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Abstract Studies have shown that white matter (WM)
volumetric reductions and overall degradation occur with
aging. Nonetheless little is known about the WM alter-
ations that may underlie different cognitive status in
older individuals. The main goal of the present work
was to identify and characterize possible macro and mi-
crostructural WM alterations that could distinguish be-
tween older healthy individuals with contrasting cogni-
tive profiles (i.e., Bpoor^ vs Bgood^ cognitive per-
formers). Structural and diffusion magnetic resonance
imaging was performed in order to quantify local WM
volumes, white matter signal abnormalities (WMSA) vol-
ume (a measure of lesion burden) and diffusion tensor
imaging scalar maps known to probe WM microstruc-
ture. A battery of neurocognitive/psychological tests
was administered to assess the cognitive performance.
Poor performers showed a higher slope for the positive
association between WMSA volume and age compared to
good performers. Even when controlling for WMSA vol-
ume, poor performers also evidenced lower fractional
anisotropy, as well as positive associations with age with
higher slopes of regression parameters in radial and axial
diffusivity. Altogether results suggest that cognitive per-
formance is related to differences in WM, with poor

cognitive performers displaying signs of faster aging in
WM.

Keywords Diffusion tensor imaging . Aging . Cognitive
performance .White matter . Tract-based spatial statistics

Introduction

The normal aging process is characterized by a natural and
progressive cognitive decline (Brickman et al. 2005;
Salthouse 2009). Interestingly, the healthy aging pattern
seems to be heterogeneous, as different individuals age differ-
ently. In fact, cognitive decline is less pronounced in some
individuals, compared to others, with this effect being associ-
ated with a multitude of factors (MacDonald et al. 2003; Paulo
et al. 2011; Santos et al. 2014).

Several changes take place at the brain level with normal
aging, including: volume alterations; chemical changes, char-
acterized by decreased synthesis of neurotransmitters, neuro-
transmitter receptors, and transporters (Ota et al. 2006); corti-
cal thinning (Salat et al. 2004); and functional reorganization
(Tomasi and Volkow 2012). Specifically, gray matter (GM)
and white matter (WM) alterations in healthy aging have been
the scope of many neuroimaging studies (Fjell et al. 2013;
Lemaitre et al. 2012; Salat et al. 2009), with some work
reporting patterns of WM alterations that accompany cogni-
tive decline in aging. For example, WM degradation in ante-
rior regions has been associated with decreased processing
speed and reduced working memory, while degeneration on
the posterior parts has been linked to reduced inhibition and
higher task switching costs as well as poor episodic memory
withWMdegradation in central regions of the brain (Kennedy
and Raz 2009). Moreover, WM atrophy was associated with a
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decline in neuropsychological functioning (Brickman et al.
2006).

Another common finding in aging studies is the positive
association between aging, cognitive decline, and the presence
of WM hyperintensities in T2-weighted MRI images, which
have been described as ischemic events (Fischer et al. 2007;
Garde et al. 2005). These lesions are frequently associated
with axonal loss and demyelination (Wang et al. 2011).
Similarly to the volumetric results, WM signal abnormalities
(WMSA) seem to present an anterior-to-posterior age pattern,
even in healthy individuals, and are associated with poorer
cognition and functional status (Maillard et al. 2012; Prins
et al. 2005; Wakefield et al. 2010). In a recent study, re-
searchers demonstrated that WMSA were associated with
slower search performance in aging, and this association was
independent of the generalized decrease in processing speed
(Lockhart et al. 2014).

Diffusion tensor imaging (DTI) studies have brought evi-
dence that WM microstructural alterations also occur with
aging and may be associated with cognition (for review see
(Madden et al. 2011)). Cross sectional studies have described
variations onWM properties associated with cognitive perfor-
mance such as memory, executive functioning, and informa-
tion processing speed (Deary et al. 2006; Laukka et al. 2013;
Vernooij et al. 2009). These have been supported also by lon-
gitudinal alterations of perceptual speed and working memory
in older adults (Charlton et al. 2010; Lovden et al. 2014).
Moreover, studies involving DTI analysis have consistently
reported patterns of WM degradation (O’Sullivan et al.
2001), which typically includes both a decrease in Fractional
Anisotropy (FA) of normal appearing white matter with in-
creasing age and a decrease in Mean Diffusivity (MD)
(Barrick et al. 2010; Kochunov et al. 2007; Pfefferbaum and
Sullivan 2003; Salat et al. 2005). Fewer studies have also
reported greater age-related increases in Radial Diffusivity
(RD) compared to Axial Diffusivity (AD) (Zhang et al.
2010). A recent longitudinal study showed that AD changes
with aging were more consistent than FA and RD changes and
that both increases and decreases in AD occur along aging
(Bender and Raz 2015). There is also an anterior-to-posterior
gradient of degeneration with more pronounced effects on the
anterior regions (Grieve et al. 2007; Head et al. 2004;
Pfefferbaum and Sullivan 2003; Salat et al. 2005). Cognitive
impairments associated withWM degradation using DTI met-
rics have been found in pathological conditions, including
Alzheimer’s Disease and mild cognitive impairment (MCI)
(Liu et al. 2011; Mielke et al. 2009), multiple sclerosis (MS)
(Roosendaal et al. 2009) and major depressive disorder
(MDD) (Alves et al. 2012).

