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Abstract The maturation of in vivo neuroimaging has led to
incredible quantities of digital information about the human
brain. While much is made of the data deluge in science,
neuroimaging represents the leading edge of this onslaught of
“big data”. A range of neuroimaging databasing approaches
has streamlined the transmission, storage, and dissemination of
data from such brain imaging studies. Yet few, if any, common
solutions exist to support the science of neuroimaging. In this
article, we discuss how modern neuroimaging research repre-
sents a multifactorial and broad ranging data challenge, involv-
ing the growing size of the data being acquired; sociological
and logistical sharing issues; infrastructural challenges for
multi-site, multi-datatype archiving; and the means by which
to explore and mine these data. As neuroimaging advances
further, e.g. aging, genetics, and age-related disease, new vision
is needed to manage and process this information while
marshalling of these resources into novel results. Thus, “big
data” can become “big” brain science.
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Introduction

Images of the human brain, in form and function, seem to be
everywhere these days—on television, in glossy magazines,
and on internet blogs worldwide. This is due, in many

respects, to the incredible amount of information these images
present and the sheer number of brain imaging research stud-
ies being performed to spy on the brain in action or at rest, to
examine how it is built and wired, and what happens when
things go wrong. Indeed, neuroimagers routinely collect more
study data in a few days than was collected in over an entire
year just a decade ago. These data are a rich source of infor-
mation on detailed brain anatomy, the subtle variations in
brain activity in response to cognitive stimuli, and complex
patterns of inter-regional communication. Taken individually,
these various data types would have once formed the basis for
entire research programs. Now, with interests not only in
multi-modal neuroimaging but the inclusion of co-occurring
biological and clinical variable collection requiring linkage
between geographically distributed researchers, neuroscience
programs are rapidly becoming the brain-focused versions of
projects more akin to those involving particle physics. The
methods by which these data are obtained are themselves
contributing to this growth, involving finer spatial and tem-
poral resolution as MR physicists push the limits of what is
possible and as brain scientists then rush to meet those limits.
It is safe to say that human neuroimaging is now, officially, a
“big data” science.

Such examples of large-data, their promise and challenges,
have not gone unnoticed. In the US, The National Science
Foundation, the National Institutes of Health, the Defense
Department, the Energy Department, the Homeland Security
Department as well as the U.S. Geological Survey have all
made commitments toward “big data” programs. The Obama
Administration itself has even gotten in on the act. In response
to recommendations from the President’s Council of Advisors
on Science and Technology, the White House sponsored a
meeting bringing together a cross-agency committee to lay out
specific actions agencies should take to coordinate and expand
the government’s investment in “big data”, totaling $200
million in support (see http://www.whitehouse.gov/sites/
default/files/microsites/ostp/big_data_fact_sheet_final.pdf).
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Among the examples of “big data” featured at the meeting
was—no surprise—human neuroimaging. Additionally, the
recent anouncement of the Brain Research through Advancing
Innovative Neurotechnologies (BRAIN) Initiative (http://nih.
gov/science/brain/index.htm) forms part of a new Presidential
focus aimed at revolutionizing understanding of the human
brain. Initiatives surrounding large-scale brain mapping are also
underway in Europe (http://www.humanbrainproject.eu/;
Frisoni 2010) and examples of large-scale brain data sets have
been on full display at recent annual meetings of the Organiza-
tion for Human Brain Mapping (OHBM; http://www.
humanbrainmapping.org) in Beijing, China in 2012 and
Seattle, Washington in June 2013.

However, as the richness of brain data sets continues to grow
and the push to place it in accessible repositories mounts, there
are many issues to be considered on how to handle the data,
move it from place to place, and how to store it, analyze it, and
share it.

How big is “Big”?

While size is a relative term when it comes to data, medical
imaging applied to the brain comes in a variety of forms,
each generating differing types and amounts of information
about neural structure and/or function. Moreoever, in vivo
neuroimaging is not unimodal but, rather, remarkably di-
verse—examining brain form, function, and connectivity,
and rapidly improving its ability to resolve finer spatio-
temporal scales. Further advancements in magnetic resonance
scanner field and gradient strength are an ongoing area of
research (Barry et al. 2011). A brief look at the history of
some central parameters for specific forms of functional and
structural neuroimaging is illustrative.

