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Abstract Human brain development has been studied inten-
sivelywith neuroimaging. However, little is known about how
genes influence developmental brain trajectories, even though
a significant number of genes (about 10,000, or approximately
one-third) in the human genome are expressed primarily in the
brain and during brain development. Interestingly, in addition
to showing differential expression among tissues, many genes
are differentially expressed across the ages (e.g., antagonistic
pleiotropy). Age-specific gene expression plays an important
role in several critical events in brain development, including
neuronal cell migration, synaptogenesis and neurotransmitter
receptor specificity, as well as in aging and neurodegenerative
disorders (e.g., Alzheimer disease or amyotrophic lateral scle-
rosis). In addition, the majority of psychiatric and mental
disorders are polygenic, and many have onsets during child-
hood and adolescence. In this review, we summarize the major
findings from neuroimaging studies that link genetics with
brain development, from infancy to young adulthood.
Specifically, we focus on the heritability of brain structures
across the ages, age-related genetic influences on brain devel-
opment and sex-specific developmental trajectories.
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Introduction

Human brain development involves a cascade of processes that
starts 2 weeks post conception, when the first cell differentiates.
These processes interact with each other and have different
dynamics and termination times: some are completed at birth,
whereas others continue to develop throughout the lifespan
(Fig. 1). By 3–4 weeks of gestation, the neural tube is formed,
which then differentiates into the full nervous system between 4
to 12 weeks. Cells proliferate and give rise to neurons. From 12
to 20 weeks, these neurons migrate along the radial cells to their
final destination and form the cortex (Rakic 1990). Between
24 weeks into gestation to 4 weeks after birth, the first apoptosis
occurs, reducing the number of neurons by half. Concurrently,
myelination begins at 29 weeks of gestation in the brain stem and
develops primarily from inferior to superior and from posterior to
anterior directions (Volpe 2000; Huppi and Inder 2001). By early
childhood, most of the axons are myelinated, although
myelination continues through adolescence and across the sec-
ond and third decades of life (Yakovlev and Lecours 1967; Benes
et al. 1994; Blakemore 2012; Lebel et al. 2012). Synaptic prolif-
eration and organization starts at about 20 weeks of gestation,
and synapses continue to proliferate from birth to 2 years after
birth (Huttenlocher 1979; Huttenlocher and de Courten 1987).
However, a regional reorganization occurs most predominantly
during childhood and adolescence (Blakemore 2012).

Overall, the brain grows rapidly during fetal life through
childhood, and matures more slowly during adolescence and
young adulthood until its development plateaus and/or fol-
lows a declining trajectory with aging. After birth, brain
development primarily depends on individual experiences
(“self-organization”) (Lewis 2005), along with many other
variables (Andersen 2003). However, of the whole human
genome, 10,000 genes (approximately one-third) are
expressed only during brain development (Johnson et al.
2009; Zhang et al. 2011). Change in gene expression is fastest

V. Douet : L. Chang : C. Cloak : T. Ernst
Department of Medicine, John A. Burns School of Medicine,
University of Hawaii, Honolulu, HI 96813, USA

V. Douet (*)
Department of Medicine, John A. Burns School of Medicine,
University of Hawaii, 1356 Lusitana Street, UH Tower, room 716,
Honolulu, HI 96813, USA
e-mail: douet@hawaii.edu

Brain Imaging and Behavior (2014) 8:234–250
DOI 10.1007/s11682-013-9260-1



in human brain tissue during fetal development, slows down
through childhood and adolescence, stabilizes through adult-
hood, then speeds up again after age 50, with distinct redirec-
tion of expression changes prior to birth and in early adulthood
(Colantuoni et al. 2011). Genes with high expression during
fetal development have the greatest decreased expression in the
aging cortex, whereas genes with low expression during fetal
development show increased expression in aging and
neurodegeneration (Colantuoni et al. 2011). Recently, an in-
creasing number of studies have attempted to examine the
complex interactions between genes, environment and the de-
veloping brain. The cumulative data clearly indicates that brain
development is under tight genetic control across the lifespan.

Recent studies using brain imaging techniques confirmed
that the brain develops throughout childhood and young
adulthood, and that the various brain structures follow differ-
ent trajectories of development and maturation (Gogtay et al.
2004; Westlye et al. 2010; Lebel et al. 2012). Since genes
influence developmental trajectories, neuroimaging provides
a powerful, non-invasive tool to investigate phenotypic vari-
ations during brain development in relation to genetic differ-
ences and age or sex-specific gene-expression.

Techniques commonly used to study brain development

While electroencephalography (EEG)wasmainly used to study
babies and young children, magnetic resonance imaging (MRI)
and functional MRI (fMRI) are widely used for brain research
because of its high resolution, multiple advances in image
analysis, and the large range of image contrasts that they
provide. Structural MRI provides information on brain mor-
phometry, such as cortical thickness or area, and cortical and
subcortical volumes. Using specific stimulation paradigms,
functional MRI (fMRI) can yield information on functional
networks dedicated to a particular task and their connectivity.
Similarly, resting-state-fMRI (rs-fMRI) or task-free fMRI can
provide an estimate for the functional connectivity in the brain
at rest (without an activation paradigm). These task-free brain
activities appear to reflect coordinated and intrinsic spontane-
ous fluctuations in brain activity at baseline (Gusnard and
Raichle 2001). Rs-fMRI provides insight into the unprompted

activity that is naturally produced within the brain, which
subsequently promotes communication across regions.

White matter (WM) involves various networks across brain
regions and is important for efficiency and integration of
information between cortical regions. WM integrity can be
assessed using diffusion tensor imaging (DTI), which pro-
vides fractional anisotropy (FA), mean diffusivity (MD), ra-
dial diffusivity (RD) or axial diffusivity (AD) in specific
regions of interest (ROIs) or the whole brain.

Neurochemicals that are present in large millimolar quan-
tities can be assessed using proton magnetic resonance spec-
troscopy (1H-MRS), which is a non-invasive MR technique
that can measure levels of N-Acetyl Aspartate (NAA, neuro-
nal marker), total Creatine (tCr, metabolic marker), total
Choline (tCho, cell-membrane marker), and Myo-inositol
(mI, glial marker). However, quantitative MRS has lower
spatial resolution and requires advanced sequences and post-
processing compared to structural MRI, making it less com-
monly used in the clinical setting. However, MRS can provide
insights into the chemistry underlying structural changes, and
chemical alterations often precede structural abnormalities
during disease progression.

