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Abstract Several methodological challenges affect the
study of typical brain development based on resting state
blood oxygenation level dependent (BOLD) functional MRI
(fMRI). One such challenge is mitigating artifacts such
as those from head motion, known to be more substan-
tial in younger subjects than older subjects. Other chal-
lenges include controlling for potential age-dependence
in cerebrospinal fluid (CSF) volume affecting anatomical-
functional coregistration; in vascular density affecting
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BOLD contrast-to-noise; and in CSF pulsation creating time
series artifacts. Historically, these confounds have been
approached through incorporating artifact-specific tempo-
ral and/or spatial filtering into preprocessing pipelines.
However, such paths often come with new confounds or
limitations. In this study we take the approach of a bottom-
up revision of fMRI methodology based on acquisition
of multi-echo fMRI and comprehensive utilization of the
information in the TE-domain to enhance several aspects
of fMRI analysis in the context of a developmental study.
We show in a cohort of 25 healthy subjects, aged 9 to 43
years, that the analysis of multi-echo fMRI data eliminates
a number of arbitrary processing steps such as bandpass
filtering and spatial smoothing, while enabling procedures
such as T ∗

2 mapping, BOLD contrast normalization and sig-
nal dropout recovery, precise anatomical-functional coreg-
istration based on T ∗

2 measurements, automatic denoising
through removing subject motion, scanner-related signal
drifts and physiology, as well as statistical inference for
seed-based connectivity. These enhancements are of both
theoretical significance and practical benefit in the study of
typical brain development.

Keywords Aging · BOLD · Coregistration · Denoising ·
T ∗

2 · Functional connectivity · Seed-based · ICA · PCA

Introduction

The study of functional brain connectivity using blood
oxygenated level dependent (BOLD) resting state fMRI
is highly promising (Biswal et al. 1995). This approach
enables the in vivo and non-invasive MRI assessment of
functional brain organization in high detail with the sub-
ject at rest, i.e. not performing experimental task during
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the scan. For its relative safety and potential experimental
practicality, resting state fMRI is highly attractive for the
study of functional brain organization. Notably, the current
standards of resting state methodology have been devel-
oped based on the study of healthy adult brain function
and structure. However, recent applications of resting state
fMRI methodology to the study of pediatric brain organiza-
tion in the context of typical development has highlighted
significant limitations in this approach (Power et al. 2011).
These limitations pertain to robustness of analysis against
artifacts such as those from head motion, which is known
to be more significant in younger subjects. However, many
other confounds have long been known regarding the devel-
opmental study of functional brain organization. One such
confound is the varying effectiveness in co-registration of
functional MRI and anatomical MRI images due to changes
in brain volume with age. In particular, the poor contrast dif-
ference between cerebrospinal fluid and gray matter signals
in functional images and concurrently greater cerebrospinal
fluid in older subjects (Murphy et al. 1992) leads to variable
performance of anatomical-functional coregistration with
age. In other words, cerebrospinal fluid signals of func-
tional images may overlap with gray matter in anatomical
images more in older than younger subjects. Another impor-
tant variable in the analysis of functional BOLD data across
ages is vascular density. Younger and older brains differ
in gray matter vascular density, which yields varying fMRI
contrast (Vigneau-Roy et al. 2014), and ultimately affects
experimental sensitivity to BOLD fluctuations across the
age range in such a way that results may be biased to a
particular age-range.

Historically, two general approaches have been taken to
handle these various confounds. The first and most com-
mon route has been to buttress image processing pipelines
with various procedures to attenuate various confounds, as
they are identified. For example, to mitigate the deleterious
effects of subject head motion artifacts, the six rigid-body
parameters of head motion (three translation, three rota-
tion) are summarily regressed out of functional time series
(Hajnal et al. 1995). However, it is recognized that this
procedure is insufficient for a resting state study, so the
first derivatives of motion parameter time courses are also
included as nuisance regressors (Satterthwaite et al. 2013).
Further studies have indicated, unfortunately, that even this
procedure is suboptimal in removing the effects of subject
motion. More recently, it has been proposed that functional
time points most likely affected by uncontrolled motion
artifacts should be censored (Power et al. 2011). This strat-
egy not only suffers the question of what defines high
motion at a time point relative to subject motion during
the rest of a scan, but this approach is more generally
questioned for its necessity and its purported effects (Carp
2013). While these mass-univariate approaches to fMRI

denoising are widely applied, multivariate decomposition
using independent components analysis (ICA) followed
by noise component rejection is gaining prevalence as a
standard preprocessing step. For example, an algorithmic
component rejection procedure, FIX, extends the applica-
tion of ICA in fMRI, which was originally used to detect
networks at subject and group-level, with a classification
framework trained with prior information on noise compo-
nent properties (Salimi-Khorshidi et al. 2014). Given that
such classifiers can be adequately trained to remove noise,
ICA-based denoising is a promising application. Another
route has been to change the experimental approach start-
ing at the MRI pulse sequence, for example going from
gradient-echo (single TE, echo planar imaging; EPI) image
time series followed by extensive statistical analysis, to a
more sophisticated acquisition such as arterial spin label-
ing (ASL) and quantitative analysis of signals to estimate
regional blood perfusion, flow, and oxygenation (BOLD)
(Wong et al. 1997). ASL is also more robust to certain imag-
ing artifact such as signal drifts due to gradient heating.
However, ASL suffers lower temporal resolution, limited
coverage, a more involved acquisition procedure and poten-
tially lower signal-to-noise ratio. It also suffers sensitivity
to motion artifacts, and does not offer a direct route to solv-
ing anatomical-functional coregistration issues that affect
studies of typical development. In summary, both the analy-
sis route and the acquisition route may be taken to enhance
the robustness and efficacy of the study of functional
brain organization, but each approach does suffer its own
shortcomings.

Recently our group has proposed a novel approach to
increase the robustness of resting state fMRI study by com-
bining an advanced MRI pulse sequence, multi-echo fMRI,
with a procedure involving independent component analy-
sis (ICA) (Hyvrinen and Oja 2000; Beckmann and Smith
2004) that altogether produces a pipeline of highly effective
signal denoising as well as robust estimation of connectiv-
ity (Poser et al. 2006; Kundu et al. 2013). A multi-echo
fMRI sequence is attained through a relatively small modi-
fication to standard gradient-echo EPI fMRI, where instead
of acquiring signal images at just a single TE, images are
acquired at multiple TEs (Speck and Hennig 1998). The
TE-domain is critical since it enables functional BOLD sig-
nal changes to be validated through the signature NMR T ∗

2
decay of signal amplitude with TE, called TE-dependence
(Bandettini et al. 1994). Of equal importance, artifactual
signal changes such as from subject motion and scanner
drift do not show this decay, indicating TE-independence,
and can identified therein (Glover et al. 1996). Acquiring
each slice at multiple TEs in the course of acquiring slice
stacks (i.e. fMRI volumes) produces an fMRI volume for
each TE, at each time point. When assembled into vol-
umetric time series, each voxel is assigned a time series
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for each TE. NMR signal decay analysis can then be con-
ducted over the set of multi-echo time series at a given
voxel (Gowland and Bowtell 2007). The TE-dependence of
time-frequency components of time series can also be ana-
lyzed (Peltier and Noll 2002). Importantly, the analysis of
TE-dependence and TE-independence can be conducted for
the spatiotemporal components from statistical decomposi-
tion of ME datasets (Kundu et al. 2012). ICA performs the
function of isolating signal sources in the form of statis-
tical components, be they functional networks or artifacts,
and TE-dependence analysis classifies these components
into BOLD and non-BOLD categories. This approach is
called multi-echo independent components analysis (ME-
ICA). Removing non-BOLD components from the data is
a powerful denoising procedure, leading to up to 4-fold
gains in temporal signal-to-noise ratio (tSNR) of time series
throughout the brain by comprehensive removal of motion
artifacts, drifts, and some cardiopulmonary physiology -
without requiring explicit modeling of these nuisance time
series (Kundu et al. 2013). Moreover, multi-echo fMRI
enables other analysis procedures that are generally use-
ful for fMRI study. These include the capability to map
the T ∗