Still, despite the findings, most of the previously men-
tioned studies focused either on an individual dimension of
WM assessment (e.g., volumetry, WMSA or DTI indices) or
on specific dimensions of cognitive performance (e.g.,

working memory, executive functioning, processing speed).
Moreover, a previous study by Santos et al. (2013) assessed
a large sample of older healthy adults with an extensive bat-
tery of neurocognitive tests that were grouped in cognitive
dimensions. Afterwards, clusters of cognitive performance
were obtained using these dimensions and mood status.
These results pointed to the fact that some individuals that
are better in one dimension of cognition (e.g., memory) are
also better at other cognitive dimensions (e.g., executive func-
tioning) and the opposite also holds true. Taking this into
account, in the present study through a multimodal neuroim-
aging approach in a cross-sectional design, we aimed at inves-
tigating i) which WM properties could discriminate between
overall Bgood^ and Bpoor^ cognitive performance status in
healthy older individuals and ii) if age affects each group
differently, through a multimodal neuroimaging approach in
a cross-sectional design. Specifically, we assessed WM
volumetry and WM hypointensities volume (a measure of
WMSA volume) through structural MRI and investigated
WM microstructural properties through DTI metrics derived
from diffusion MRI.

Methods

Ethics statement

The current study was part of the Switchbox (www.
switchbox-online.eu/) project. Study goals and tests were
explained to all participants. Informed written consent was
obtained from all study participants. The study was
conducted in accordance with the principles expressed in the
Declaration of Helsinki and was approved by the local and
national ethics committees.

Neurocognitive assessment

The selection of participants was based on cognitive data
obtained from a representative sample of the general
Portuguese older population in terms of age, gender, and
education [n=1051, after inclusion/exclusion criteria; sub-
jects randomly selected from the Guimarães and Vizela
local area health authority registries (Costa et al. 2013;
Santos et al. 2013, 2014)]. A team of trained psycholo-
gists performed the neurocognitive/neuropsychological
assessments. The test battery included the following in-
struments: digit-span forward and backward test, Stroop
color and word test, controlled oral word association test
(COWAT, letters F-A-S), selective reminding test (SRT),
digit symbol substitution test (DSST), mini-mental state
examination (MMSE), geriatric depression scale (GDS,
long-version) and the Graffar socio-demographic scale
(Santos et al. 2014). Regarding the MMSE scores,
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recommendations state that the corresponding threshold
should be adjusted depending on factors such as age
and/or education (Busch and Chapin 2008; Grigoletto
et al. 1999). The following adjusted thresholds for cogni-
tive impairment were calculated and applied: MMSE
score < 17 if individual with ≤ 4 years of formal school
education and/or ≥ 72 years of age, and MMSE score <
23 otherwise [follows the MMSE validation study for the
Portuguese population (Guerreiro et al. 1994)].

Principal component analysis and clusters of cognitive
performance

In a previous study, Principal Component Analysis (PCA)
was performed in a subsample of 487 participants in order
to allocate the multiple test variables into composite com-
ponents/dimensions, thus reducing data dimensionality
with the least possible loss of information (Santos et al.
2013). PCA resulted in the identification of four signifi-
cant dimensions: memory (MEM) (SRT test variables:
consistent long-term retrieval (CLTR), long-term storage
(LTS) and delayed recall); executive function (EXEC)
(FAS admissible parameter; Stroop parameters: words,
colors, and words/colors; digits parameters: forward and
backward); global cognitive status (MMSE) and mood
(GDS). Further details regarding factor loadings can be
consulted in the original publication of the exploratory
factor analysis (Santos et al. 2013).

Finally, a cluster analysis on the PCA-derived dimensions
(i.e., MEM, EXEC, MMSE and GDS z-scores) was per-
formed in order to identify groups sharing similar characteris-
tics across these dimensions and a four-cluster membership
was considered to provide the best solution (Santos et al.
2013). Further analysis of the resulting clusters (C1 to C4)
revealed that the subjects included in C1 had the highest
MEM, EXEC and MMSE z-scores, and that the clusters
followed a consistent rank order of cognitive performance in
all cognitive dimensions (i.e., EXEC, MEM and MMSE): C1
> C2 > C3 > C4. Thus, this ranked order of performance in
cognitive dimensions corresponded to Bvery good^, Bgood^,
Bpoor^, and Bvery poor^ cognitive performers. The clusters
differed significantly from each other in all cognitive dimen-
sions (ANOVAs, followed by Games-Howell post hoc tests).
GDS scores differed significantly between C1 and C2 clusters
and between the C3 and C4 clusters, but not between C1 and
C3 and C2 and C4 (Santos et al. 2013).