Neuroimaging techniques have yielded valuable data on
trajectories of the developing brain and made it possible to
evaluate the role of environment and genetics in normal brain
development.

Studies of genetic influences on brain development

In this review, we will focus on genetic influence on “normal”
or typical brain development from neonates to young adults and
will summarize studies conducted in pediatric populations
linking brain imaging to genetics. We will concentrate specif-
ically on age-by-gene or gene-by-heritability interactions, since
age-related changes in heritability may be linked to the timing
of gene expression. Knowledge of when a given brain structure
is particularly sensitive to genetic or environmental influences
during development may also have important educational and
therapeutic implications.

We performed a search in PubMed®, limited to “human
subjects” and combinations of the following keywords: brain

Fig. 1 Key events of the human
brain development. Human brain
development can be schematized
into different periods
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morphometry, DTI, MR Spectroscopy, fMRI, heritability, ge-
netic, children, adolescents, brain development, age, age-
related, and sexual dimorphism. The studies queried were
included in the review if they were published in English in a
peer-reviewed journal and involved the investigation of ge-
netic factors. Conference abstracts, case studies or qualitative
studies were excluded. If available, information on the number
of subjects, average age and age range of the sample, type of
analysis, and heritability estimates with their 95 % confidence
intervals were extracted from the papers.

Heritability in brain development: family and twin studies

Heritability is the proportion of the observed variation in a
particular trait that can be attributed to inherited genetic fac-
tors. It is measured by estimating the relative contributions of
genetic and non-genetic factors to the total variation of that
trait in a population. Although heritability estimates are diffi-
cult to compare across studies, for a given trait, heritability
(h2) of less than 0.30 can be considered low, between 0.30 and
0.60 is moderate and above 0.60 is high. Family- and twin-
based studies allow the evaluation of separate and combined
effects of genetic and environmental contributions on any
trait. Monozygotic (MZ) and dizygotic (DZ) twins share the
same or very similar family environments if the twins are
raised together. MZ twins are almost genetically identical
while DZ twins share only half their genes, like non-twin
siblings. Univariate studies evaluate differential correlations
of a particular phenotype in MZ and DZ twins to estimate the
heritability of a trait (Plomin et al. 1994), whereas multivariate
studies can analyze the links between genetic and environ-
mental effects on specific regions of interest in the brain.
Contributions of additive genetic (A), common or shared
environmental (C), and unique environmental (E) effects on
variations of a phenotype can be modeled using structural
equation modeling (SEM). SEM allows for parameter estima-
tions, while the Falconer method uses correlation analysis to
test whether genetic or environmental factors contribute sig-
nificantly to individual differences (parameter calculation).
SEM can also be used to determine whether the traits defined
by neuroimaging are heritable, and how heritability can ex-
plain brain development.

Brain morphometry-studies on heritability

Brain morphometry, especially cortical volume and thickness,
has been the most studied MR-based phenotype for heritabil-
ity (Table 1). Structural MRI provides images of the brain that
can be processed to produce quantitative measures of brain
size (volume or thickness) and shape (including surface area).
Because MRI does not involve ionizing radiation, it is ideally
suited for repeated measurements during development to chart

brain growth trajectories. Two major longitudinal studies
evaluated heritability of brain morphometric measures over
time. The first study is the Brain SCALE study (Brain
Structure and Cognition: an Adolescent Longitudinal Twin
Study into the Genetic Etiology of Individual Difference,
Netherlands); it evaluated pre-adolescents at 9 and 12 years
of age with psychometric, neuropsychological, and neuroim-
agingmeasures (van Soelen et al. 2012a, b). The second study,
conducted by investigators from the Child Psychiatry Branch
of the National Institute of Mental Health (USA), followed
children and adolescents from 5 to 18 years of age (Wallace
et al. 2006; Lenroot et al. 2009; Ordaz et al. 2010). In these
youths, heritability of global brain and intracranial volumes
were similar to those reported in adults. Heritability of total
gray matter was lower in neonates (56 %) compared to
5–18 year old children (~77–85 %) (Wallace et al. 2006;
Giedd et al. 2007; Peper et al. 2008) and adults (82 %)
(Baaré et al. 2001). Heritability of total white matter volume
in neonates (85 %) was similar to that in 5–18 year old
children (85 %) (Peper et al. 2008; Wallace et al. 2006) and
in adults (87 %) (Baaré et al. 2001). However, within the age
range from 5 to 18 years, heritability of total gray matter
decreased with age, while that of total white matter increased
with age (Wallace et al. 2006; Giedd et al. 2007). Cerebellar
volumes showed increasing heritability with age, from low
(17 %) in neonates to moderate (49 %) in children (Wallace
et al. 2006) and high (>60 %) in adults (Wright et al. 2002). In
contrast, lateral ventricle volumes showed a higher heritability
(71 %) in neonates (Gilmore et al. 2010) than in children
(~30–35 %) (Wallace et al. 2006; Schmitt et al. 2007; Peper
et al. 2009) and in adults (<10 %) (Chou et al. 2009).

Heritability of the total cortical thickness was less in 6 and
8 years old children (65–71 %) (Yoon et al. 2010; van Soelen
et al. 2012b, 2013) than that in 12 and 14 years old adolescents
(80–81 %) (van Soelen et al. 2012b; Yang et al. 2012; van
Soelen et al. 2013) or in mid-aged adults (81 %) (Panizzon
et al. 2009). In 8 year old children, overall cortical thickness in
the frontal, temporal, parietal and occipital lobes exhibited
moderate to high heritability (53–72 %), whereas regional
thickness of the lobules in the inferior and superior parietal
and inferior temporal cortices showed low heritability (<30%)
(Yoon et al. 2010). In adolescents, the thickness of the pre-
frontal cortex, including bilateral dorsolateral and superior
frontal regions, and the middle temporal and supramarginal
cortices, had heritability greater than 75 % (Schmitt et al.
2009; Lenroot et al. 2009; Yang et al. 2012). As in adults
(Tramo et al. 1998; Joshi et al. 2011), differences in heritabil-
ity were observed between hemispheres in adolescents in
multiple frontal regions (Schmitt et al. 2009; Yang et al.
2012). In 9 and 12 years old children, heritability of cortical
thinning was predominantly found in superior and middle
frontal regions, superior temporal cortices, cingulate, sensori-
motor cortices, and primary visual and lateral occipital
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Table 1 Heritability values for macrostrutural brain traits