2 tissue parameter based solely on the ME func-
tional data, and synthesize the T ∗

2 weighted average of
multi-TE data to interpolate an estimated signal with opti-
mal functional contrast-to-noise ratio (T E ≈ T ∗

2 ) (Posse
et al. 1999). Importantly, this T ∗

2 weighted optimal com-
bination compensates for signal dropout in orbitofrontal
and inferior temporal cortex, by producing synthetic time
series that have weighting towards earlier TEs (because
these regions have shorter T ∗

2 ). By the same principle,
optimal combination makes contrast-to-noise ratio similar
across voxels throughout the brain. Through the procedure
of weighted averaging, optimal combination also produces
time series with substantially increased temporal signal-to-
noise ratio compared to (unaccelerated) single-echo fMRI
scans of comparable resolution of equivalent preprocess-
ing (Bhavsar et al. 2014).These multi-echo fMRI methods
have been in development for over a decade, and the more
recently developed ME-ICA technique is being applied to a
growing number of studies that have been traditionally con-
sidered to be challenging, such as ultra-high field animal
fMRI (Kundu et al. 2014) and ultra-slow neuronally-related
BOLD changes via removing non-BOLD signal drifts
(Evans et al. 2015).

In this paper, we introduce the application of multi-echo
methods as implemented in ME-ICA and its associated tools
towards the study of resting state functional connectivity in
the context of typical development. A number of ME-ICA
capabilities are demonstrated for a cohort of 25 subjects
representing the developmental age range from adolescence
to adulthood, using 5 representative subjects to demon-
strate the steps of multi-echo processing. Firstly, baseline

T ∗
2 mapping and subsequent optimal combination is shown

to compensate for signal dropout in orbitofrontal and infe-
rior temporal regions comparably across the age range.
Then, we introduce a novel anatomical-functional coregis-
tration approach that exploits the T ∗

2 differences between
gray matter and CSF to drive coregistration that distin-
guishes those compartments with equivalent performance
across datasets representing varying subject age. Next, we
demonstrate the application of ME-ICA time series denois-
ing to remove a wide variety of artifacts from subject
motion, cardiopulmonary pulsatility, scanner drift, and other
poorly characterized effects in a single step. Lastly, we
demonstrate an emerging approach to seed-based connectiv-
ity analysis that is uniquely enabled by ME-ICA, called ME
independent coefficients regression (ME-ICR). Connectiv-
ity estimates are based on inter-voxel correlation of BOLD
ICA coefficients, which are approximately independently
distributed, so that interregional connectivity estimates are
less affected by global correlations (e.g. associated with
vascular physiology or global BOLD processes), without
explicit modeling and removal of the global signal. Using
this estimator, we demonstrate consistent and robust detec-
tion of the default mode network over the age range using a
seed-based functional connectivity approach.

Methodology

Overview

Here we describe methods of processing fMRI data from
multi-echo EPI acquisition that mitigate artifacts that can
covary with subject age. The fundamentals of these methods
have been previously developed and validated in data from
healthy young adults (Kundu et al. 2012; Kundu et al. 2013),
and here we extend this work to a developmental sample (9-
43y). We describe the use of multi-echo data in four method-
ological domains that are key to the study of functional
brain development: BOLD contrast homogenization (via
T ∗

2 weighted combination), anatomical-functional coreg-
istration (T ∗

2 weighted coregistration), signal time series
denoising to remove motion artifacts and other nuisance
signals, and finally seed-based connectivity analysis. The
latter domain, connectivity, exemplifies the net improve-
ment in resting state analysis after that leverage the benefits
of multi-echo EPI acquisition.

Subjects

Data from 25 subjects are presented here (mean age 22.4y;
standard deviation 11.1y, 13 females). Representative pro-
cessing outcomes are shown for 5 subjects (ages 9.3, 16.5,
23.8, 31.5, 43.2; 2 females).
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Data acquisition

Data were acquired on a GE MR750 3T scanner using
a 32-channel GE receive-only head coil (Waukesha, WI).
Each imaging session first involved acquiring a whole-
brain anatomical MPRAGE scan with 1mm isotropic res-
olution. The resting state fMRI scan was 10 min long
and involved acquisition with multi-echo time course EPI
using the following parameters: 240mm field of view
(FOV), 64x64 matrix size yielding 3.75mm isotropic res-
olution, in-plane SENSE acceleration factor 2, flip angle
(FA)=77 degrees, repetition time (TR)=2.0s, and echo times
(TEs)=12.8,28,43ms. The multi-echo fMRI sequence uti-
lized vendor EPI excitation and a modified EPI readout,
and utilized online reconstruction. Each TR resulted in the
acquisition of 3 volumes, one for each TE. These volumes
are rearranged to yield one volumetric time series dataset
for each TE.

Computing a T ∗
2 parameter map

A map of estimated T ∗
2 parameters can be generated voxel-

wise from the time course means of different TEs. MRI sig-
nal from the BOLD contrast is generated by a T ∗

2 mediated
signal mechanism, whereby the amplitude of acquired sig-
nal varies with TE according to a simple monoexponential
decay:

S(T E) = S0 exp(−R∗
2T E) (1)

where S0 is the initial signal intensity reflecting the voxel’s
spin-density and R∗

2 is the susceptibility-weighted trans-
verse relaxation rate. The parameters S0 and R∗

2 can be
estimated by the log-linear transformation of Eq. 1. T ∗

2 is
computed as 1/R∗

2 . Representative T ∗
2 range for different

tissue classes were computed via a preliminary segmenta-
tion analysis (see Appendix). Gray and white matter were
estimated to have T ∗

2 values of 25 − 60ms, CSF T ∗
2 >≈

100ms or greater than double the median of gray/white mat-
ter T ∗

2 , and other tissues (i.e. meninges, skull, muscle, etc.)
T ∗

2 ≈<25ms. Notably, T ∗
2 estimates from log-linear fit-

ting assumes monoexponential decay and does not account
for through-plane dephasing, which has a sinc dependence
on TE. This leads to underestimation of T ∗

2 , particularly in
areas of high susceptibility artifact (Yip et al. 2006).

T ∗
2 weighted optimal combination

Different voxels across the brain have distinct T ∗
2 as a

function of their vascular density, partial volume of tissue
(notably, varying as a function of gray matter-to-CSF ratio),
as well as local magnetic field homogeneity. Optimal BOLD
MRI signal contrast for a given voxel is achieved when the

TE acquired is equal to the voxel’s T ∗
2 (T E ≈ T ∗

2 ). Given a
conventional single-echo fMRI acquisition, T ∗

2 is inevitably
higher than TE for some voxels, and is lower than TE in
other voxels. In other words, signals across the brain and
across subjects are not optimally comparable in amplitude
or contrast-to-noise ratio because different combinations
of TE and T ∗

2 represent different signal contrasts. When
acquiring multi-echo fMRI, however, at each voxel the time
series of the different TEs can be averaged with weights to
produce a new voxel time series with signal contrast bet-
ter approximating TE=T ∗

2 . In essence, multi-echo fMRI can
be utilized to implement a match-filtered or “high-dynamic
range” fMRI acquisition. Each voxel’s multi-TE time series
are averaged with normalized weights corresponding to the
respective BOLD contrast contributions at the different TEs:

ω(T ∗
2,v)n = T En · exp(−T En/T ∗

2,v)

N∑

n

T En · exp(−T En/T ∗
2,v)

(2)

See Posse et al. (1999) and Poser et al. (2006) for more
detailed review of multi-echo combination schemes.