Participants

In the Switchbox project, from the considered cohort (Santos
et al. 2013), 60 subjects from the cluster exhibiting Bvery
good^ (C1) cognitive performance and 60 subjects from the
Bvery poor^ (C4) cognitive performers cluster were recruited

for MRI screening. Participants were pseudo-randomly select-
ed from each cluster in order to obtain two groups matched for
age and gender. Selectivity indexes for these background var-
iables ([Msubsample - Mtotal sample] / SDtotal sample) were
−0.131 for age and 0.400 for years of formal school education
and the ratio of males/females was 0.533 in the original sam-
ple and 0.467 in this sample. The primary exclusion criteria
were inability to understand the informed consent, participant
choice to withdraw from the study, incapacity and/or inability
to attend the MRI session, dementia and/or diagnosed neuro-
psychiatric and/or neurodegenerative disorder (medical
records).

In the present manuscript Bvery good^ and Bvery poor^
cognitive performers will be referred simply as good and poor
performers, respectively. This setting enabled us to test which
WM correlates could distinguish between overall cognitive
performance groups. From the 120 subjects initially recruited,
nine refused to undergo MRI screening at the time of the
evaluation, one subject did not finish the diffusion acquisition
from the screening protocol, and four subjects had brain le-
sions/pathology. In total, 106 subjects (ranging from 51 to
87 years of age) participated in the present study: 58 good
and 48 poor cognitive performers.

Data acquisition

All participants underwent the same acquisition protocol im-
plemented on a clinical approved Siemens Magnetom Avanto
1.5 T (Siemens Medical Solutions, Erlangen, Germany) at
Hospital de Braga (Braga, Portugal) using a Siemens 12-
channel receive-only head coil. The acquisition protocol in-
cluded a structural 3D T1-weighted magnetization prepared
rapid gradient echo (MPRAGE) with the following parame-
ters: repetition time (TR)=2730 ms, echo time (TE)=3.48 ms,
flip angle=7°, 176 sagittal slices, in-plane resolution=1×
1 mm2 and slice thickness=1 mm. A Diffusion Weighted
Imaging (DWI) scan was also performed using a spin-echo
echo-planar imaging (SE-EPI) sequence: TR=8800 ms, TE=
99 ms, FoV=240×240 mm, acquisition matrix=120×120, 61
2-mm axial slices with no gap, 30 non-collinear gradient di-
rections with b=1000 s mm−2, one b=0 s mm−2 acquisition
and 1 repetition.

Before any data pre-processing, the raw DWI acquisitions
from all subjects were visually inspected by the authors, in-
cluding a certified neuroradiologist, to confirm that none of
the participants had brain lesions and/or critical head motion
or artifacts that could compromise data quality.

White matter segmentation and WMSAvolume
estimation

T1-weighted MPRAGE images were processed using the
standard semi-automated workflow implemented in
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Freesurfer toolkit version 5.1 (http://surfer.nmr.mgh.
harvard.edu). The pipeline and procedures employed
have been validated against manual segmentations
(Fischl et al. 2002) and are considered reliable across
sessions, scanner platforms, updates, and field strengths
(Jovicich et al. 2009). Several improvements were made
during the last decade and the technicalities of the pro-
cedures are described elsewhere (Desikan et al. 2006;
Destrieux et al. 2010; Fischl et al. 2002). Briefly, the
entire pipeline involves 31 processing steps which in-
clude the spatial normalization to Talairach standard
space, skull stripping, intensity normalization, tessella-
tion of GM-WM boundary, and cortical, subcortical,
and WM segmentation. For the present study, only the
volumes of regions of interest (ROI) resulting from WM
segmentation and total WM hypointensities (i.e.,
WMSA) volume were considered. Freesurfer labels the
WMSA using probabilistic procedures that were extend-
ed to WM lesion identification (Fischl et al. 2002). This
T1-based WMSA volume estimate has been successfully
used as a measure of WM lesion volume (Salat et al.
2012), and showed sensitivity in measuring WM lesions
in Alzheimer’s disease (Salat et al. 2010), as well as to
correlate with estimates based on FLAIR acquisitions
and to correlate better with clinical symptoms in MS
(Bagnato et al. 2010).