Authors Subjects age range Country of origin
(Race)

Brain regions Heritability
(%)

p-values

Thickness Schmitt et al.
Neurolmage. 2009

214 MZ, 94 DZ, 284
singletons, 5.4–18.7 yrs

Caucasian
(>85 %)

Total cortical thickness 60 <0.05

Frontal lobe, middle temporal lobe,
Supramarginal gyrus

>75 <0.05

Lenroot et al. Hum
Brain Mapp. 2009

214 MZ, 94 DZ, 284
singletons, 5.4–18.7 yrs

Caucasian
(>85 %)

Left angular gyrus 51

Superior frontal gyrus [45-51] <0.005

Middle frontal gyrus [43-38] <0.03

Inferior frontal gyrus [52-44] <0.008

Precentral gyrus [43-52] <0.005

Lateral orhitofrontal gyrus [38-34] <0.05

Cingulate [36-40] <0.004

Medial frontal gyrus [38-50] <0.02

Superior parietal gyrus [44-30] <0.05

Supramarginal gyrus-left [∅-30] 0.003

Postcentral gyrus [57-48] <0.002

Superior temporal gyrus [41-40] <0.01

Middle temporal gyris [33-39] <0.05

Inferior temporal gyrus [38-47] <0.005

Occipital pole [∅-41] 0.018

Superior occipital gyrus [∅-37] 0.045

Middle occipital gyrus [∅-33] 0.032

Yoon et al.
Neurolmage. 2010

57MZ, 35DZ, 8.2 4–8.7 yrs Quebec Total left 71 <0.05

Frontal left 72 <0.05

Parietal left 59 <0.05

Occipital left 67 <0.01

Yang et al.
NeuroReport. 2012

27 DZ, 27 MZ,
108 singletons, 14 yrs

USA Prefrontal cortex (superior frontal gyrus) >80 <0.05

Right frontal pole, inferior frontal gyrus,
posterior supramarginal gyrus and
fusiform gyrus

>80 <0.05

Volumes Baaré et al. Cerebral
Cortex. 2001

54MZ, 58DZ, 34
singletons, 17.9–45.8 yrs

Netherlands Intracranial volume 88 <0.001

Total brain 90 <0.001

Gray matter 82 <0.001

White matter 87 <0.001

Wallace et al. J Child
Psychol Psychiatry.
2006

9OMZ, 37DZ, 158
singletons, 5–l9 yrs

Caucasian
(>85 %)

Total cerebral 89 <0.0001

Total white matter 85 <0.0001

Total gray matter 82 <0.0001

Frontal, temporal and parietal lobes 77-88 <0.0001

Cerebellum 49 0.01

Caudate 80 0.0001

Corpus callosum 85 <0.0001

Lateral ventricles 31 0.09

Schmitt et al.
Neuroimage. 2007

127 MZ, 36 DZ, 5–19 yrs Caucasian
(>85 %)

Cerebrum 88(68) <0.01

Lateral ventricles 32(17) <0.01

Corpus callosum 75(65) <0.01

Thalamus 72(42) <0.01

Basal ganglia 81(64) <0.1

Cerebellum 55(24) <0.01

Peper et al. Hum
Brain Mapp. 2009

45 MZ, 62 DZ, 9–9.66 yrs Dutch Intracranial volume 91 <0.001

Total brain 94 <0.001

Gray matter 77 <0.001
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cortices (van Soelen et al. 2012b). Inferior regions of the
primary motor and sensory cortex in the frontal and postgyral
cortices that are associated with facial recognition functions
showed a higher heritability in early development compared
to other brain regions, and an increasing heritability with age
(Lenroot et al. 2009; van Soelen et al. 2013). From later
childhood through adolescence, heritability increased most
markedly in dorsolateral prefrontal, superior parietal and tem-
poral cortices, and in language-related regions in the left
hemisphere including Broca and Wernicke’s areas (Lenroot
et al. 2009; van Soelen et al. 2013).

Overall, primary sensory regions that mature first had
higher heritability than later maturing brain regions, such as
the frontal cortex (van Soelen et al. 2013). However, late
maturing regions showed an increase in heritability with age
until 18 years and stabilized thereafter, whereas the heritability
of primary sensory regions was stable across the age range of
21–27 and 51–59 years (Rimol et al. 2010; Joshi et al. 2011).

White matter integrity-studies for heritability

In the last two decades, neuroimaging studies revealed the
importance of white matter in several psychiatric and neuro-

degenerative disorders. Although genetics may play a role in
WM integrity during brain development, heritability in WM
integrity has not yet been examined extensively across the
lifespan. Most studies to date involved adults since the peak
maturation of the WM occurs at the age range of 25–40 years.
However, three longitudinal twin studies examined the heritabil-
ity of WM integrity with age in infants (Chen et al. 2009) and
adolescents (Chiang et al. 2011; Brouwer et al. 2012), while two
other studies evaluated heritability cross-sectionally in neonates
at 40 days post birth (Geng et al. 2012) and at 9 years of age
(Brouwer et al. 2010).

These studies show that heritability of FA and RD in the
wholeWMwas higher in neonates (FA=60% and RD=53%)
(Chen et al. 2009; Geng et al. 2012) than in children (for FA~
54 %) (Brouwer et al. 2010, 2012; Chiang et al. 2011) and
adults (FA=52 % and RD=37 %) (Kochunov et al. 2010).
Likewise, AD heritability was moderate (57 %) in neonates
(Geng et al. 2012), but lower (33–46 %) in children (Brouwer
et al. 2010, 2012) and not significant in adults (Kochunov et al.
2010). AD reflects the axonal organization and is often used to
assess for possible injury to fiber bundles (Budde et al. 2007),
and therefore may provide a sensitive measure of environmen-
tal influences in the brain during development.