T ∗
2 weighted anatomical-functional coregistration

Anatomical-functional image coregistration is relevant to
the study of younger individuals in developmental cohorts
due to high likelihood of subject movement (especially for
patients), intra-session repositioning, or multi-day scanning.
Coregistration performance may vary in an age-dependent
way. Because CSF volume increases with age (Salat et al.
2004), and CSF and gray matter signals are more difficult to
distinguish in functional images than in anatomical images,
there is increased likelihood of misregistration between CSF
in functional images and gray matter in anatomical images
of older subjects. Such misregistration can occur, for exam-
ple, if rigid-body rotation aligns high-intensity CSF in the
arachnoid space (i.e. near gray matter) with a gray matter
region in anatomical image due to the overall computational
optimality of this solution. Standard affine coregistrations
may be even more susceptible to these misregistration errors
due to more degrees of freedom than required for optimiza-
tion. Tuning imaging parameters (flip angle, TE, TR) to
obtain better gray-CSF contrast in EPI images can trade off
signal stability (measured as temporal signal-to-noise ratio),
which is problematic for studying the unconstrained fluctu-
ations in brain activity associated with the resting state. EPI
images acquired with multi-element head coils (the current
standard) can also have intensity non-uniformity or “shad-
ing” artifacts due to greater proximity of some brain areas
to some head coil elements, resulting in local brightness.
The confounds accumulate and result in poor differentia-
tion of gray matter from CSF across the brain and across
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the age range, potentially resulting in spurious overlay of
brain activation patterns on anatomical CSF compartments
or vice-versa.

An opportunity for more robust anatomical-functional
coregistration is found after acquiring multi-echo fMRI
data, through the use of T ∗

2 parameter maps to drive coreg-
istration. Unlike EPI images, which have arbitrary signal
magnitude, T ∗

2 is an NMR tissue property, a signal decay
(i.e. relaxation) time in the units of milliseconds. T ∗

2 is
quantitative, and varies less as a function of acquisition
parameters than raw signal-intensity maps. T ∗

2 maps are
not affected by shading artifacts, as that effect is captured
in the S0 parameter in the fit in Eq. 1, and is indepen-
dent of T ∗

2 . T ∗
2 also differentiates tissues. T ∗

2 is signifi-
cantly longer for CSF than brain tissue (gray and white
matter), while the T ∗

2 of miscellaneous tissues (large darn-
ing veins, skull, muscle, skin) is shorter than brain T ∗

2
(except for T ∗

2 in dropout areas). For a given field strength,
ranges of T ∗

2 for the respective anatomical compart-
ments are broadly comparable. Here we estimate generally
that

T ∗
2 CSF > 2 × median(T ∗

2 image) (3)

By creating a new thresholded T ∗
2 image that assigns 0

to voxels that satisfy Eq. 3, an image is created with
step-function intensity difference between gray matter and
CSF more like in a [magnetization-prepared] anatomical
image than in a conventional EPI image, where CSF and
gray matter are more similar in signal intensity. Refer-
ence T ∗

2 values of brain tissues (gray and white matter,
CSF, other) as imaged at the present EPI resolution were
computed as average T ∗

2 within the respective anatomical
compartments from FreeSurfer segmentation of MPRAGE
scans, downsampled to EPI resolution, are presented in
the Appendix A.3. Alignment of the CSF-thresholded T ∗

2
image to an anatomical image was expected to yield
better gray matter coregistration across anatomical and
functional images. In this process we also attempted to
enhance the difference in T ∗

2 between gray and white mat-
ter, which are typically are more similar to each other in
value than are other compartments. The thresholded T ∗

2
map is segmented into 3 tissue classes (AFNI 3dSeg), and
the posterior probability map of the class corresponding
to highest T ∗

2 is used as a gray matter weight image to
drive coregistration. Finally, we used AFNI 3dAllineate
to compute coregistration via an optimization approach,
utilizing its “local Pearson correlation” (LPC) cost func-
tion. LPC uses small patches of voxels from all over the
image to drive coregistration, and is thus suited to accurate
alignment of local image features (a gray matter cortical
fold, for example) across anatomical and functional images
(Saad et al. 2009).

Multi-echo independent component analysis

The central step of the ME-ICA pipeline was decomposition
of optimally combined ME data into approximately spa-
tially independent components, then denoising by removing
non-BOLD components. This procedure is conducted in 4
steps, detailed in Kundu et al. (2012), (2013). The steps are
briefly summarized here and presented in more detail in the
Appendix. The first step is dimensionality estimation and
reduction, through multi-echo principal components analy-
sis (ME-PCA) applied to the optimally combined dataset.
ME-PCA involved principal components analysis (PCA) of
the optimally combined time series dataset, followed by
reduction to dimensions with high eigenvalue, component-
level BOLD weighting (κ), or non-BOLD weighting (ρ);
both of the latter statistics are pseudo-F statistics. Essen-
tially, this approach uses a deterministic approach to select
all signals resembling correlated phenomena or MR sig-
nal for ICA decomposition while excluding thermal noise.
ME-PCA resulted in dimensionally reduced datasets (of
known dimensionality). FastICA in the spatial dimension
(i.e. spatial ICA) was then executed to find components.
κ and ρ were computed for each ICA component, and
along with related assessments of component-level TE-
dependence (see 5.3), components were classified as BOLD
or non-BOLD. Lastly, to denoise datasets, non-BOLD com-
ponents were projected out of the optimally combined time
series datasets.

Conventional resting state fMRI analysis

Conventional functional-anatomical coregistration was
implemented as intensity-weighted LPC co-registration
between the masked anatomical and masked optimally com-
bined functional images (AFNI align epi anat.py). Conven-
tional denoising was applied to data after optimal combina-
tion of echoes and involved signal “de-spiking,” regressing
out “nuisance” models for motion and bandpass filtering to
a range of 0.01−0.1Hz. Regression models for motion arti-
fact included the rigid-body parameters of translation and
rotation in 3 spatial dimensions for the alignment of all
fMRI volumes to a reference volume (the first volume after
T1 equilibration). The first derivatives of motion parame-
ters were also included to better model instantaneous signal
changes due to subject motion. Functional connectivity was
estimated as Pearson correlation R of denoised time series.

Group analysis

Conventional time series correlation and ME indepen-
dent coefficients regression (ME-ICR) were compared in
terms of group-level connectivity. To better accommodate
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differences in brain morphology across subjects of differ-
ent ages when performing this group-level analysis, resting
state datasets were mapped into so-called “gray-ordinates”
space. This involved: subject-level ME-ICA denoising in
native space; mapping each subject’s cortical time series
into cortical voxels of a template brain in MNI space via a
normalized cortical mesh; mapping subcortical time series
into MNI space via a nonlinear warp (AFNI 3dQwarp); and
finally merging cortical and subcortical time series datasets
(AFNI 3dcalc). Cortical mesh mapping involved comput-
ing a FreeSurfer cortical mesh for each subject’s brain and
the MNI template brain (FreeSurfer recon-all), mapping all
cortical meshes to a standard icosahedron (linear depth 60;
SUMA MapIcosahedron), then copying time series in vox-
els of native-space subject brains into their mapped voxel
locations in the template brain (using linear interpolation).
The resulting normalized subject datasets retained cortex,
subcortex, brainstem and cerebellum signal time series,
excluding white matter.