DWI data pre-processing and tensor fitting

All data pre-processing was performed with tools provid-
ed with the FMRIB Software Library (FSL v5.0; http://fsl.
fmrib.ox.ac.uk/fsl/). The DWI images were initially
corrected for motion and eddy current distortions using
FMRIB ’s Diffus ion Toolbox (FDT). The aff ine
transformations used to register each volume were also
used to rotate the gradient vectors accordingly using
FSL’s fdt_rotate_bvecs script. The first b0 volume of
each subject’s dataset was then extracted and skull
stripped using the BET tool, thus generating a brain
mask that was then applied to the remaining volumes in
order to remove non-brain structures.

Tensor fitting and scalar maps computation steps were
performed with the tools provided with Camino software
package (http:/ /cmic.cs.ucl.ac.uk/camino/) which
implements the Robust Estimation of Tensors by
Outlier Rejection (RESTORE) algorithm (Chang et al.
2005). The RESTORE algorithm performs nonlinear
least squares fitting with constant weights after rejecting
potential outliers with an iteratively reweighted least
squares regression and inspection of the reweighted fit
residuals. After tensor fitting, scalar maps of FA, AD,
and RD were generated.

Tract based spatial statistics

Voxel-wise analysis of scalar maps was performed using
the TBSS (Smith et al. 2006) procedures, also implement-
ed in FSL. Initially, the FA maps from all participants
were slightly eroded and the end slices were zeroed in
order to further remove potential outliers. Next, all FA
images were nonlinearly registered into a 1×1×1 mm
standard space. In order to perform this, the FA image
from each subject was nonlinearly registered to each other
in order to find the Bmost representative one^ (i.e., the
one that requires the least warping to align all images)
that served as the study specific template. This template
image was then affine transformed into Montreal
Neurological Institute (MNI) 152 standard space and each
FA map was transformed into standard space by combin-
ing the nonlinear transformation to the FA target with the
affine transformation into MNI space. All FA images were
then averaged and the resulting image was skeletonized.
The skeleton was then thresholded at 0.3 in order to re-
move from the skeleton regions encompassing multiple
tissue types. Finally, all scalar maps (FA, AD, and RD)
were projected into this FA skeleton using the transforma-
tions applied to the FA images.

Statistical analysis

The main focus of the present work was on the effects of
overall cognitive functioning, age and their interactions in
relation with WM. Multiple group confirmatory factor
analysis (MGCFA) was performed in order to ensure that
the cognitive factor structure was valid and invariant
across age categories. This can be confirmed by the ab-
sence of differences between the fit of unconstrained and
constrained models (Δχ2=8.22, Δdf=14, p=0.877)
supporting metric invariance. 1

Volumetric data analysis was performed ROI-wise and
the statistical analysis was performed with SPSS version
22 (IBM, SPSS, Chicago, IL, USA). For each WM ROI, a
general linear model analysis of covariance (ANCOVA)
was performed with the ROI volume as the dependent
variable, group as the fixed factor, and age, sex, years of
formal school education, and intracranial volume (ICV) as
covariates. For the present study, only the main effects of
age, group, and age by group interaction were considered
of interest. Only results surviving a significance level of
p<0.05 after correction for multiple comparisons using

1 Analysis performed on another sample of 435 subjects, similar to the
sample used in (Santos et al. 2013) in terms of age and gender (data not
published). The sample was divided in age categories (i.e., 50–60, 60–70,
70 or more years of age) for the MGCFA.
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the false discovery rate (FDR) criterion were reported.
Analyses of the WMSA volume, as well as the volumes
from the left caudal anterior cingulate and right pars
triangularis, rostral anterior cingulate and superior tempo-
ral, were performed on natural log transformations of the
estimated volume in order to meet the normality as-
sumptions of the residuals of the ANCOVA models.
The reason for this transformation was their positively
skewed distribution. Systolic and diastolic blood pres-
sure (BP) did not differ between groups (Table 1) and
it was not a significant predictor of WMSA volume. For
these reasons, and in order to reduce the number of
independent variables in the models, we did not control
for BP.

Statistical analysis of the skeletonized maps of FA,
AD, and RD was performed using the permutation
methods employed in Brandomise^, distributed with
FSL. In total, 4 models were used. In the first model
we tested for the group by age interaction; thus, testing
if the slopes of the age associations for each group dif-
fered significantly. In the second model, regions with
significant interactions were masked out, thus enabling
the estimation of the main effects of group and age.
The third and fourth models were similar to the first
two but with an additional regressor for the estimated
volume of WMSA. These models enabled the estimation
of the same effects as the previous two while controlling
for a measure of WM lesion. Sex and years of formal
school education were always entered in the models as
covariates. Ten thousand random permutations were used
in the inference of the contrasts of interest. Threshold-
free cluster enhancement (TFCE) was used to detect
widespread differences and family-wise error (FWE) cor-
rection at p<0.05 was used to correct for multiple com-
parisons. The projected regions showing significant

results were then labeled according to the John Hopkins
University ICBM-DTI-81 WM labels atlas (Hua et al.
2008) distributed with FSL. For visualization purposes,
the significant results were dilated with tbss_fill tool (dis-
tributed with FSL).