Table 1 (continued)

Authors Subjects age range Country of origin
(Race)

Brain regions Heritability
(%)

p-values

White matter 84 <0.001

Lateral ventricles 35 0.08

Cerebellum 88 <0.001

Chou et al.
Neuroimage. 2009

76MZ, 56DZ, 20–27 yrs Australia Lateral ventricles 7.3 0.001

Gilmore et al. Hum
Brain Mapp. 2010

41MZ, 50DZ, 35 singletons,
neonates: about 40 weeks

Caucasian
(>70 %)

Intracranial volume 73 <0.0001

Total gray matter 56 0.0017

Total white matter 85 <0.0001

Lateral ventricles 71 0.0045

Cortical gray matter 58 0.0017

Cortical white matter 85 <0.0001

Subcortical gray matter 62 0.0191

Parietal gray matter 65 0.0089

Occipital gray matter 57 0.0179

Prefrontal white matter 53 0.0117

Frontal white matter 84 <0.0001

Parietal white matter 72 0.0033

Occipital white matter 86 0.0001

Yoon et al.
Neurolmage. 2010

57MZ, 35DZ, 8.24-8.7 yrs Quebec Total brain 71 <0.05

Total white matter 80 <0.05

Corpus callosum 51 <0.05

Percentage of heritability for each brain morphometry traits is summarized. P-values, age ranges and population characteristics are reported for each
pediatric study. [Right-Left] Parentheses indicate the percentage of heritability after adjustment for total brain volume

MZ monozygotic, DZ Dizygotic
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Regional heritability (for FA and AD) varied with matura-
tion status. Heritability was typically high in WM structures
that mature earlier (Lee et al. 2009; Kochunov et al. 2010;
Geng et al. 2012). However, at any age, heritability of FA in the
corpus callosum was higher in the genu, which develops later
than the splenium, but FA heritability for both genu and
splenium decreased at the same rate over time (Brouwer
et al. 2010; Kochunov et al. 2010; Brouwer et al. 2012).

During maturation, changes in RD may reflect axonal
myelin synthesis and proliferation of glial cells, while changes
in FA may reflect fiber organization, but is also influenced by
changes in RD (Partridge et al. 2004). Therefore, more than
one diffusion measure is required to fully characterize the
maturation process (Table 2).

Functional brain networks-studies of heritability

Functional MRI (fMRI) and electroencephalography (EEG)
allow the measurement of brain function and activity. To our
knowledge, only one study examined heritability of the func-
tional brain networks using fMRI in the younger population
(van den Heuvel et al. 2013). Connectivity density is defined
as the total number of brain connections, and cortical network
efficiency is assessed by the temporal dependency of neuronal
activation patterns of anatomically separated brain regions.
Independent of the connectivity density, heritability of the
global cortical network efficiency was moderate (42 %) at
12 years of age (van den Heuvel et al. 2013), and higher
(60 %) in adults (Fornito et al. 2011).

EEG showed low heritability (11–27 %) of frontal asym-
metry in 9 to 10 year old children (Gao et al. 2009), similar to
that in adults (Coan and Allen 2003; Anokhin et al. 2006; Smit
et al. 2008). In contrast, EEG alpha power was highly herita-
ble (70–85 %) in children (Gao et al. 2009; van Baal et al.
2001), and in older adolescents and adults (van Baal et al.
1996). EEG alpha power scores increased from 9 to 10 years
of age (Gao et al. 2009) and from 15 to 17 years of age
(McGuire et al. 1998), despite these narrow age ranges.
Although these studies involved small sample sizes, the find-
ings suggest that heritability of global functional brain con-
nectivity increases during brain development, while heritabil-
ity of the architecture and maturation in the frontal cortex is
relatively stable across the age range.

Magnetic resonance spectroscopy (MRS) studies
of heritability

Brain metabolite concentrations measured by 1H-MRS
change throughout the lifespan, with the greatest changes
occurring early (Kreis et al. 1993; Pouwels et al. 1999) and
late in life (Chang et al. 1996). Only one study examined the
heritability of brain metabolites and how they change with age
(Batouli et al. 2012). In elderly twins (65–88 years), only

NAA levels showed a high heritability (72 %) in the posterior
cingulate cortex (Batouli et al. 2012): sex appeared to have no
significant effects on heritability. More studies on the herita-
bility of these brain metabolites in different brain regions
throughout the life span should be performed.

Epigenetics in brain development

Epigenetics is the study of gene expression that has been
modified by various factors, such as DNA methylation, his-
tone modifications, microRNAs, and long noncoding RNAs,
typically in response to environmental exposures. Modified
gene expression may last across the lifespan or even become
heritable (Weaver et al. 2004). Histone and DNA methylation
are epigenetic phenomena that change in the human brain
from childhood to adulthood, suggesting that the epigenetic
pattern may modify brain development. However, only one
study examined the global cytosine methylation of DNAwith
age in humans (Siegmund et al. 2007). From 17 weeks of
gestation to 104 years of age, DNA methylation levels in-
creased in genes that show decreased mRNA expression.
Emerging data from studies on gene-by-environment-by-age
interactions of DNA methylation show that epigenetic effects
may influence processes such as fetal programming, in which
events that occurred during gestation may last across the
lifespan. Stable and long-lasting epigenetic alterations in the
brain also have been suggested to cause some psychiatric
disorders (Feinberg 2007; Gardner et al. 2007; Simmons
2009), leading to the hypothesis that many adult diseases with
epigenetic underpinnings have fetal origins (Bezek et al. 2008;
Doherty et al. 2009). Therefore, epigenetics may shape human
behaviors, and environmental events may have heritable impact
on the genes.

An ongoing twin study aims to unravel influences in epi-
genetic mechanisms throughout the lifespan (Tan et al. 2013).
This study should improve our understanding of age-by-gene
and age-by-epigenetic interactions, and how molecular path-
ways are modified during brain development.