Connectivity was assessed in terms of mean correlation
(Z) maps thresholded according to 1-sample T-test. The
1-sample T-test estimated significant difference between the
population mean Z and 0, voxelwise, separately for conven-
tional and ME-ICR connectivity Z-values. A threshold of
p(T)<0.001 (uncorrected) was applied.

Results

T ∗
2 Mapping

The present analysis of multi-echo fMRI data begins with
the computation of S0 and T ∗

2 parameter maps for each rest-
ing state run, based on log-linear fitting of multi-echo time
course means to the canonical mono-exponential decay in
Eq. 1. This mapping is demonstrated in Fig. 1. In Fig. 1a,
three axial EPI signal images of the different acquired TEs
- all corresponding to one multi-echo volume - are shown.
Each of these EPI signal images is equivalent to a conven-
tional fMRI signal image of the corresponding TE. Images
of early TEs have less inter-tissue contrast than images of
later TEs, and all images have shading artifacts at the front
and back of the head. After fitting S0 and T ∗

2 parameters
voxel wise, two respective parameter maps are generated,
as shown in Fig. 1b. The S0 parameter map captures not
only anterior and posterior shading artifacts, but also the
signal intensity bias of outer tissues (including cutaneous)
versus inner tissues (due to coil element proximity). The
T ∗

2 parameter map, on the other hand, highlights: CSF as
having longest T ∗

2 ; much of gray matter as having inter-
mediate T ∗

2 and white matter having slightly lower T ∗
2 ;

and finally cutaneous tissues as having lowest T ∗
2 of the

four. The differences in T ∗
2 generally indicate differences in

a
TE1=12.8ms TE2=28ms TE3=43ms

maxmin

c

b
S0 Map  T2* Map  

maxmin

9.
3y

16
.5

y
23

.8
y

31
.5

y 
43

.2
y 

75ms0

Fig. 1 T ∗
2 mapping. a shows three multiecho EPI images of three

echo times. b shows maps of the S0 and T ∗
2 parameters. c shows T ∗

2
parameter maps across subjects of varying age

tissue homogeneity, such that CSF has the longest T ∗
2 by

being most homogeneous, while cutaneous tissues (skin and
subcutaneous fat) have the least. Altogether, compared to
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the other images, the T ∗
2 image is superior for the purpose of

binning different tissue types into different image intensity
ranges.

T ∗
2 maps computed from datasets representing the age

range are shown in Fig. 1c. T ∗
2 maps vary across individuals.

T ∗
2 values are generally homogeneous across gray matter,

and importantly indicate high T ∗
2 values in CSF compart-

ments such as the fourth ventricle. T ∗
2 maps representing

ages 16 and 23 (the latter is emphasized in A and B) show
some spatial heterogeneity of gray matter T ∗

2 values, with
the latter subject showing relatively lower T ∗

2 in posterior
regions. This spatially varying T ∗

2 is likely due to ineffective
shim, and leads to anterior-posterior BOLD contrast-to-
noise variation if the corrections enabled by multi-echo
fMRI (see below) are not applied. As BOLD contrast is
best imaged at TE= T ∗

2 , these results indicate that the
fixed TE measurements of single-echo fMRI may create an
uncontrolled source of variability in the contrast-to-noise
of functional time series within and across datasets. While
this variability is less of an issue in task-activation map-
ping given large enough activation magnitude (i.e. effect
size), this variability can become more problematic for
whole-brain, model-free resting state studies that assume
homogenous BOLD signal quality across the brain.

T ∗
2 weighted anatomical-functional Coregistration

The high levels of tissue-type information in T ∗
2 maps

suggested its use as a basis for functional-anatomical coreg-
istration. This mode of use is particularly convenient since
the T ∗

2 map is derived from the ME functional data, and
thus it is exactly representative of the functional time series,
and independent of any separately acquired and/or resam-
pled T ∗

2 maps. Figure 2 demonstrates the application and
outcome of T ∗

2 weighted coregistration. Figure 2a demon-
strates the procedure of transforming a brain-masked T ∗

2
map to a CSF-thresholded T ∗

2 map and finally to a gray mat-
ter weight mask. By thresholding CSF based on the criteria
in Eq. 3, the fourth ventricle (and other ventricles) signal
is nulled. By computing a three-class segmentation of that
image, a gray matter posterior probability map correspond-
ing to the image segment with highest intensity is obtained,
which is used as the T ∗

2 weight mask. This weight mask cap-
tures major gray matter features of the cortex, as well as the
brain stem.

Figure 2b underlays the functional weight mask with
anatomical images of the same subject after anatomical-
to-functional coregistrations of three modes: T ∗

2 -weighted
LPC, native coregistration (only removing scan-specific
obliquities), and standard intensity-weighted LPC. For
demonstration, the weight mask is thresholded to show val-
ues above the second mean absolution deviation (MAD),
which emphasizes the most salient features. The native

a T2* Map
CSF Thresholded 

T2* Map
Gray Matter (T 2*) 

Weight Mask

T2* weighted Co-
registration

Native Co-
registration

Standard weighted 
Co-registration

b

16.5y
23.8y

31.5y
43.2y

T2* weighted 
Co-registration

9.
3y

T2* Weighted 
Co-registration

Standard 
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Fig. 2 T ∗
2 weighed vs. EPI intensity-based coregistration. a shows the

process of thresholding CSF from the original T ∗
2 map to create a gray

matter weighted map. b shows the improvement from the standard
coregistration to T ∗

2 weighted co-registration, with arrows pointing
to a specific improvement in gray-matter overlap. c demonstrates a
comparison of standard intensity weighting (left) versus T ∗

2 weighted
co-registration versus (right), across 5 subjects of varying age

alignment of functional and anatomical images before
coregistration (middle image) is already fair in this dataset,
but some mismatch is apparent in the hippocampus area
(black arrow). Standard intensity-weighted affine coregis-
tration over-scales the brain for this dataset, pushing the
hippocampus in the anatomical image into a region with-
out gray matter weight, in effect localizing the T ∗

2 inten-
sity corresponding to the hippocampus into a CSF region
in the anatomical image. In contrast, T ∗

2 -weighted affine
coregistration leads to a more accurate alignment where hip-
pocampus in the anatomical is matched to a region with
gray matter weight in the functional, while the rest of brain
including middle cingulate is correctly scaled and shows
good coregistration.
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Axial, sagittal, and coronal views of the final functional-
to-anatomical affine coregistration compare intensity-
weighted vs. T ∗

2 -weighted functional-anatomical coregis-
trations for the dataset of Fig. 2b. Coronal views of
coregistration for the other subjects are also shown. Com-
paring boundaries of functional images (colored overlays)
to boundaries of anatomical images (grayscale under-
lays), shows variability in alignment and coverage for the
intensity-based coregistration weighting. Anatomicals are
over-stretched in the dorsal-ventral direction for 4 out of
5 subjects, and even in a diagonal direction in the case
of the 23-year old subject dataset. In contrast, the T ∗

2 -
weighted coregistrations align anatomical and functional
edges closely, consistently across subjects.