Results

Sample characteristics

Table 1 presents a basic demographic, cognitive, and physio-
logical characterization of the two cognitive performance
groups enrolled in the present study.

White matter volumetry

Analysis of WM regional volumes yielded no significant
effects for group by age interactions. Similarly, no sta-
tistically significant differences were found between
good and poor cognitive performers. However, several
WM regions showed statistically significant (FDR
corrected at p<0.05) negative associations with age in
both hemispheres (Table 2). Lateral Orbitofrontal,
Superior Frontal, Inferior Temporal, Fusiform, and the
Posterior Cingulate appeared to show the largest age
differences.

Similarly to other studies, WMSA volumes were non-
normally distributed and positively skewed (skewness of
1.843 and 2.150 for good and poor cognitive performers
respectively) (Jacobs et al. 2013). Good cognitive per-
formers presented median WMSA volume of 2109.5
(IQR=1469.25) and poor cognitive performers presented
median WMSA volume of 3052.5 (IQR=4375.5). These

Table 1 Basic characteristics of the study’s sample

Poor performers Good performers Test statistic

Mean (SD) Range Mean (SD) Range

Males/Females (n) 32/26 20/28 Χ2
(104)=1.917 (p=0.166)

Age (years) 66.19 (7.84) 52 – 87 64.41 (8.66) 51 – 82 T(104)=−1.094 (p=0.277)

Education (years) 3.65 (1.99) 0 – 12 6.84 (4.33) 2 – 17 T(104)=4.720 (p<0.001)

MMSE score 24.02 (3.56) 18 – 29 28.52 (1.78) 23 – 30 T(104)=8.439 (p<0.001)

ZMEM −0.723 (0.525) −1.603 – 0.638 1.339 (0.664) 0.512 – 3.314 T(104)=17.449 (p<0.001)

ZEXEC −1.062 (0.581) −2.341 – 0.326 1.083 (0.900) −0.4681 – 2.703 T(104)=14.234 (p<0.001)

ZMMSE −0.427 (0.918) −3.013 – 0.8587 0.734 (0.460) −0.690 – 1.117 T(104)=8.439 (p<0.001)

ICV (mm3) 1,453,651 (159,935) 1,173,954 – 1,898,374 1,484,486 (153,998) 1,134,670 – 1,834,778 T(104)=1.008 (p=0.316)

Systolic BP (mmHg) 142.10 (18.32) 102 – 191 139.95 (17.41) 93 – 181 T(104)=0.620 (p=0.537)

Diastolic BP (mmHg) 82.52 (8.20) 63 – 107 80.97 (8.01) 60 –98 T(104)=0.984 (p=0.327)
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values are comparable to other studies assessing healthy
individuals with approximate age ranges (Jacobs et al.
2013; Leritz et al. 2013). Analysis of natural log trans-
formed WMSA volume revealed a significant group by
age interaction (F (1,100)=10.531; p=0.003; η2=0.095).
Parameter estimates revealed that while WMSA volume
has a positive correlation with age in both groups, the
slope of the regression parameter is higher in poor cog-
nitive performers (B=0.072; SE=0.012; CI95%=[0.047–
0.097]) when compared to the slope in good cognitive
performers (B=0.033; SE=006; CI95%=[0.020–0.046]).
As expected, age was a significant predictor of WMSA
volume (F (1,101)=73.785; p<0.001; η2=0.422) and
group differences were also significant (F (1,101)=
8.253; p=0.005; η2=0.076).

Group by age interactions in DTI metrics

Spatial representations of statistically significant interac-
tions between age and group, with and without inclusion

of WMSA volume in the model, are presented in Fig. 1.
Significant interactions between age and group in FA
maps were found in the posterior thalamic radiation,
splenium of corpus callosum and body of corpus
callosum, with all clusters localized in the left hemisphere
of the brain (Fig. 1a). Post-hoc analysis revealed that
the group with poor cognitive performance had a stron-
ger negative association between FA and age when
compared to the group with good cognitive perfor-
mance. The results presented in Fig. 1b indicate that
after the inclusion of WMSA in the regression model,
no significant interactions between age and group in FA
values remained.