Gene specific expression in brain development

Brain development depends on finely controlled expression of
genes. Developmental changes in gene expression are well
established in animal models, but data are rare in humans and
even rarer in the pediatric population. Genome-wide associa-
tion studies (GWAS) use a non-hypothesis-driven approach to
interrogate genetic variants across the whole genome. To our
knowledge, only one study to date used this approach in a
healthy pediatric population and showed that the genotype for
DOK5 , encoding for a protein mediating neurite outgrowth
and activation of the MAP kinase pathway, modifies the
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Table 2 Heritability values for microstructual brain traits

Authors Subjects age range Country of
origin (Race)

DTI/MTR
values

Brain regions Heritability
(%)

p-values

Kochunov et al.
NeuroImage. 2010

467 subjects, 19–85 yrs USA FA Genu of corpus callosum 66 10−9

Corpus callosum 57

Corona radiata 56

Brouwer et al.
Neurolmage. 2010

39MZ, 43DZ, 21
singletons, 9.0–9.6 yrs

Netherlands MTR Splenium of corpus callosum 47 <0.001

Genu of corpus callosum 31 n.s.

Superior longitudinal fasciculus [61-50] <0.001

RD Genu of corpus callosum 32 <0.001

Splenium of corpus callosum 33 <0.001

Left uncinate fasciculus 29 <0.001

Superior longitudinal fasciculus [64-27] <0.001

AD Genu of corpus callosum 33 <0.001

Splenium of corpus callosum 46 <0.001

Right superior longitudinal fasciculus 35 <0.001

Superior longitudinal fasciculus 35 <0.001

FA Splenium of corpus callosum 15 n.s.

Genu of corpus callosum 32 n.s.

Chiang et al.
Neurolmage. 2011

26MZ, 60DZ, 12 yrs
26MZ, 62DZ, l6yrs

Australia FA Left splenium of corpus callosum 70-80
Right inferior longitudinal fasciculus

Inferior fronto-occipital fasciculus

Geng et al. Twin Res
Hum Genet. 2012

31 MZ, 32 DZ, 47
singletons, 269.2–308.8
days (gestational age)

USA, Caucasian
(>68 %)

FA Total brain white matter 60.95 0.0021

RD Total brain white matter 57.95 0.0021

Superior frontal gyrus [62-52] <0.0017

Inferior occipital gyrus [84-∅] 0.0001

Middle occipital gyrus [86-54] ≤0.0002
Superior corona radiata [63-62] <0.00001

Posterior corona radiata [80-77] <0.00001

Superior longitudinal fasciculus [51-53] ≤0.0002
AD Total brain white matter 53.95 0.0039

Superior frontal gyrus [58-50] ≤0.005
Superior corona radiata [63-71] ≤0.0004
Posterior corona radiata [70-92] ≤0.0001

Brouwer et al.
PlosOne 2012

57MZ, 64DZ,
8.89–12.25 yrs

Netherlands FA Total white matter 24-33 <0.05

Arcuate left 54-42 <0.05

Arcuate right 34-31 <0.05

Cingulum left 51-36 <0.05

Cingulum right 54-35 <0.05

Fornix left 18-29 <0.05

Fornix right 21-39 <0.05

Genu of corpus callosum 28-38 <0.05

Inferior longitudinal fasciculus Left 28-21 <0.05

Inferior longitudinal fasciculus right 37-49 <0.05

Inferior fronto-ocipital fasciculus left 7-15 <0.05

Inferior fronto-occipital fasciculus right 22-35 <0.05

Splenium 42-42 <0.05

Uncinate left 22-44 <0.05

Uncinate right 27-37 <0.05

Percentage of heritability for each DTI traits is summarized. P-values, age ranges and population characteristics are reported for each pediatric study

FA fractional anisotropy, RD radial diffusivity, AD axial diffusivity, MTR magnetization transfer ratio, MZ monozygotic, DZ dizygotic
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activation of the amygdala during face processing in children
(9–18 years, (Liu et al. 2010)). Other studies examined can-
didate genes based on prior evidence and biological plausibil-
ity. Most of these studies showed genetic influences on brain
morphometry and brain activation (i.e. fMRI after a specific
task), while only three studies reported on the relationship
between genetic variants and DTI measures (Pacheco et al.
2009; Thomason et al. 2010; Sundram et al. 2010).

The most studied genes in pediatric populations are those
encoding the dopamine inactivator catechol-O-methyl trans-
ferase (COMT), neurotrophin, brain derived neurotrophic fac-
tor (BDNF, (Casey et al. 2009; Knickmeyer et al. 2013;
Mueller et al. 2013)), the schizophrenia candidate gene
neuregulin (NRG1, (Knickmeyer et al. 2013)), and the sero-
tonin transporter (5-HTT, (Pacheco et al. 2009; Lau et al.
2009; Wiggins et al. 2012)). Amongst these, the COMT
genotype was the only one found to influence brain morphom-
etry (Raznahan et al. 2011; Knickmeyer et al. 2013), white
matter integrity (Thomason et al. 2010; Sundram et al. 2010)
and brain connectivity (Mechelli et al. 2009). A longitudinal
study in healthy children additionally demonstrated that a
greater COMT Val158Met Val allele dose is associated with
a decrease in the cortical thickness loss in the prefrontal cortex
from 9 to 22 years of age (Raznahan et al. 2011). Genetic
variants in the genes APOE, DISC1, GAD1, GPCD1, ESR1,
DYX1C1, DCD2, KIAA0319, HOXA1, DTNBP1, OXTR,
MAOA, IL-6, MET and PER2 were also found with each gene
being associated with a particular neuroimaging phenotypes,
raising the possibility that they may be involved in brain
development (Shaw et al. 2007; Reiman et al. 2009; Furman
et al. 2011; Tognin et al. 2011; Darki et al. 2012; Hedrick et al.
2012; Raznahan et al. 2012; Forbes et al. 2012; Ziermans et al.
2012; Knickmeyer et al. 2013). However, these studies need
replication in independent cohorts, in part to evaluate for
possible racial and ethnic differences, since the study popula-
tions were primarily Caucasian. Moreover, potential interac-
tions between genetic variants, sex, and age need to be inves-
tigated further.