T ∗
2 weighted optimal combination

The variability of T ∗
2 indicates potentially uneven functional

contrast-to-noise ratio within and between fMRI datasets
when analysis uses images based solely on a fixed TE, as
it is the case for conventional resting state fMRI studies.
However, T ∗

2 weighted averaging of multi-echo time series
combines, for each voxel, time series of different echoes
to obtain synthetic time series with a contrast that better
approximates T E ≈ T ∗

2 for every voxel. One important
consequence of this procedure is compensation of signal
ordinarily lost to the “signal dropout” of susceptibility arti-
fact, demonstrated in Fig. 3. In Fig. 3a, a slice stack of
an EPI volume representing a standard TE for 3T (TE≈
30ms) is compared to the corresponding slice stack from
the same dataset after T ∗

2 weighted combination of TE time
series. While dorsal slices are broadly comparable, ventral
slices that suffer the usual orbitofrontal and temporal signal
dropout in the standard fixed TE volume have signal com-
pensation in the respective regions of the weighted image
based on the early TE data. Signal dropout occurs because
of short T ∗

2 in regions with greater magnetic inhomogeneity,
due to magnetic field perturbation around regions of tissue-
air and tissue-bone interface. Optimally combined images
compensate for signal dropout through weighted averaging
of echoes, with the weight for each echo (2) determining
its fractional contribution to a linear combination that esti-
mates the signal expected from acquisition at T E ≈ T ∗

2 . In
other words, optimal combination interpolates signal ampli-
tudes across a set of fixed TEs in order to estimate the
signal amplitude for T E ≈ T ∗

2 . Notably, over-weighting of
the earliest TE data is possible due to through-plane sinc

dependence. Signal compensation in ventral brain areas is
demonstrated for 5 representative subjects in Fig. 3b. Across
subjects, the earliest TE has the least signal dropout, the
middle (i.e. conventional) TE has the typically observed
level, and the latest TE expectedly the highest level of
signal dropout. In comparing the image from the optimal
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Fig. 3 Signal dropout recovery after optimal combination of multi-
echo time series datasets across the age range. a shows the benefit of
using an optimally combined slice stack over a typical slice stack of
an EPI volume collected at an echo time of 28ms, with arrows point-
ing to significant areas of signal improvement. b further displays the
improvement in EPI quality by showing slices in ventral regions at
three echo times and the action of the T ∗

2 weighting filter in combin-
ing the echoes at those slices, compensating for signal dropout in these
regions for datasets of subjects across the age range

combination to the middle TE image, it is apparent that the
signal dropout in orbitofrontal and inferior temporal regions
is substantially reduced after optimal combination, for all
subjects.
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Data denoising with multi-echo independent components
analysis

For further gains in signal fidelity for resting state fMRI
analysis atop those from optimal combination of ME data,
ME-ICA is applied to differentiate functional BOLD from
non-BOLD fluctuations. The ME-ICA pipeline decom-
posed and denoised datasets across the age range, stably
and with fast convergence, with the ICA step explaining
95–98 % of total data variance as automatically determined
by ME-PCA. This performance is consistent with that pre-
viously reported, as total explained variance is much higher
than the roughly 75 % of explained variance by non-ME
dimensionality reduction and ICA decomposition routines
(Kundu et al. 2013). In part because ME-ICA is based on
spatial ICA, its denoising functionality is not dependent
on time course filtering parameters. This led to the abil-
ity of ME-ICA in to automatically remove : non-BOLD
signal drifts due to gradient heating; signal spikes related
to motion or scanner artifact; bulk motion artifact; and
physiological noise with flow components (which is �S0

weighted).
ME-ICA signal time course denoising is demonstrated

in Fig. 4 for the 23-year old subject’s dataset that fea-
tured larger ventricles compared to the other datasets, which
indicates a possibility of greater physiological artifact from
CSF pulsation and flow. From inspecting the “raw” time
series after alignment and optimal combination only (black
time course), scanner drift is apparent in regions such as
the insula, motor areas, and cerebellum. Pulsatility is most
prominent for the anterior insula and ventromedial pre-
frontal cortex. Step-like signal modulations due to subject
head motion are also apparent in cerebellum and dorso-
medial prefrontal areas. After splitting “raw” signals using
ME-ICA into functional BOLD (green) and artifactual sig-
nal (red) subspaces, each raw time course can be explained
as the sum of a functional BOLD and an artifact time course.
A variety of artifacts are represented in non-BOLD time
courses, and in fact effects such as drifts and pulsatility are
seen more clearly than when intermixed with TE-dependent
signal, such as in the “raw” optimally combined data. On
the other hand, BOLD signal time courses are broadly com-
parable to each other, even when “raw” time courses were
dominated by artifacts, such as time courses of the dorso-
medial prefrontal cortex. Importantly, ME-ICA denoising
has good specificity. In regions such as the motor cortex
or superior parietal lobule, “raw” time courses are essen-
tially only corrected for drifts of amplitudes around 0.5 %
signal change, which is smaller than the amplitudes in the
corresponding BOLD time course. Higher amplitude step
modulations, such as in the cerebellum, are also corrected
without wholesale change to the spectral properties of the
time course, as would be done by an operation such as high

pass filtering. In other regions such as in the anterior insula
or ventromedial prefrontal cortex, pulsatility artifacts have
amplitudes that are substantially higher (1.0 %) than the cor-
responding BOLD time courses. Altogether, resting BOLD
time courses extracted by ME-ICA from optimally com-
bined data have amplitudes on the order of 0.5 %, except in
the motor cortex and superior parietal lobule, which show
amplitudes closer to 1.0 %. Non-BOLD artifactual time
courses vary in amplitude more substantially, exceeding
1.0 % signal changes in many voxels.

Figure 5 further demonstrates further the performance
of ME-ICA in differentiating functional BOLD signal time
courses from artifacts due to motion, drift, and physiology
based on voxelwise maps of time course standard devia-
tion. In Fig. 5a, BOLD signal time series standard deviation
maps from before and after regression of motion parame-
ters (middle column) show little difference. This indicates
that the respective nuisance effects explain little variance
in the BOLD time series. Notably, essentially all gray mat-
ter is associated with high values of BOLD signal standard
deviation, meaning that the ME-ICA decomposition com-
prehensively identified BOLD fluctuations throughout the
brain. Figure 5b shows standard deviation maps of ME-
ICA artifact time series before and after regressing out
motion parameters and drifts that, in contrast, shows a sub-
stantial difference. This indicates that the non-BOLD time
series identified by ME-ICA effectively captured motion
artifacts based on component-level TE-dependence and
TE-independence analysis. Furthermore, ME-ICA captured
nuisance artifacts that motion and drift regression could
not. The non-BOLD datasets captured physiological arti-
fact in regions of high vascular density and draining veins
(Vigneau-Roy et al. 2014), which is not attenuated by drift
correction or bandpass filtering, and is consistent with spa-
tial patterns of end-tidal CO2 fluctuation (Birn et al. 2006).
Figure 5c shows example artifact components that may
be ambiguous in origin to non-expert human reviewers or
inadequately trained classifiers, but are clearly identified as
non-BOLD effects by ME-ICA in having disproportionately
high ρ values relative to κ values and percentage of data
variance explained. Two components associated with signal
drifts and low frequency modulations show striated spatial
patterns of high and low intensity over gray matters areas
that may be confused as functional activity. A third com-
ponent isolates a cardiopulmonary pulsation of the middle
cerebral arteries.

