feature selection, and
then using the standard SVM for classification. Table 1 lists
the comparison of different methods for AD/MCI classifica-
tions. Figure 3 plots the ROC curves of different methods.

From Table 1 and Fig. 3, we can see that our proposed
method outperforms the other methods in all performance
measures for both AD and MCI classifications. Specifically,
our method achieves the classification accuracies of 95.92 %
and 82.13 % for AD vs. HC and MCI vs. HC, respectively,
while the best accuracies of other methods are only 92.07 %
and 74.17 %, respectively. In addition, our method achieves
high AUC values of 0.97 and 0.82 for AD vs. HC andMCI vs.
HC, respectively, showing better diagnostic power than the
other methods for AD/MCI classifications.

On the other hand, we also perform experiments on classi-
fying MCI converters (MCI-C) from MCI non-converters
(MCI-NC), with the corresponding results shown in Table 2
and Fig. 4. As can be seen from Table 2 and Fig. 4, our
proposed method achieves better classification performances
than other methods for MCI-C vs. MCI-NC classification.
Specifically, our proposed method achieves a classification
accuracy of 71.12 % for MCI-C vs. MCI-NC classification,
which is nearly 10 % higher than the best result by other
methods.

In addition, we perform significance test on the classifica-
tion performances between our proposed method and other
compared methods by using the standard paired t test under

the significance level of 95 %. Table 3 shows the results of t
test between our method and any other method. As we can see
from Table 3, for all the three classification tasks, i.e., AD vs.
HC, MCI vs. HC, and MCI-C vs. MCI-NC, our proposed
method is significantly better than other compared methods,
which again shows the advantages of our proposed method.

AD vs. HC classification

MCI vs. HC classification

MCI-C vs. MCI-NC classification
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Fig. 6 Classification accuracies under different values of λ
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The most discriminative brain regions

Because of the importance of the brain region-related disease
in early diagnosis, we besides reporting classification perfor-
mances, and also investigate the top selected features (i.e.,
brain regions) by our proposed DMTFS method. To be spe-
cific, since the selected features in each cross-validation are
not the same, we select those features as the most discrimina-
tive features which have the highest occurrence frequency in
every cross-validation folds.

Figure 5 plots the top 15 selected brain regions for MCI vs.
HC classification. As can be seen from Fig. 5, our method can
effectively identify those disease-related brain regions such as
hippocampal, amygdala, precuneus, and temporal pole, which
have been reported to be relevant with AD in the previous
studies (Dai et al. 2009; Del Sole et al. 2008; Misra et al.
2009; Solodkin et al. 2013; Van Hoesen and Hyman 1990;
Wang et al. 2012). For example, hippocampus are located in
the temporal lobe of the brain, which are the role of the mem-
ory and spatial navigation. The Hippocampi are the first dam-
aged regions in AD, showing loss of memory and spatial
orientation. Hyman BT et al. (Hyman et al. 1984) also men-
tioned that the focal pattern of pathology isolates the hippo-
campal may induce to damage of memory in AD. Amygdala
is the subcortical central of the limbic system, and has the
function of regulating visceral sensation and producing emo-
tions. Many researchers have found that the important role of
amygdala in AD patients (Knafo et al. 2009; Poulin et al.
2011). Such as Knafo et al. (Knafo et al. 2009) mentioned that
individuals who have AD with a significant shrinkage of
amygdala, and extensive gliosis. In addition, precuneus (Del
Sole et al. 2008; Karas et al. 2007) and temporal pole (Nobili
et al. 2008) also show significant abnormalities in AD.

Discussion

In this paper, we propose a new discriminative multi-task fea-
ture selection method for AD vs. HC, MCI vs. HC, and MCI-
C vs. MCI-NC classifications. Experimental results demon-
strate that our proposed method achieves better classification
performances and also identifies more discriminative features,
compared with the existing multi-modality based methods.
Specifically, our proposed method achieves an accuracy of
95.92 % for classification between AD and HC, a high accu-
racy of 82.13 % for the classification between MCI and HC,
and a high accuracy of 71.12 % for classification between
MCI-C vs. MCI-NC.