Sexual dimorphism in brain development

Evidence from historic post-mortem studies to recent meta-
analyses indicate that the brain is structurally, metabolically,
and functionally sexually dimorphic (Sacher et al. 2013). In
adults, men have larger brains and volumes of gray and white
matter than women (Peters 1991; Passe et al. 1997; Good et al.
2001; Luders et al. 2005), while women have greater gray
matter-to-white matter ratios than men (Gur et al. 1991;
Nopoulos et al. 2000; Goldstein et al. 2001; Allen et al.
2003; Luders et al. 2005; Chen et al. 2007). The size of white
matter structures, such as the corpus callosum, differs by
gender although controversies existed since the first

description (Oppenheim et al. 1987; Holloway et al. 1993;
Bishop and Wahlsten 1997; Dorion et al. 2001). Brain activa-
tion patterns show gender differences during a variety of
cognitive tasks (Gur and Gur 1990; Gur et al. 1995, 2000;
Speck et al. 2000; Weiss et al. 2003; Bell et al. 2006).
However, sexual dimorphism of brain measurements in adults
can be biased by multiple factors, such as environment and
most obviously height differences (Dekaban 1978; Fausto-
Sterling and Balaban 1993). Cumulative mean height within
the first 15 years of life varies by only 1 % between boys and
girls, and girls are taller from 10 to 13.5 years old (Kuczmarski
et al. 2002). Therefore, studying sexual dimorphism on brain
measures across the age span from birth to young adulthood
has the advantage of identifying factors that could influence
gender-specific differences, and when (e.g., perinatal, child-
hood, adolescence) and why (e.g., gene specific, hormonal,
environmental) these differences arise. This section provides a
comprehensive review on how structural and functional neu-
roimaging deciphers genetic-by-gender-by-age interactions
on the developing brain.

Sexual dimorphism in brain morphometry

The earliest sexual dimorphism observed in life is that of head
circumference, which was assessed by prenatal ultrasound as
early as the second trimester of pregnancy (Joffe et al. 2005).
Although it is the least heritable, the cerebellum is the most
sexually dimorphic brain structure. Boys have larger total
cerebellar volume than girls and the magnitude of sex-
differences varies significantly with age: 10 % at 8 years and
13 % at 20 years of age (Tiemeier et al. 2010). Likewise, the
volumes of cortical gray and white matter are generally larger
in boys than in girls (Fig. 2a). Cortical gray matter volumes
increase somewhat more rapidly with age in boys than in girls:
6–7.5 % larger in neonates and children, and ~10 % larger
during adolescence (Reiss et al. 1996; Caviness et al. 1996;
Giedd et al. 1996, 1999; Lenroot et al. 2007; Gilmore et al.
2007). Gender-specific differences in cortical white matter
volume are greater in adults than in children and adolescents:
15–17 % differences were observed from childhood to young
adolescents (De Bellis et al. 2001; Perrin et al. 2008, 2009).
Boys have greater rates of age-dependent increase in total
white matter volume than girls (De Bellis et al. 2001;
Lenroot et al. 2007). Regionally, sexual dimorphism of devel-
opmental trajectories is observed more for the frontal and
occipital lobes (gray and white matter), whereas no sex-
differences in developmental trajectories were found for the
temporal and parietal lobes (Giedd et al. 1996, 1997; Lenroot
et al. 2007; Sowell et al. 2007). Between the ages of 4 to
18 years, age-dependent increases in the amygdala, caudate
and putamen volumes were observed only in boys (e.g.,
amygdala in boys increases by 53 %) while an age-
dependent increase of the hippocampal volume was found
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only in girls (Filipek et al. 1994; Giedd et al. 1996, 1997;
Sowell et al. 2002; Lenroot et al. 2007; Neufang et al. 2009).

Sexual dimorphism for cerebral asymmetry is already pres-
ent at birth as a result of genetic programming, but the pattern
of cerebral asymmetry changes after birth, suggesting that
asymmetry may depend on shared environment as well as
genetic factors. In neonates, cerebral asymmetry was more
pronounced in girls than in boys in the prefrontal and occipital
regions (Gilmore et al. 2007; Tanaka et al. 2012), while little
consistency exists in sex-related and hemispheric differences
in regional cortical volumes (Good et al. 2001; Raz et al.
2004). However, the left-greater than-right asymmetry in fe-
tuses and neonates (Hering-Hanit et al. 2001; Gilmore et al.

2007; Ratnarajah et al. 2013) is opposite to that observed in
older children (Caviness et al. 1996; Giedd et al. 1996; Reiss
et al. 1996; Matsuzawa et al. 2001) and in adults (Nopoulos
et al. 2000; Toga and Thompson 2003; Raz et al. 2004).

In contrast, intracranial volume is consistently larger in
boys than in girls, starting with neonates (+2–9 %)
(Gilmore et al. 2007; Qiu et al. 2013) and continues to
be larger in adolescents and in adults (+11.9 to14.6 %)
(Blatter et al. 1995; Gur et al. 1999; Raz et al. 2004).
Neither the volumes of the lateral ventricle or corpus
callosum show a gender-by-age interaction during the
development, with boys having larger ventricle volumes
but girls showing larger corpus callosum relative to the

Fig. 2 Multiple imaging modalities illustrating sexual dimorphism in the
brain across the lifespan. a Across the ages 7–20 years, girls (red) have
smaller volumes of white and frontal gray matter than boys (blue).
Compared to girls, boys showed a greater age-related increase in white
matter volume, and a steeper age-related decline in the frontal gray matter
(adapted from Lenroot et al. 2007). b Heritability accounts for up to 80%
of the variation in fractional anisotropy in adult males (top row, red color
voxels). (Adapted from Chiang et al. 2011). c Age-by-sex interaction on
homotopic resting state functional connectivity (rsFC). Statistical maps
are visualized as six hemispheric surfaces (showing cortical regions) and
six axial slices (showing subcortical regions). The top scatter plot shows

opposite brain activation patterns in males (red) and females (blue) in the
dorsolateral prefrontal cortex (top); the opposite is true for the amygdala
(bottom scatter plot) (Adapted from Zuo et al. 2010). d Interactions
between age and sex, or genetic influence of testosterone levels, on
relative white matter (WM) volume. Top panels: Between the ages of
11–20 years, boys show steeper age-dependent increase in relative WM
volume (corrected total brain volume) compared to girls. Bottom panels:
Boys with the more efficient short AR gene and higher plasma levels of
bioavailable testosterone had larger relativeWMvolumes. (Adapted from
Perrin et al. 2008)
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total brain volume across the age span (Giedd et al. 1996;
Lenroot et al. 2007).