Subject-level seed-based functional connectivity analysis

Seed-based functional connectivity analysis of the default
mode network (posterior cingulate cortex seed) was con-
ducted in three modes: conventional (intensity-based coreg-
istration, time series correlation based on middle TE data);
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Fig. 4 The effect of ME-ICA signal splitting on time series through-
out the brain of a representative subject. Voxel-time series are shown
throughout different areas of the brain of a 23.8 year-old subject. Each
voxelwise time series set shows the raw time series and its artifactual

(noise) and functional (neuronal) components. Artifacts such as drift,
head motion, and physiological pulsatility are seen clearly in the
artifactual time series

ME-ICA time series correlation (T ∗
2 weighted coregistration

and optimal combination); and ME-ICR. These three types
of connectivity analysis are compared in Fig. 6 for 5 datasets
representing the age range, with each dataset analyzed in
each analysis type. Notably, since time course correlation of
resting state fMRI data is not well conditioned for statisti-
cal inference, both middle TE and ME-ICA denoised time
series correlation maps are thresholded R >0.5. In con-
trast, since ME-ICR computes correlation between vectors

(i.e. sets) of coefficients that are distributed approximately
independently of each other, the canonical Fisher transform
including the standard error term was applied to transform
R values to a potentially well-conditioned Z values allow-
ing subject-level correlation thresholded based on p-value.
None of the datasets had FWHM spatial smoothing applied,
as the tSNR increase ordinarily sought by smoothing was
achieved natively by acquiring images with larger voxels
(3.75 mm isotropic) and not smoothing.
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Fig. 5 Standard deviation maps for subjects of varying age for assess-
ing the cumulative effect of ME-ICA denoising. (a) assess the BOLD
signal space. (b) assesses the separate non-BOLD/artifact space. The
leftmost columns for each signal space show voxel-wise standard devi-
ation maps. The middle columns show standard deviation maps after
motion regression. BOLD signal shows no substantial change after
motion regression, indicating that motion artifact is not a significant
effect in this signal space. In contrast, the non-BOLD space shows a
significant reduction in standard deviation after regressing out motion
artifacts, indicating the non-BOLD space to contain these artifacts. The

rightmost column shows standard deviation after motion regression
and 0.01Hz-0.1Hz bandpass filtering. Standard deviation is attenuated
somewhat in the BOLD space, but the overall structure remains consis-
tent. In the non-BOLD space, even after filtering, non-BOLD variance
remains due to artifactual physiological signals from the draining
veins. (c) shows example components that are not obviously related
to subject motion, but also not clearly related to functional networks.
These are clearly demarcated as non- BOLD by ME-ICA and removed
from data in denoising

Connectivity mapping approaches involving conven-
tional and multi-echo methods were evaluated on the repro-
ducibility across subjects of thresholded connectivity maps
of the DMN pattern (posterior cingulate seed), in par-
ticular on the consistent delineation of the DMN nodes
of anterior and posterior cingulate cortices and bilateral
temporo-parietal cortices. Conventionally denoised middle
TE data do not show the anterior cingulate node of the
DMN consistently across datasets. While all subjects show
correlation to this area with some magnitude, specificity
is poor and the extent of correlation varies considerably
across these subjects representing the age range. Correla-
tion of ME-ICA denoised time series shows the anterior
cingulate node more consistently in all 5 representative
subject datasets. The use of the middle TE data may be sub-
optimal for detecting the anterior cingulate and other DMN
regions due to residual noise in time series as well as sub-
optimal anatomical-functional coregistration, and in some

cases (16.5 y and 31.5 y) the effect of a strong global signal
in amplifying whole-brain connectivity is apparent. In con-
trast, ME-ICR seed-based functional connectivity shows the
canonical DMN pattern consistently across subjects, with
subject connectivity patterns appearing remarkably similar
to each other, even in the temporo-parietal nodes.

Group-level seed-based functional connectivity analysis

Time series correlation and ME-ICR functional connec-
tivity estimators were compared in the context of group
analysis of seed-based connectivity in the default mode net-
work. This assessment relates to how the conditioning of
subject-level correlation distribution affects group-level
connectivity inferences. 1-sample T-tests of functional con-
nectivity values across subjects is shown in Fig. 7a–b,
separately for conventional and ME-ICR. The one-
sample T-test of conventional time series correlation after
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Fig. 6 Using a seed-based approach, functional connectivity analy-
sis was conducted for the default mode network (DMN) using three
connectivity estimators for datasets across the age range. The left
column demonstrates standard time series correlation (thresholded
R>0.5) in data from the conventional TE (28ms) after intensity-
based anatomical-functional coregistration. The middle column shows
BOLD time series correlation (thresholded R>0.5) after T ∗

2 weighted
anatomicalfuncitonal co-registration and ME-ICA denoising, but

without correction for BOLD complexity. Note enhanced connec-
tivity between anterior and posterior cingulate cortices, but effects
of global BOLD phenomena in some subjects . The third column
shows ME-ICA and connectivity estimation using ME-ICR (thresh-
olded Z>3, uncorrected p<0.01), which consistent anteriorposterior
cingulate connectivity with an apparent age-dependent increases in
long-distance versus local connectivity

non-BOLD noise removal appears extremely dense despite
a p < 0.001 threshold. This result is not unexpected, how-
ever, as it has been shown in prior studies that subject-level
correlation distributions have strong right shifts and variable
distributions (Schölvinck et al. 2010; Kundu et al. 2013)
suggesting violations of the normality, homoscedasticity
and exchangeability assumptions in the 1-sample T-test. The
aspects of variable distribution centering and spread may
be worse for the developmental cohort than for a cohort
of healthy adults of a given age range due to develop-
mental variation of functional connectivity properties with
age. In contrast to the conventional connectivity result, the
1-sample T-test of ME-ICR (Fig. 1b) cleanly localizes cor-
tical and subcortical correlates of the default mode network,
including hippocampus, anterior cingulate, and cerebellar
tonsil (Habas et al. 2009). This result is interpreted as ME-
ICR being a less biased estimator of seed-based connec-
tivity than time series correlation, as subject-level ME-ICR
involves computation of inter-regional correlation R on the
basis of independently distributed values followed by nor-
malization using a accurate subject-specific standard error
term.

Discussion

The study of functional brain organization using resting
state fMRI has unique potential to shed light on the changes
in brain organization that take place in typical development.
The challenges in this line of research are substantial but
ultimately related to the design of fMRI methods based on
data from normal adult controls, acquisition of single-echo
time course EPI, and analysis using pipelines of seem-
ingly reasonable signal processing steps such as nuisance
time course regression or spatial smoothing. In the assess-
ment of increasingly complex phenomena such as resting
functional connectivity or processes such as typical devel-
opment, however, increasingly problematic nuisance effects
have required successive methodological “patching,” focus-
ing mainly on the analysis phase (Carp 2013). For instance,
the recently advocated step of time point censoring (i.e.
scrubbing) for attenuating strong motion artifacts in pedi-
atric connectivity datasets leads to uncontrolled variability
in degrees of freedom for analysis, culminating in decreased
interpretability of connectivity results regarding typical
development (Dosenbach et al. 2010; Power et al. 2011).
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Fig. 7 Group-level seed-based
connectivity analysis of the
default mode network (PCC
seed) using conventional time
series correlation (ME denoised)
and ME-ICR. Overlays are mean
Z across subjects. Maps are
thresholded by T-values. a Axial
and sagittal views of onesample
T-test maps of subject Z-maps
based on time series correlation
across 25 subject datasets of
ages 9–43. Maps are thresholded
p¡0.001 (uncorrected). This
analysis (which does not
implement global signal
regression) produces spuriously
high significance, resulting in
minimal specificity in DMN
map despite a high threshold. b
Corresponding views of the
one-sample T-test of Z-maps
based on MEICR on datasets
representing the same cohort.
Maps are thresholded as in b.
ME-ICR does not utilize global
signal regression, but
specifically isolates the default
mode network and delineates
subcortical nodes including
hippocampus and nucleus
accumbens

b
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Generality of acquisition and analysis such as required in
the study of brain development is benefitted by the oppo-
site strategy - of minimizing the number of processing
steps. In recognizing a wide variety of artifactual processes,
however, this minimalist strategy requires that the chosen
analysis steps be richly informed and ideally be both phys-
ically and statistically principled. In terms of increasing
information content, acquiring “more” data in spatial or
temporal domains is certainly one approach, for example
by scanning for longer time periods or at higher temporal
resolution. With respect to the acquisition step, multi-echo
fMRI is implemented by a relatively small modification of
the gradient-echo EPI pulse sequence. Regarding the anal-
ysis step, the multi-echo acquisition enables a number of
analysis procedures, as pertaining to contrast normaliza-
tion, coregistration, denoising and statistical inference for
connectivity. In the present paper, we demonstrate the the-
oretical significance and practical benefit of the multi-echo
fMRI approach in the context of studying typical brain
development.