Multi-modality based classification

Since different modalities may provide complementary infor-
mation for diagnosis of AD (Apostolova et al. 2010; Landau
et al. 2010), a lot of recent studies have investigated combin-
ing multi-modalities of data for AD diagnosis, showing im-
proved classification performances (Walhovd et al. 2010;
Bouwman et al. 2007; Wee et al. 2012; Ye et al. 2008;
Davatzikos et al. 2011). For more comparisons, Table 4 lists
the comparison between our proposed method and several
other state-of-the-art methods for multi-modality based AD/
MCI classification. For example, Huang et al. (Huang et al.
2011) proposed the sparse composite linear discriminant anal-
ysis (SCLDA) model performed on MRI and PET modalities
of data, achieving the accuracy of 94.30 % for AD classifica-
tion. Gray et al. (Gray et al. 2013) used four modalities (in-
cluding MRI, PET, CSF and genetic) of data and achieved the
accuracies of 89.00 %, 74.60 % and 58.00 % for classifying
AD, MCI and MCI-C, respectively. Liu et al. (Liu et al. 2014)

Table 5 The classification performance of different modality

Modality AD vs. HC MCI vs. HC MCI-C vs. MCI-NC

ACC
(%)

SEN
(%)

SPE
(%)

AUC ACC
(%)

SEN
(%)

SPE
(%)

AUC ACC
(%)

SEN
(%)

SPE
(%)

AUC

MRI 87.26 88.43 86.15 0.93 68.02 76.87 51.15 0.71 53.68 53.26 54.11 0.56

PET 87.82 84.71 90.96 0.93 72.83 78.89 61.15 0.78 56.05 52.09 59.29 0.56

MRI+PET 95.92 94.71 97.12 0.97 82.13 87.68 71.54 0.82 71.12 67.21 73.93 0.68

Table 6 The accuracies of different feature selection methods for AD, MCI and MCI-C classification

Methods AD vs. HC (%) MCI vs. HC (%) MCI-C vs. MCI-NC (%)

SFFS 91.26 72.91 60.00

RelieF(Dai et al. 2009) 93.46 76.89 63.89

Elastic Net(Del Sole et al. 2008) 89.62 75.70 61.61

Proposed method 95.92 82.13 71.12
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used two modalities including MRI and PETand achieved the
accuracies of 94.40 %, 78.80 % and 67.80 % for classifying
AD, MCI and MCI-C, respectively. As we can see from
Table 4, our proposed method consistently outperforms the
other state-of-the-art methods for multi-modality based classi-
fications of AD, MCI, and MCI-C.

Effect of parameters

In our proposed model, there are two regularization terms
including the group-sparsity regularizer and the discriminative
regularizer. Accordingly, two regularization parameters (i.e., λ
and σ) are used to balance the contributions of different terms.
More specifically, λ is used to control the group sparsity of the
model, and σ is used to balance the relative importance be-
tween the intra-class Laplacian matrix and the inter-class
Laplacian matrix. Figure 6 gives the classification accuracies
of our proposed method under different values of the param-
eter λ. For comparison, we also give the classification results
of standard MTFS method (i.e., without the discriminative
regularization term). Also, it is worth noting that when
λ=0, no feature selection step is performed, i.e., all fea-
tures are used for subsequent classification. In addition,
we also test different values for the parameter σ, ranging
from 0 to 1 at a step size of 0.1, with a fixed λ value, as
shown in Fig. 7.

As we can see from Fig. 6, under all values of λ, our
proposedmethod significantly outperforms theMTFSmethod
on all three classification tasks (i.e., AD vs. HC, MCI vs. HC
and MCI-C vs. MCI-NC), which again shows the advantage
of our method by introducing the discriminative regularization
term based on the intra-class and inter-class Laplacian matri-
ces. On the other hand, Fig. 7 indicates that the corresponding
curves w.r.t different values of σ are very smooth on all the
three classification tasks, showing a good robustness, i.e., in-
sensitive to the values of σ.