One of the most striking findings of theses pediatric studies
is that most adult patterns of sexual dimorphism are already
present at birth and are therefore primarily under genetic
control (inherited). In contrast, gender-specific changes in
brain structures that develop after birth typically occur at
puberty, suggesting that the neuroanatomical development in
certain brain regions is mediated by physiological processes
associatedwith puberty (e.g. hormonal changes). However, no
direct measures of puberty were evaluated in the majority of
these studies.

Sexual dimorphism in white matter integrity

Findings on sexual dimorphism for DTI metrics are contro-
versial and inconsistent. Two studies found gender differences
in FA, RD and AD across the lifespan (Westlye et al. 2010;
Lebel et al. 2012), two found no gender differences in DTI
parameters in young children; (Gilmore et al. 2007; Geng
et al. 2012), and others reported mixed results based on
narrow age ranges of the subject populations (Abe et al.
2002; Ota et al. 2006; Schneiderman et al. 2007; Hsu et al.
2008; Schmithorst et al. 2008; Bava et al. 2011; Chiang et al.
2011). Only one study examined age-related differences in
sexual dimorphism of the WM integrity during childhood and
adolescence (Schmithorst et al. 2008). In neonates, sexual
dimorphism was not observed for any of the DTI (FA/RD/
AD) parameters in the basal ganglia and thalamus (Qiu et al.
2013). In children and adolescents, higher FA values in the
caudate and thalamus were found in boys than in girls
(Menzler et al. 2011; Pal et al. 2011), suggesting that sexual
dimorphism of anisotropy in the deep GM structures arises
after birth. Girls from 5 to 18 years old displayed a trend
toward increased FA with age only in the right hemisphere
(arcuate fasciculus, frontal lobe and occipito-temporo-parietal
white matter) while boys displayed this trend only in the left
hemisphere frontal lobe (Schmithorst et al. 2008). Girls also
showed a greater MD increase with age compared to boys in
associative regions (Schmithorst et al. 2008). In young adults,
men have higher FA thanwomen in the genu and the splenium
of the corpus callosum (Westerhausen et al. 2004; Chiang
et al. 2011), while women have higher FA in the middle and
superior occipital gyri (Chiang et al. 2011). In the genu and
splenium of the corpus callosum, the external and internal
capsules and the superior fronto-occipital fasciculus, genetic
influences account for approximately 80 % of the variation in
FA in men (Fig. 2b) (Chiang et al. 2011). No gender differ-
ences in brain structures were found for RD (Perrin et al. 2009;
Bava et al. 2011) across childhood and adolescence,
suggesting that myelination is not sufficient to characterize
white matter disparities.

Sexual dimorphism during brain development was also
found using magnetization transfer imaging (MTI), which
provides estimates of the macromolecular content (e.g. myelin
content) in white matter tissue. Age-dependent decreases in
MTwere found across adolescence in boys only (Perrin et al.
2008, 2009).

Overall, findings from these DTI and MTI studies suggest
that sexual dimorphism for WM is in part under genetic
control, but may also be influenced by microenvironmental
factors (e.g. hormones) that ultimately change the brain
structure.

Sexual dimorphism in functional brain networks

Sexual dimorphism on functional MRI was reported in only
three studies of healthy children and adolescents (Zuo et al.
2010; Wu et al. 2013; Ratnarajah et al. 2013). However,
multiple fMRI studies in adults found evidence for sexual
dimorphism in emotional perception and memory, fear condi-
tioning and visuospatial abilities (Sacher et al. 2013). While
no age-by-gender interactions in global network parameters
were found, girls and boys have different developmental
patterns of the functional brain networks associated with
visuospatial function (left cuneus and left superior parietal
gyrus) and emotion processing (left rectus gyrus). Boys
showed an age-related increase, while girls showed age-
related decrease, in the regional nodal properties in the left
superior parietal gyrus (Wu et al. 2013). No gender differences
in structural connectivity asymmetry was found in neonates
(Ratnarajah et al. 2013) despite the rapid synaptic proliferation
in neonates (Gilmore et al. 2007; Qiu et al. 2013).

Across the age span of 7 to 85 years, resting state func-
tional connectivity (rsFC) increased with age in boys but
decreased with age in girls in the dorsolateral prefrontal cortex
(DLPFC) (Fig. 2c) (Zuo et al. 2010). However, in the amygda-
la, an opposite pattern was observed, with an age-related de-
crease in rsFC in boys but an age-related increase in girls (Zuo
et al. 2010). These findings demonstrate gender differences in
the developmental trajectory of functional homotopy (i.e. the
high degree of synchrony in spontaneous activity between
geometrically corresponding interhemispheric regions) in the
amygdala and within the DLPFC (Zuo et al. 2010).

Sexual dimorphism in the developmental trajectories of
functional connectivity may underlie sex differences in the
functional maturation of these specific networks, and ultimate-
ly the sex-related cognitive differences in children and
adolescents.

Sexual dimorphism on magnetic resonance spectroscopy

Few MRS studies evaluated brain development in relation to
genetic factors.Multiple studies showed that brain metabolites
change rapidly early in life and then more subtly and linearly
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after puberty (Kreis et al. 1993; Pouwels et al. 1999; Kadota
et al. 2001; Goldstein et al. 2009). To date, only one MRS
study evaluated sexual dimorphism across the lifespan (4–
88 years), using the NAA/Cho ratio in the centrum semiovale
(Kadota et al. 2001). Boys exhibited a steeper age-related
increase in NAA/Cho in the white matter than girls, and the
age-dependent trajectory of the NAA/Cho peaked 1 to 3 years
earlier in boys than in girls (Kadota et al. 2001). Cerebral
laterality in WMNAA/Cho ratios also differed by sex: greater
NAA/Cho ratios were found in the right compared to the left
WM in boys, but not in girls. In adults, age-related changes in
brain metabolites were reported but considerable heterogene-
ity of metabolite concentrations across studies were found
(Kadota et al. 2001; Baker et al. 2008; Maudsley et al. 2009;
Chang et al. 1996). Note also that metabolite ratios are diffi-
cult to interpret since it is unclear what proportion of the age-
dependent increase in NAA/Cho reflects age-dependent in-
crease in NAA, because Cho concentration also increases with
age during adolescence (Cloak et al. 2011). Therefore, future
MRS studies investigating metabolite changes related to age
and sex, or the additional influence of genetic factors, should
measure metabolite concentrations rather than ratios.