Regarding RD, Fig. 1c shows that several significant inter-
actions could be found between age and group in several
widespread clusters and in both hemispheres. Post-hoc analy-
sis revealed an inverse pattern relative to the FA interactions,
with the poor cognitive performance group evidencing a
higher slope in the positive association of RD and age. After
inclusion of WMSA volume in the model, most of the

Table 2 White matter ROIs
presenting statistically significant
negative associations with age
(results FDR corrected at p<0.05)

White matter region T-statistic p-value White matter region T-statistic p-value

Right hemisphere Left hemisphere

Lateral orbitofrontal −5.44976 <0.001 Inferior temporal −7.31238 <0.001

Fusiform −5.21978 <0.001 Superior frontal −5.50838 <0.001

Posterior cingulate −5.15511 <0.001 Lateral orbitofrontal −5.26034 <0.001

Inferior parietal −5.07018 <0.001 Rostral middle frontal −4.7374 <0.001

Middle temporal −4.68758 <0.001 Entorhinal −4.55841 <0.001

Parahippocampal −4.67506 <0.001 Middle temporala −4.55636 <0.001

Superior parietal −4.60471 <0.001 Posterior cingulate −4.4679 <0.001

Superior frontal −4.44204 <0.001 Superior parietal −4.3474 <0.001

Medial orbitofrontal −4.24614 <0.001 Superior temporal −4.1974 <0.001

Postcentral −4.21701 <0.001 Fusiform −4.19575 <0.001

Inferior parietal −4.01232 <0.001 Postcentral −4.16346 <0.001

Superior temporal −3.97203 <0.001 Paracentral −3.80857 <0.001

Pars orbitalis −3.94235 <0.001 Precentral −3.80357 <0.001

Rostral middle frontal −3.67635 <0.001 Lingual −3.70006 <0.001

Precentral −3.63165 <0.001 Parahippocampal −3.41426 <0.001

Lateral occipital −3.56865 <0.001 Superior temporal −3.40162 <0.001

Pars triangularis −3.40025 <0.001 Pars triangularisa −3.3605 0.001

Entorhinal −3.23258 0.002 Inferior parietal −3.23466 0.002

Paracentral −3.16105 0.002 Supramarginal −3.22941 0.002

Frontal pole −3.12296 0.002 Pars triangularis −3.21845 0.002

Lingual −2.97717 0.004 Precuneus −2.92762 0.004

Supramarginal −2.96515 0.004 Rostral anterior cingulatea −2.8917 0.004

Rostral anterior cingulate −2.84301 0.005 Pars orbitalis −2.71792 0.008

Pars opercularis −2.80929 0.006

a Analyses performed with natural log transformed volumes in order to meet the assumptions of normality of the
residuals of the ANCOVA models
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significant interactions remained, being observed the
same pattern of higher slope of the RD association with

age in poor cognitive performers when compared to
good cognitive performers (Fig. 1d).

Fig. 1 Statistically significant group by age interactions in FA, RD, and
AD projected maps, before (a, c, e) and after (b, d, f) controlling for
WMSA volume. Significance threshold was set to p<0.05 (FWE
corrected for multiple comparisons). Blue/light-blue gradient indicates

lower age slopes for good cognitive performers when compared to poor
cognitive performers. Red/yellow gradient indicates higher age slopes for
the good cognitive performance group
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Analysis of AD maps showed several widespread sig-
nificant age by group interactions (Fig. 1e). Similarly to

the interactions in RD profiles, poor cognitive performers
showed higher slopes for the positive association of AD with

Fig. 2 Statistically significant associations between age and FA, RD, and
AD maps, before (a, c, e) and after (b, d, f) controlling for WMSA
volume. Blue/light-blue gradient indicates negative associations with

age. Red/yellow gradient indicates positive. All results were considered
significant at p<0.05 (FWE corrected for multiple comparisons)
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age when compared to good cognitive performers. As
shown in Fig. 1f, after inclusion of WMSA volume in
the model, most of the previously described interactions
remained.

Age effect on DTI metrics

Maps of the significant effects of age on FA, RD, and
AD are presented in Fig. 2. These results were previous-
ly masked out with the significant group by age interac-
tion results in order to reflect age effects only. Higher
age was associated with lower FA values in almost all
the WM tracts (Fig. 2a), and most of those differences
remained after controlling for WMSA volume (Fig. 2b).
The same pattern, although with a positive correlation
with age, was found for RD profiles with and without
inclusion of WMSA volume as a covariate (Fig. 2c and
d). Age was also positively associated with higher AD
values (Fig. 2e). The inclusion of WMSA as covariate
seemed to have a low impact in the age effect (Fig. 2f).

Group effect on DTI metrics

Analysis of group differences while accounting for age,
gender, and years of formal school education, yielded
several s tat is t ical ly signif icant effects (Fig. 3) .
Similarly to the age effect results, regions where group
by age interactions were significant were previously
masked out so that the presented results reflect only
group differences. Between group analyses of FA maps
revealed that good cognitive performers had significant-
ly higher FA values in several wide spread WM tracts
when compared with poor cognit ive performers
(Fig. 3a). Inclusion of WMSA volume in the regression
model accounted for some, but not all, of the described
between group differences (Fig. 3b).