Comparsion with single model methods

Here, to estimate the effect of combining multi-modality im-
age data and provide a more comprehensive comparison of the
result from the proposed model, we further perform two ex-
periments, that are (1) using onlyMRI modality, and (2) using
only PET modality. It’s worth noting that our proposed model
can also be used in single-modality case, where our model
degrades into discriminative single-task (modality) feature se-
lection followed by SVM classification. With corresponding
results shown in Table 5. As can be seen from Table 5, using
multi-modalities (i.e., MRI+PET) achieves significantly
better performances than only using single modality
(MRI or PET).

Comparison with other feature selection methods

In order to further show the superiority of our proposed meth-
od, we compare it with other popular feature selection
methods including RelieF (Kira and Rendell 1992) and
Elastic Net (Zou and Hastie 2005). For fair comparison, we
use the same classifier (i.e., multi-kernel SVM) after
performing feature selection using RelieF, Elastic Net and
our proposed method. Table 6 gives the classification accura-
cies of different feature selection methods for AD vs. HC,
MCI vs. HC and MCI-C vs. MCI-NC, respectively. As we
can see from Table 6, our proposed method always achieves
the best classification accuracies in all the three classification
tasks, compared to RelieF and Elastic Net. In particular, our
proposed method exceeds nearly 10 percentage points than
other two compared methods in the classification accuracy
of MCI-C vs. MCI-NC. This result again validates the
efficacy of our proposed method.

Limitations

The current study is limited by the following two factors. First,
in this paper, we use two modalities, i.e., MRI and PET, for
AD/MCI classification. However, there exist other modalities
(e.g., CSF and APOE) which may also contain commentary
information for further improving the classification perfor-
mance. Second, we only consider two class classification
problems (i.e., AD vs. HC, MCI vs. HC and MCI-C vs.
MCI-NC), while did not test our proposed method for multi-
class classification. In the future, we will address the above
limitations to further improve the classification performance.

Conclusion

This paper proposed a discriminative multi-task feature selec-
tion method for classification of AD/MCI. Different from the
existing multi-modality based feature selection methods, our
proposedmethod explores both the distribution information of
intra-class subjects and inter-class subjects. Experimental re-
sults on the ADNI dataset show that our proposed method not
only improves the classification performance, but also has
potential to discover the disease-related biomarkers useful
for diagnosis of disease, in comparison with the state-of-the-
art multi-modality based methods.

Acknowledgments This work is supported in part by National Natural
Science Foundation of China (Nos. 61422204, 61473149), the Jiangsu
Natural Science Foundation for Distinguished Young Scholar (No.
BK20130034), the Specialized Research Fund for the Doctoral Program
of Higher Education (No. 20123218110009), the NUAA Fundamental
Research Funds (No. NE2013105), and NIH grants (EB006733,
EB008374, EB009634, and AG041721).

Brain Imaging and Behavior (2016) 10:739–749 747



For this project, the dataset we collected and used was provided by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes
of Health Grant U01 AG024904). ADNI is funded by non-profit partners
the Alzheimer’s Association and Alzheimer’s Drug Discovery Founda-
tion and the National Institute on Aging, the National Institute of Bio-
medical Imaging and Bioengineering, and through generous contribu-
tions from the following: Abbott, AstraZeneca AB, Bayer Schering
Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development,
Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline,
Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc.,
Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche,
Schering-Plough, Synarc, Inc., with participation from the U.S. Food
and Drug Administration. What’s more, Private sector contributions to
ADNI are facilitated by the Foundation for the National Institutes of
Health (www.fnih.org). The Northern California Institute for Education
and Research is the grantee organization, as well as the Alzheimer’s
Disease Cooperative Study at the University of California, San Diego
coordinate the study. ADNI data are disseminated by the Laboratory for
Neuron Imaging at the University of California, Los Angeles.

Conflicts of interest The authors declare that they have no conflict of
interest.

References

Apostolova, L. G., Hwang, K. S., Andrawis, J. P., Green, A. E.,
Babakchanian, S., Morra, J. H., et al. (2010). 3D PIB and CSF
biomarker associations with hippocampal atrophy in ADNI subjects.
Neurobiology of Aging, 31, 1284–1303.