Dosage of genes on the X-chromosome

A different approach to study sex-specific genetic influences
on brain development is to evaluate individuals with sex-
chromosomal abnormalities, such as boys with XXY (e.g.
Klinefelter syndrome) or 49,XXXXY syndrome, or girls with
the commonly studied Turner syndrome (X-monosomy).
Individuals with Klinefelter syndrome have reduced gray
matter in the insula, temporal gyrus, amygdala, cingulate
and hippocampus (Giedd et al. 1996; Patwardhan et al.
2002), while 49,XXXXY boys have smaller total brain size
and abnormal development of the white matter with a thinner
corpus callosum and multifocal WM lesions (Blumenthal
et al. 2013). Brain morphometry studies show that girls with
Turner syndrome (TS) have larger volumes of the amygdala
and orbitofrontal cortex (Good et al. 2003), as well as larger
superior temporal gyrus (Kesler et al. 2003). They also have
smaller volumes in parieto-occipital regions and parietal lobes
(Murphy et al. 1993; Reiss et al. 1995; Brown et al. 2002,
2004), and reduced FA in parieto-occipital regions along the
superior longitudinal fasciculus (Holzapfel et al. 2006). TS
girls also have abnormal patterns of brain activation in frontal
and parietal cortices and subcortical regions, such as the
caudate during visuospatial tasks (Kesler et al. 2004), execu-
tive function (Haberecht et al. 2001; Hart et al. 2006) and
arithmetic tasks (Kesler et al. 2006).

Altogether, these results suggest that the dosage of genes
on the X chromosome plays an important role in determining
the development of brain structures (gray and white matter)
and brain function.

Sex steroid receptors and hormone levels

Gender differences are also observable at the molecular level,
although there is a scarcity of human studies (Lenroot et al.
2007; Schmithorst and Holland 2007). Adolescent brain de-
velopment is mediated by both sex steroids: androgens
(MacLusky et al. 2006) and estrogens (Galea et al. 2006).
Sex steroid hormones are involved in brain “organization” that
first establish sexual dimorphism of brain morphology leading
to sexual behavior and physiology in adulthood, and in brain
“activation” to further maintain gender-specific behaviors in
adulthood (Cooke et al. 1998). However, the role of sex
steroids and hormones on brain development was investigated
only by a few neuroimaging studies.

In girls, estradiol levels were negatively associated with
global gray matter volumes and regionally with the inferior
frontal gyrus (Peper et al. 2009). In contrast, testosterone
levels correlated positively with gray matter volumes in boys
(Peper et al. 2009). Testosterone levels also correlated with
white matter volumes depending on the androgen receptor
(AR) genotype: boys with the more “efficient” (short) AR
gene had greater WM volume than those with the less “effi-
cient” (long) AR gene (Fig. 2d) (Perrin et al. 2008). Similarly,
boys with the more “efficient” AR gene had a less-steep age-
related loss in cortical thickness at the inferior parietal lobule.
However, girls with the more “efficient” short AR gene had
more rapid thinning of the left inferior frontal gyrus
(Raznahan et al. 2010). Since the left inferior frontal gyrus is
involved in language and impulse-control domains, the more
rapid thinning of this brain region suggests earlier maturation
in the girls. This longitudinal study of cortical thickness in
changes adolescents showed that the AR gene contributes to
sexual dimorphism during brain development. Additionally,
manipulation of androgens early in life may have functional
consequences on cortical function. For example, object dis-
crimination, a task associated with the prefrontal cortex, is
performed better in non-human primate adolescent males and
androgen-exposed females relative to unexposed normal fe-
males (Clark and Goldman-Rakic 1989). In contrast, pubertal
increases in sex hormone levels attenuated pre-pulse inhibi-
tion in rhesus macaques (Morris et al. 2010).

To our knowledge, only one study investigated the role of
non-steroid hormones on brain development and its role on
sexual dimorphism (Peper et al. 2008). Luteinizing hormone
(LH) is one of the first endocrine markers of puberty, and was
positively associated with larger white matter volume in the
left cingulum, middle temporal gyrus (left and right) and
splenium of the corpus callosum, as well as with higher WM
density in the left anterior cingulum (Peper et al. 2008).
Interestingly, moderate to high heritability in relation to LH
levels were found in the splenium of the corpus callosum
(39 %) and the left cingulum (43–65 %) (Peper et al. 2008).
However, since LH stimulates the Leydig cells to produce
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testosterone, these associations may in part be due to the
effects of testosterone on brain development and on
heritability.

Taken together, both non-steroid and steroid sex hormones
may play important roles in sexual dimorphism of brain
morphometry. Changes or abnormalities in the levels of these
hormones may therefore contribute to the susceptibility of
neuropsychiatric disorders that are known to emerge at puber-
ty and to have gender-specific prevalence rates.

Conclusion and future studies

This review highlights the important contributions of neuro-
imaging in understanding the role of genetics on brain devel-
opment, and how genetics influence brain developmental
trajectories. Future studies can be augmented by linking ge-
netics and neuroimaging with biomarkers and cognitive neu-
roscience, in order to define more reliable endophenotypes.
The emergence of multiple datasets also highlights several
methodological issues that lead to difficulties in interpreting
or comparing findings across studies. Some of these method-
ological issues include the selection of diverse human subject
populations, the various neuroimaging acquisition parameters,
differences in behavioral assessments, and the complex statis-
tical comparisons. Resolving these issues and sharing of pro-
tocols across studies might lead to shared data resources that
ultimately could provide a better understanding of normal
brain development. Having a normative neuroscience data-
base across the ages would provide a critically important
foundation for elucidating how genes might influence brain
disorders across the lifespan.

Finally, genetic effects are not static but may change with
age and be modified by environment. However, most human
studies were conducted cross-sectionally, and the few longi-
tudinal studies across wider age ranges are limited by relative-
ly small sample sizes. Overall, studies on age-related genetic
influences on brain development are scarce and needed to
improve our understanding of the developing brain.
Knowledge derived from genetic influences on brain devel-
opment and aging may lead to new strategies for more per-
sonalized therapeutic interventions, especially for the neuro-
psychiatric disorders that emerge at puberty and for many
neurodegenerative disorders that occur with aging.
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