The key capabilities enabled by acquisition of multi-echo
fMRI and analysis with ME-ICA, as relevant to the study
of typical development, includes optimization of T ∗

2 con-
trast for voxels throughout the brain based on T ∗

2 weighted
optimal combination, anatomical-functional coregistration

based on T ∗
2 maps that is robust to age-dependent vari-

ability in brain morphology (Salat et al. 2004), sensitive
and specific removal of time course artifacts, and esti-
mation of seed-based functional connectivity that is valid
for statistical inference and thresholding. The removal of
smoothing from fMRI analysis or compensation of signal
dropout based on T ∗

2 weighted optimal combination, which
are independent of the decomposition steps in ME-ICA,
may themselves better support the study of hypotheses per-
taining to the typical development of brain organization. In
addition, ME-ICA enables a number of capabilities geared
towards utilizing the information available from multi-echo
fMRI acquisition towards simplifying resting state analysis
while concurrently increasing its sensitivity, specificity, and
robustness. High-dimensional spatial ICA decomposition of
optimally combined data is a key analysis block. Multi-echo
information is utilized here first to obtain a comprehensive
dataset decomposition through examining TE-dependence
within the principal component analysis dimensionality
estimation step, which deterministically produces high
dimensionality estimates that consistently lead to stable ICA
decompositions. This differs from a conventional spatial
ICA application, which requires user-dependent assess-
ments of component number (often requiring trial-and-
error assessment) or probabilistic automated dimensionality
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estimates based on random noise models. The former may
be over or under-determined dependent on subject age, and
the latter produces run-to-run variability in dimensional-
ity estimates, which compounds on variability due to the
probabilistic characteristic of ICA algorithms. The second
and critical application of TE-dependence information in
the decomposition block is in the classification of the
BOLD and non-BOLD components based on assessments
of component-level linear TE-dependent scaling or “TE-
independent” signal scaling, respectively. This two-step
strategy results in removal of time course artifacts of a wide
variety, including subject motion, cardiopulmonary pulsa-
tion, and scanner drift, which manifest with a wide range
of time and frequency-domain characteristics, and does so
without referencing templates of canonical ICA “networks”
or expected temporal signal properties. While spatial and
temporal BOLD properties change with age due to brain
shape and age-dependent variability in neurovascular cou-
pling, TE-dependence as a basic NMR property of BOLD
signals does not. The ability of ME-ICA to remove artifacts
from subject motion or other sources using decomposition
and a physically principled analysis and without referenc-
ing spatial or time course templates marks an important
capability in the context of developmental studies.

It is important to note that ME-ICA is one of a num-
ber of ICA-based denoising strategies for resting fMRI data.
Indeed, denoising was one of the first proposed applications
of ICA to fMRI. However, component selection is a con-
siderable problem for ICA denoising. Component selection
methods relevant to denoising include the ICASSO method
of repeated ICA with varying initialization (Himberg and
Hyvarinen 2003) to enable a search for components with
highest reproducibly. A component selection technique
more specific to subject-level analysis of conventionally
acquired fMRI data is ICA fingerprinting (De Martino et al.
2007), which uses classification of temporal and spatial fre-
quency metrics of components to differentiate “network”
components from artifacts, assuming that network and arti-
fact components have differentiable frequency properties.
Most recently, the FIX method of ICA component selection
has been proposed, based on a hierarchical classification
on component spatial localization relative to brain network
templates as well as spatial and temporal frequency char-
acteristics (Salimi-Khorshidi et al. 2014; Griffanti et al.
2014). Both fingerprinting and FIX have been reported
to have high classification accuracy for their validation
data. However, these methods depend on accurate prior
information and/or training steps. For the study of norma-
tive adult controls, especially for datasets of high statistical
power (i.e. long scans and large cohorts), normative param-
eters for classification may be sufficient and slight mis-
specification of parameters may have only nominal effects
on findings. Further study can include methodological

comparison of ME-ICA to template-based component iden-
tification and removal techniques for fMRI of normative and
developmental cohorts. In addition, while ME-ICA has been
shown to remove physiological noise in prior work (Kundu
et al. 2012) and in this manuscript, further work is required
to assess its capability to remove BOLD-like physiologi-
cal artifacts such as end-tidal CO2 fluctuation. However, in
a study where functional brain organization as manifest in
fMRI signal or network spatial properties may change over
an experimental parameter, such as for brain development
(e.g. subject age), template or prior-based classification may
require more extensive parameterization that could lead to
circular logic, or otherwise incur bias towards the training
data. When a wide range of application is important and
template representations of expected functional brain orga-
nization are not available, ME-ICA represents a compelling
approach, since its denoising is based on a property of fMRI
signal that is invariant to functional brain organization. In
fact, ME-ICA has been shown to robustly identify brain
networks in anesthetized rodent at ultra-high field with-
out modification of the main decomposition and selection
procedure (Kundu et al. 2014). We demonstrated in this
study that ME-ICA is appropriate in applications of sig-
nal denoising and connectivity analysis in both pediatric
and adult cohorts. Importantly, this demonstration was con-
ducted using relatively short 10 min. resting state datasets,
which may be practical in fMRI experiments given propen-
sity of younger individuals to become uncomfortable over
long scan sessions, which in turn may lead to altered mental
state and increased subject movement.

The ME-ICA implementation discussed here has some
limitations. The multi-echo approach utilizes imaging time
to sample echoes beyond peak BOLD contrast (TE= 30ms
at 3T) to optimize BOLD contrast, improve coregistra-
tion, and implement T2* model-based densoising. As an
alternative approach, that imaging time could be spent
in increasing spatial and temporal resolution. Importantly,
increasing spatial resolution is itself a way to reduce sig-
nal dropout (by attenuating in-plane dephasing), improve
anatomical-functional coregistration, and better support
component classification towards denoising. Other imaging
approaches may also address the challenges of developmen-
tal neuroimaging as presented here. For example, sequences
less susceptible to distortions and signal dropout include
spiral EPI (Glover and Law 2001) and spin-echo EPI
(Norris et al. 2002). Future work will focus on optimizing
the ME approach to improve spatial as well as temporal
resolution. Importantly, the approach of simultaneous multi-
slice EPI with multi-band excitation has emerged as an
important advance for increasing fMRI imaging resolu-
tion and speed (Setsompop et al. 2012). Its implementa-
tion for single-echo fMRI is core to functional and dif-
fusion imaging in the human connectome project (HCP),
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and is being utilized by several groups to achieve fMRI
at TR 1s with in-plane resolution of about 2 mm (Van
Essen and Ugurbil 2012). This fast imaging approach fur-
ther supports template or prior-based denoising by sig-
nificantly improving the sampling of noise (Tong et al.
2014). The multi-band approach can incur acceleration-
related artifacts, however, such as slice leakage, which
so far has required ICA FIX for correction (Kelly and
Miller 2013). Our ongoing work has demonstrated an ME-
SMS-ICA approach at the spatial resolution reported in
this paper that reduced TR to 0.8s based a simultane-
ous 3-slice acquisition and eliminated slice leakage arti-
facts as non-BOLD effects (Kundu et al. 2014; Boyacioglu
2014). Ongoing work will incorporate distortion correction,
potentially utilizing dropout-free spin-echo images, towards
further improvements in anatomical-functional coregistra-
tion as well inter-echo alignment (Glasser et al. 2013).
Other directions include the use of spectral-spatial pulses
in the ME approach, which may further reduce distortion
and dropout (Frayne et al. 2003). Further study of ME
configurations will better characterize trade-offs between
acceleration factors, imaging resolution, speed, and echo
acquisition.
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Appendix