Berchtold, N. C., & Cotman, C. W. (1998). Evolution in the conceptual-
ization of dementia and Alzheimer’s disease: greco-roman period to
the 1960s. Neurobiology of Aging, 19, 173–189.

Bouwman, F., Schoonenboom, S., van Der Flier, W., Van Elk, E., Kok,
A., Barkhof, F., et al. (2007). CSF biomarkers and medial temporal
lobe atrophy predict dementia in mild cognitive impairment.
Neurobiology of Aging, 28, 1070–1074.

Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M.
(2007). Forecasting the global burden of Alzheimer’s disease.
Alzheimer’s & Dementia, 3, 186–191.

Cai, D., He, X., Zhou, K., Han, J., Bao, H. (2007). Locality Sensitive
Discriminant Analysis, in IJCAI, pp. 708–713.

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector
machines. ACM Transactions on Intelligent Systems and
Technology (TIST), 2, 27.

Chen, X., Pan, W., Kwok, J.T., Carbonell, J.G. (2009). Accelerated gra-
dient method for multi-task sparse learning problem. in Data
Mining, 2009. ICDM’09. Ninth IEEE International Conference on,
pp. 746–751.

Cheng, B., Zhang, D., Shen, D. (2012). Domain transfer learning forMCI
conversion prediction, inMedical Image Computing and Computer-
Assisted Intervention–MICCAI 2012, ed: Springer, pp. 82–90.

Dai, W., Lopez, O. L., Carmichael, O. T., Becker, J. T., Kuller, L. H., &
Gach, H. M. (2009). Mild cognitive impairment and Alzheimer
disease: patterns of altered cerebral blood flow at MR imaging 1.
Radiology, 250, 856–866.

Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., &
Trojanowski, J. Q. (2011). Prediction of MCI to AD conversion,
via MRI, CSF biomarkers, and pattern classification. Neurobiology
of Aging, 32, 2322. e19–2322. e27.

De Leon, M., Mosconi, L., Li, J., De Santi, S., Yao, Y., Tsui, W., et al.
(2007). Longitudinal CSF isoprostane and MRI atrophy in the pro-
gression to AD. Journal of Neurology, 254, 1666–1675.

De Santi, S., de Leon, M. J., Rusinek, H., Convit, A., Tarshish, C. Y.,
Roche, A., et al. (2001). Hippocampal formation glucose metabo-
lism and volume losses inMCI and AD. Neurobiology of Aging, 22,
529–539.

Del Sole, A., Clerici, F., Chiti, A., Lecchi, M., Mariani, C., Maggiore, L.,
et al. (2008). Individual cerebral metabolic deficits in Alzheimer’s
disease and amnestic mild cognitive impairment: an FDG PET
study. European Journal of Nuclear Medicine and Molecular
Imaging, 35, 1357–1366.

Fan, Y., Batmanghelich, N., Clark, C. M., & Davatzikos, C. (2008).
Spatial patterns of brain atrophy in MCI patients, identified via
high-dimensional pattern classification, predict subsequent cogni-
tive decline. NeuroImage, 39, 1731–1743.

Fellgiebel, A., Scheurich, A., Bartenstein, P., & Müller, M. J. (2007).
FDG-PET and CSF phospho-tau for prediction of cognitive decline
in mild cognitive impairment. Psychiatry Research: Neuroimaging,
155, 167–171.

Fjell, A. M., Walhovd, K. B., Fennema-Notestine, C., McEvoy, L. K.,
Hagler, D. J., Holland, D., et al. (2010). CSF biomarkers in predic-
tion of cerebral and clinical change in mild cognitive impairment
and Alzheimer’s disease. The Journal of Neuroscience, 30, 2088–
2101.

Foster, N. L., Heidebrink, J. L., Clark, C. M., Jagust, W. J., Arnold, S. E.,
Barbas, N. R., et al. (2007). FDG-PET improves accuracy in
distinguishing frontotemporal dementia and Alzheimer’s disease.
Brain, 130, 2616–2635.

Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K.,
Broich, K., et al. (2006). Mild cognitive impairment. The Lancet,
367, 1262–1270.