In the same way, several widespread group differences
could be found in RD maps, with good cognitive per-
formers showing statistically significant lower values of
RD (Fig. 3c). Figure 3d shows that, after regressing out
WMSA volume effect, good cognitive performers still
showed lower values of RD than poor cognitive per-
formers in several white matter tracts. Regarding AD pro-
files, no group differences were found in AD before
(Fig. 3e) and after (Fig. 3f) including WMSA volume as
a covariate in the model.

Discussion

In the present study we investigated which possible WM cor-
relates could underlie the distinction between two opposite
cognitive profiles (i.e., ‘good’ and ‘poor’) in older subjects.

Considering the effect of age on WM, the results are consis-
tent with the majority of the previously published aging stud-
ies. These effects include i) overall volumetric negative asso-
ciations with age in WM, which are more pronounced in an-
terior regions (Salat et al. 2009; Westlye et al. 2010), ii) pos-
itive associations with volume of WMSAs (Leritz et al. 2013;
Smith et al. 2000), and iii) overall lower FA, increased RD and
AD in aged individuals, when comparing to younger subjects
(Bennett et al. 2010; Leritz et al. 2013). Longitudinal evidence
also suggests reduced FA and increased AD and RD with
aging (Sexton et al. 2014; Teipel et al. 2010). These results
are usually interpreted in the context of axonal injury or loss
and demyelination in late stages of life, potentially linked to
cognitive decline.

Furthermore, interestingly, when controlling for the
effects of age, results indicate that the contrasting cogni-
tive profiles are underlined by differences in WM, which,
notably, evolve differently with age. In fact, albeit no
volumetric group differences or group by age interac-
tions differences were observed, WMSA volume evi-
denced a positive association with age. This association
had a higher slope in poor cognitive performers in com-
parison with the slope of association in good cognitive
performers. This points to an increased susceptibility for
the presence of brain ischemic events in older individuals
with poorer cognitive performance, even when these are
clinically silent. Moreover, WMSA volume has been
shown to be positively associated with vascular risk fac-
tors, such as blood pressure (Firbank et al. 2007), as well
with executive functioning, processing speed, and mem-
ory performance (Jacobs et al. 2013; Maillard et al. 2012;
Prins et al. 2005). Thus, poorer cognitive performers not
only reveal an augmented presence of WM lesions,
which potentially results from loss of axonal integrity
(Wang et al. 2011), with repercussion in cognitive func-
tions, but they also exhibit patterns that could reflect an
increased vascular risk when compared to those of sim-
ilar age but overall stronger cognitive performance pat-
tern. However, we did not find differences in BP between
groups and BP was not a significant predictor of WMSA.
This could be due to the fact that the older Portuguese
population is generally hypertensive, independently of
cognitive performance, and possibly, other factors may
play a role. Some studies suggest that vascular risk fac-
tors, including hypertension, affect WM microstructural
integrity independently of WMSA (Wang et al. 2015).
Additionally, metabolic risk factors could also mediate
these effects (Bender and Raz 2015).

When considering the effect in WM microstructure, good
cognitive performers evidenced overall higher FA and lower
RD and AD when compared to poorer performers. However,
since several group by age interactions were found in all met-
rics, group differences need to be interpreted in the context of
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these interactions. Regarding FA, only small significant inter-
actions were found in regions close to the left lateral ventricle

that were not significant after the inclusion of WMSAvolume
as regressor. Nevertheless, the volume of WMSA explained

Fig. 3 Statistically significant group differences in FA, RD, and AD
maps, before (a, c, e) and after (b, d, f) controlling for WMSA volume.
Blue/light-blue gradient indicates lower values for good cognitive
performers when compared to poor cognitive performers. Red/yellow

gradient indicates higher values for the good cognitive performance
group. All results were considered significant at p<0.05 (FWE
corrected for multiple comparisons)
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only some of the widespread group differences in FA. Of note,
lower values of FA are usually associated with age-related
cognitive decline. This is thought to reflect axonal damage
and decreased efficiency in communication and consequent
disconnection of neural networks (Bartzokis et al. 2004;
Kochunov et al. 2007; O’Sullivan et al. 2001). Additionally,
longitudinal studies showed that alterations in FA in one tract
are associated with similar alterations in other tracts (Lovden
et al. 2014) thus indicating that FA changes with aging are not
mostly tract specific.

Regarding RD, several widespread group by age interac-
tions were found, with most remaining significant after the
inclusion ofWMSA in the model. This means that the positive
association of RD and age had a higher slope in poor cognitive
performers compared to good performers. The group compar-
isons further revealed that poor cognitive performers already
showed significantly higher RD values at the mean age of the
population under study. RD is the DTI metric mostly associ-
ated with myelination levels with increased RD typically
reflecting demyelination (Klawiter et al. 2011; Sun et al.
2006). Taking this into account, our results point to an in-
creased rate of demyelination in older individuals with poor
cognitive performance, which is a clinically relevant finding.