A.1 Multi-echo independent components analysis
and denoising

The central step of the ME-ICA procedure was decom-
position of optimally combined ME data into approxi-
mately spatially independent components, then denoising
by removing non-BOLD components. This procedure is
summarized here in 4 steps based on Kundu et al. (2013):

1. For dimensionality estimation and reduction, multi-
echo principal components analysis (ME-PCA) was
applied to the optimally combined dataset. This first
involved principal components analysis (PCA) of the
optimally combined time series dataset. Time series
were masked, mean-centered and variance normalized,
creating a voxel × time data matrix. PCA was then

implemented as singular value decomposition (SVD,
Eq. 4) with partial matrices

X = USV (4)

where X is the variance-normalized data, U and V are
left and right singular vectors, and S is the vector of
singular values. The amplitude of each principal com-
ponent at each voxel for each TE was computed by
multiple least squares fit of the PCA time courses (V ,
the right singular matrix) to the preprocessed signal-unit
time series of each TE.

2. Component-level TE-dependence analysis was applied
to PCA components in order to detect data dimension-
ality, as the second step of the ME-PCA procedure.
For each component at each voxel, the principal com-
ponent signal amplitudes at different TEs were fit to
linear TE-dependence and TE-independence models,
and corresponding F-statistics for goodness of fit were
computed. The TE-dependence and TE-independence
models are Eqs. 5a and b

�ST E/ST E = �S0/S0 (5a)

�ST E/ST E = −�R∗
2T E (5b)

where �ST E is signal change from mean for a fluctu-
ation at a TE (i.e. its β weight from least squares fit),
and ST E is the signal mean at a TE, �R∗

2 is change in
susceptibility-weighted transverse relaxation time that
is solved for in the TE-dependence BOLD model, S0

is initial signal intensity (i.e at TE=0), and �S0 is the
change in initial signal intensity that is solved for in
the TE-independence non-BOLD model. The respective
F-statistics are then determined (6 a and b):

FR∗
2

=
α0−αR∗

2
αR∗

2

d.f.0−d.f.R∗
2

d.f.R∗
2

(6a)

FS0 =
α0−αS0

αS0

d.f.0−d.f.S0
d.f.S0

(6b)

where α0 is the null variance (
∑

β2
c,v,T E), αR∗

2
is the

variance explained by the fit to the TE-dependence
model, αS0 is the variance explained by the fit to the TE-
independence model, d.f.0 is total number of degrees
of freedom for TE-dependence models (equal to num-
ber of echoes, 3), and d.f.R∗

2
and d.f.S0 are the degrees

of freedom used in the respective fits (1 each). The
statistics κ and ρ were computed to indicate over-
all component-level weighting of TE-dependence and
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TE-independence, as an intensity-weighted average of
the respective F values for each component:

κc =

V∑

v

z
p
c,vFc,v,R∗

2

∑
z
p
c,v

(7a)

ρc =

V∑

v

z
p
c,vFc,v,S0

∑
z
p
c,v

(7b)

where c is component index, v is voxel index, V is the
total number of voxels, z is normalized signal power,p
is a power factor (default 2). Dimensionality reduc-
tion was based on thresholds for κ , ρ, and eigenvalue
as determined after sorting respective values from the
inflection points of the respective Scree plots (i.e. using
an elbow-finding routine). Optimally combined time
series were dimensionally reduced to the principal com-
ponents with above-threshold κ , or ρ, or eigenvalue
(i.e. isolating any correlated signal associated with MR
contrast), followed by re-centering and re-normalizing
the time series, then the full data matrix.

3. FastICA of dimensionally reduced data using the tanh
contrast function produced a time-domain independent
component mixing matrix (variance normalized). The
mixing matrix was fit using multiple least squares to
the separate TE time series data, in order to com-
pute per-voxel TE-dependence and TE-independence
model fits for ICA components, in addition to respec-
tive F-statistics and component-level κ and ρ values that
indicated BOLD and non-BOLD weighting, respec-
tively. This involved application of Eqs. 5–7 for ICA
component β weights.

4. After computation of component-level TE-dependence
and independence statistics, components were clas-
sified into BOLD and non-BOLD categories. TE-
dependence and TE-independence are robust assess-
ments of the physical mechanism of signal genera-
tion, such that artifactual components could be defini-
tively identified in having any one of the following
signatures, which indicate that artifactual ρ or FS0

weighting is more substantial than the κ or FR∗
2

weightings :
(a) ρ > κ

(b) number of significant (F > F(ne, 1)p<0.05)
S0-weighted voxels greater than the number of signifi-
cant R∗

2-weighted voxels
(c) greater overlap of p < 0.05 thresholded FS0

maps and rank-thresholded signal change maps than of
thresholded FR∗

2
maps

(d) greater FR∗
2

in component spatial noise ver-
sus clustered voxels, based on a two-sample T -test
(TR∗

2 -clustering) after F − Z transformation.

(e) After ranking above metrics (κ , ρ, Dice for
FR∗

2
and FS0 maps, TR∗

2 -clustering, and significant FR∗
2

and
FS0 voxel counts) in ascending order towards greater
artifact weighting or lesser BOLD weighting, a rank-
sum test was used to identify and reject components that
approached several of the above rejection criteria. Data
were denoised by projecting the spatial ICA compo-
nents that were classified as non-BOLD out of the data.
This produced separated volumetric time series datasets
for “isolated” non-BOLD fluctuations on the one hand,
and BOLD denoised time series on the other.

A.2 ME-ICR seed-based functional connectivity analysis

For individual datasets, ME-ICR seed-based functional con-
nectivity maps were computed for a given subject-dataset
using the BOLD component basis extracted from ME-ICA
decomposition and component selection. After selecting a
seed voxel a, the vector of BOLD independent coefficients
from that voxel was extracted and used to compute Pear-
son correlation with BOLD independent coefficient vectors
from every other voxel, each represented as b. This pro-
duced a map of correlation values based on the computation:

Ra,b = Ia

|Ia| · Ib

|Ib| (8)

where Ra,b is the Pearson correlation of coefficient vec-
tors Ia and Ib. Next, each correlation value was converted
to a standard score (Z) using the canonical Fisher R − Z

transform, using the standard error term for normalization:

Za,b = arctanh(Ra,b) · √
Nc − 3 (9)

The DOF for standard error was the number of BOLD inde-
pendent components (Nc). The significance (p) value for
this standard score (Z) was computed from the standard
normal cumulative distribution function, and statistically
significant Z-values were anatomically mapped.

A.3 Reference T ∗
2 values

Table 1 shows T ∗
2 values for tissue types as computed from

means of multi-echo EPI time courses of a 31.5 year old
subject. These values satisfy Eq. 3 towards the creation of
a T ∗

2 -based weight map for anatomical-functional coregis-
tration. Note for gray and white matter compartments, the

Table 1 Reference T ∗
2 values (ms) for representative healthy adult of

age 31.5y

Tissue Median 75 %ile Std.

CSF 132.2 179.1 50.3

Pia 15.4 18.3 7.1

WM 49.4 56.2 11.6

Gray 45.1 60.3 19.2
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expected trend
(
T ∗

2 gray > T ∗
2 white

)
is reversed and variance

of gray matter T ∗
2 is increased, in part due to inclusion

of orbitofrontal “dropout” area in calculation. The 75th

percentile T ∗
2 values reflect the expected trend.
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