Gray, K. R., Aljabar, P., Heckemann, R. A., Hammers, A., & Rueckert, D.
(2013). Random forest-based similarity measures for multi-modal
classification of Alzheimer’s disease. NeuroImage, 65, 167–175.

Higdon, R., Foster, N. L., Koeppe, R. A., DeCarli, C. S., Jagust, W. J.,
Clark, C. M., et al. (2004). A comparison of classification methods
for differentiating fronto‐temporal dementia from Alzheimer’s dis-
ease using FDG‐PET imaging. Statistics in Medicine, 23, 315–326.

Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung,M. K., & Johnson,
S. C. (2009). Spatially augmented LPboosting for AD classification
with evaluations on the ADNI dataset. NeuroImage, 48, 138–149.

Huang, S., Li, J., Ye, J., Wu, T., Chen, K., Fleisher, A. et al., (2011).
Identifying Alzheimer’s Disease-Related Brain Regions from
Multi-Modality Neuroimaging Data using Sparse Composite
Linear Discrimination Analysis. in Advances in Neural
Information Processing Systems, pp. 1431–1439.

Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., & Barnes, C. L.
(1984). Alzheimer’s disease: cell-specific pathology isolates the hip-
pocampal formation. Science, 225, 1168–1170.

Jie, B., Zhang, D., Cheng, B., Shen, D. (2013). Manifold regularized
multi-task feature selection for multi-modality classification in
Alzheimer’s disease, in Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2013, ed: Springer, pp. 275–283.

Karas, G., Scheltens, P., Rombouts, S., van Schijndel, R., Klein, M.,
Jones, B., et al. (2007). Precuneus atrophy in early-onset
Alzheimer’s disease: a morphometric structural MRI study.
Neuroradiology, 49, 967–976.

Kira, K., & Rendell, L.A. (1992). The feature selection problem:
Traditional methods and a new algorithm. in AAAI, pp. 129–134.

Knafo, S., Venero, C., Merino‐Serrais, P., Fernaud‐Espinosa, I.,
Gonzalez‐Soriano, J., Ferrer, I., et al. (2009). Morphological alter-
ations to neurons of the amygdala and impaired fear conditioning in
a transgenic mouse model of Alzheimer’s disease. The Journal of
Pathology, 219, 41–51.

Landau, S., Harvey, D., Madison, C., Reiman, E., Foster, N., Aisen, P.,
et al. (2010). Comparing predictors of conversion and decline in
mild cognitive impairment. Neurology, 75, 230–238.

748 Brain Imaging and Behavior (2016) 10:739–749

http://www.fnih.org/


Liu, J., & Ye, J.(2010). Efficient l1/lq norm regularization. arXiv preprint
arXiv:1009.4766.

Liu, F., Wee, C.-Y., Chen, H., & Shen, D. (2014). Inter-modality relation-
ship constrained multi-modality multi-task feature selection for
Alzheimer’s Disease and mild cognitive impairment identification.
NeuroImage, 84, 466–475.

Mattsson, N., Zetterberg, H., Hansson, O., Andreasen, N., Parnetti, L.,
Jonsson, M., et al. (2009). CSF biomarkers and incipient Alzheimer
disease in patients with mild cognitive impairment. JAMA, 302,
385–393.

McEvoy, L. K., Fennema-Notestine, C., Roddey, J. C., Hagler, D. J., Jr.,
Holland, D., Karow, D. S., et al. (2009). Alzheimer disease: quanti-
tative structural neuroimaging for detection and prediction of clini-
cal and structural changes in mild cognitive impairment 1.
Radiology, 251, 195–205.

Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal
patterns of brain atrophy in MCI patients, and their use in prediction
of short-term conversion to AD: results from ADNI. NeuroImage,
44, 1415–1422.

Morris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L.,
Rubin, E. H., et al. (2001). Mild cognitive impairment represents
early-stage Alzheimer disease. Archives of Neurology, 58, 397–405.

Ng, B., &Abugharbieh, R. (2011). Generalized sparse regularization with
application to fMRI brain decoding. in Information Processing in
Medical Imaging, pp. 612–623.