When analyzing AD maps, no group differences were
found with or without inclusion of WMSA volume as a re-
gressor in the model. More interestingly, numerous significant
group by age interactions were found with and without inclu-
sion of WMSA volume as a regressor. This suggests that al-
though at the mean age of our sample the groups did not differ
significantly in AD after inclusion of WMSA volume, the
slopes of the positive associations between AD and age are
different, with the poor performance group showing a higher
slope in AD compared to the good performance group. Unlike
FA and RD, localized or sparse foci of increase (Zhang et al.
2010), decrease (Burzynska et al. 2010) or no effect (Madden
et al. 2009) in AD with aging have been reported. Bender and
Raz (2015) found, in a longitudinal setting, that aging was
associated with both decreases and increases in AD.
Whereas, RD is typically associated with myelination levels,
AD is usually interpreted in the context of axonal pathology.
Small decreases of AD have been reported in the presence of
axonal injury (Budde et al. 2007, 2009) suggesting that cellu-
lar fragments and gliosis would restrict water diffusion. Sun
and colleagues suggest, however, that cellular debris could be
later removed by microglia, clearing the lesion area and thus
leading to an increase in AD (Sun et al. 2008). As such, the
increased slopes of the age regressor in AD could reflect the
higher presence of axonal damage and the increased slopes of
the regression parameter with RD could reflect a higher axo-
nal myelin loss. Wallerian degeneration theory accounts for
both axonal injury (primary degeneration) and loss of myelin
following the axonal lesioning (secondary degeneration)
(Conforti et al. 2014). Taking all of this into account, we

hypothesize that the higher slope of the associations of age
with AD and RD could reflect that poor cognitive performers
could be suffering a higher rate of Wallerian degeneration
compared to good cognitive performers.

In summary, older individuals with poor cognitive perfor-
mance evidenced lower FA and higher slopes in the associa-
tion of age with RD and AD, controlling for age, education,
and macrostructural lesioning, when compared to good cog-
nitive performers. In the context of aging, a similar pattern has
been suggested to reflect chronic WM degeneration
(Burzynska et al. 2010). Longitudinal studies reported that
changes in perceptual speed are associated with decreased
FA and increased MD in the cortical spinal tract (Lovden
et al. 2014) and that working memory declines with aging
were associated with decreases in MD but not FA (Charlton
et al. 2010). In the present study however, we found differ-
ences to affect not only these tracts but also almost all WM
tracts. This may indicate that overall good performance could
be the result of overall preserved WM integrity. This is further
supported by the results found for WMSA. However, with the
present setting, we cannot exclude the hypothesis that this is
the result of the summation of the effects of individual cogni-
tive dimensions that are preserved in good performers.
Considering that poor cognitive performers evidence higher
slopes for the age regression parameters with diffusivity met-
rics, we speculate that poor cognitive performers display faster
WM degeneration. This view is further reinforced by the sim-
ilarity between the group comparisons results and the cross
sectional effects of age. We aim at further investigating this
with longitudinal analysis of the same cohort.

The present work presents some limitations that should be
considered. One of the main limitation concerns the estima-
tion of WMSAvolume that, as in the present study, is estimat-
ed from a T1-weighted MPRAGE acquisition. Several differ-
ent sources of WM lesioning can lead to WMSA and these
different sources could not be fully identified with a T1-
weighted sequence. Optimally, a combination of T1, T2, pro-
ton density (PD), and fluid-attenuated inversion-recovery
(FLAIR) sequences should be used (Kim et al. 2008).
Another limitation concerns the nature and interpretation of
the DTI metrics analyzed. The images acquired in order to
estimate those metrics had a limited voxel size of 2 mm.
However, these metrics were interpreted as reflecting the
properties of WM at the axonal level that has a much smaller
scale. This leads to an important issue in inferring WM integ-
rity from DTI scalar metrics. The link between FA, RD and
AD and myelination levels or axonal injury is not well
established. Other aspects such as crossing fibers, axonal re-
arrangement or partial volume effects are known to have some
impact on the same metrics (Jones et al. 2013). Nevertheless,
the use of multiple DTI and structural metrics, as addressed in
this work, may help to overcome part of these limitations. A
final limitation of the study is that is has a cross-sectional
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design. Future work should include a longitudinal perspective
of the effects of aging, to clarify how the different groups
actually progress with age.

In summary, our results showed that poor cognitive perfor-
mance in older adults is associated with increased volume of
WM lesions and that individuals with a weaker cognitive pro-
file show a higher rate of chronic white matter degeneration.
The similarities between the group effects and the age effect
suggest that aging has a greater impact in poor cognitive per-
formers compared to stronger performers with similar chrono-
logical age.
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