Nobili, F., Salmaso, D., Morbelli, S., Girtler, N., Piccardo, A., Brugnolo,
A., et al. (2008). Principal component analysis of FDG PET in
amnestic MCI. European Journal of Nuclear Medicine and
Molecular Imaging, 35, 2191–2202.

Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G.,
& Kokmen, E. (1999). Mild cognitive impairment: clinical charac-
terization and outcome. Archives of Neurology, 56, 303–308.

Poulin, S. P., Dautoff, R., Morris, J. C., Barrett, L. F., Dickerson, B. C., &
A. s. D. N. Initiative. (2011). Amygdala atrophy is prominent in
early Alzheimer’s disease and relates to symptom severity.
Psychiatry Research: Neuroimaging, 194, 7–13.

Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating search methods in
feature selection. Pattern Recognition Letters, 15, 1119–1125.

Shaw, L.M., Vanderstichele, H., Knapik‐Czajka, M., Clark, C.M., Aisen,
P. S., Petersen, R. C., et al. (2009). Cerebrospinal fluid biomarker
signature in Alzheimer’s disease neuroimaging initiative subjects.
Annals of Neurology, 65, 403–413.

Solodkin, A., Chen, E. E., Hoesen, G. W., Heimer, L., Shereen, A.,
Kruggel, F., et al. (2013). In vivo parahippocampal white matter

pathology as a biomarker of disease progression to Alzheimer’s
disease. Journal of Comparative Neurology, 521, 4300–4317.

Sui, J., Adali, T., Yu, Q., Chen, J., & Calhoun, V. D. (2012). A review of
multivariate methods for multimodal fusion of brain imaging data.
Journal of Neuroscience Methods, 204, 68–81.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological),
pp. 267–288.

Van Hoesen, G. W., & Hyman, B. T. (1990). Hippocampal formation:
anatomy and the patterns of pathology in Alzheimer’s disease.
Progress in Brain Research, 83, 445–457.

Walhovd, K., Fjell, A., Dale, A., McEvoy, L., Brewer, J., Karow, D., et al.
(2010). Multi-modal imaging predicts memory performance in nor-
mal aging and cognitive decline. Neurobiology of Aging, 31, 1107–
1121.

Wang, C., Stebbins, G. T., Medina, D. A., Shah, R. C., Bammer, R., &
Moseley, M. E. (2012). Atrophy and dysfunct ion of
parahippocampal white matter in mild Alzheimer’s disease.
Neurobiology of Aging, 33, 43–52.

Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter,
G. G., et al. (2012). Identification of MCI individuals using struc-
tural and functional connectivity networks. NeuroImage, 59, 2045–
2056.

Xue, H., Chen, S., & Yang, Q. (2009). Discriminatively regularized least-
squares classification. Pattern Recognition, 42, 93–104.

Ye, J., Chen, K., Wu, T., Li, J., Zhao, Z., Patel, R. et al. (2008).
Heterogeneous data fusion for alzheimer’s disease study. in
Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 1025–1033.

Ye, J., Wu, T., Li, J., & Chen, K. (2011). Machine learning approaches for
the neuroimaging study of Alzheimer’s disease. Computer, 44, 99–
101.

Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society,
Series B (Statistical Methodology), 68, 49–67.

Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal
classification of Alzheimer’s disease andmild cognitive impairment.
NeuroImage, 55, 856–867.

Zhang, D., Shen, D., & A. s. D. N. Initiative. (2012). Multi-modal multi-
task learning for joint prediction of multiple regression and classifi-
cation variables in Alzheimer’s disease. NeuroImage, 59, 895–907.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society, Series B
(Statistical Methodology), 67, 301–320.

Brain Imaging and Behavior (2016) 10:739–749 749


	Discriminative multi-task feature selection for multi-modality classification of Alzheimer’s disease
	Abstract
	Introduction
	Methods
	Subjects
	Image Pre-processing and feature extraction
	Discriminative Multi-Task Feature Selection (DMTFS)
	Optimization algorithm
	Multi-kernel SVM classification

	Results
	Classification performance
	The most discriminative brain regions

	Discussion
	Multi-modality based classification
	Effect of parameters
	Comparsion with single model methods
	Comparison with other feature selection methods
	Limitations

	Conclusion
	References