Since its inception, the collection of blood oxygenation
level dependent (BOLD) functional time series has often been
among the data types having the biggest storage footprint.
While in the 1990’s, the earliest BOLD imaging studies used
sampling intervals of one volume every 4 s for a modest
number of slice planes needed to image the full brain. During
the mid-2000’s, with advances in multi-channel coil technol-
ogies and the emergence of 3 T imaging systems, 2 s intervals
were the most frequently used for the same in-plane image
size but having finer slice resolution. More recently, improved
sampling methods have made it possible to routinely obtain
multiple BOLD image volumes of the whole head per second
(Feinberg et al. 2010).

Likewise, diffusion tensor imaging (DTI) has undergone its
own steady progress both in the time to aquire data but also the
degree of angular resolution by which to measure patterns of
water molecule diffusion. Early diffusion imaging studies
measured diffusion along 6 directions seeking to utilize diffu-
sion signal to infer neural fiber orientation, quantifying this as

a diffusion tensor, and to then link these tensor orientation
patterns to estimate neural fiber pathways (Basser et al. 2000).
Interest in examining finer degrees of angular difference in
fiber orientations and to detangle crossing fiber pathways led
to using more diffusion directions through high angular diffu-
sion approaches having 32, 64, or greater MR gradient direc-
tions (Zhan et al. 2010). More recent approaches have
decomposed the spectrum of diffusion which is capable of
then resolving upwards of 512 fiber directions in approximate-
ly the same time and volume sizes as the original DTI imaging
sequences (Wedeen et al. 2008).

In each example, as the imaging technology has improved,
been extended, or made faster, so too has the amount of brain
data which can be obtained. Once these improved methodol-
ogies have proven robust and dependable, with analytic
methods available withwhich to utilize them, researchers have
been quick to adopt them—doubling or tripling the amount of
data they can then gather per subject by doing so. Indeed, a
simple examination of fMRI articles from representative is-
sues of the field’s touchstone journal, NeuroImage , indicates
that since 1995 the amount of data collected has doubled
approximately every 26 months (Fig. 1). At this rate, by 2015
the amount of acquired neuroimaging data alone, discounting
header information and before more files are generated during
data processing and statistical analysis, may exceed an average
of 20GB per published research study. This is likely to be an
under-estimate for raw dataset sizes since, as noted above,
advances in MRI physics are accelerating the pace at which
data can be aquired per unit time.
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Fig. 1 The amount of acquired neuroimaging data reported from pub-
lished articles in representative isues of the journal NeuroImage has
doubled every 26 months and can expect to top 20GB of purely raw data
on average per study in only a few years. Amassing, curating, storing, and
sharing of such data from neuroimaging archives presents a growing big
data challenge
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Individually, the neuroimaging data sets from a single study
themselves may not pose major difficulties for processing and
analysis using exising algorithms and statistical methods. How-
ever, as data sets are amassed into large-scale databases, con-
siderable challenges emerge. How to rectify between study
differences in acquisition rates, resolution, scanning parame-
ters, the presence of image artifacts, etc., take on importance—
even the same make and model scanner installed at two differ-
ent sites can generate sufficient differences in image quality to
complicate combined analysis. Along with the increasing in-
terest in gathering study data from across the lifespan or fo-
cused on specific patient groups, concurrently recorded elec-
trophysiological time courses, and comprehensive phenomic
meta-data on each study participant, wrangling, let alone
interpreting, these data will not be for the faint of heart.

Big neuroimaging + big genetics = REALLY big data

With the ability to obtain genome-wide sets of single nucleo-
tide polymorphism (SNP) information becoming routine and
the costs of full genomic sequencing rapidly becoming afford-
able, interest in linking the influence of genes on the brain is
heating up. Soon, exomic-level genetics will be readily at
hand to replace SNP-based approaches. At several gigabytes
per genome using Next Generation Sequencing (NGS)
methods, for major brain imaging studies such as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Weiner et al. 2012), with its initially available sample of
832 subjects, one can expect to store multiple petabytes of
genetics data alone. More ADNI data are on their way, too.
Coupled with the existing and ongoing collection of multi-
modal neuroimaging data types, this represents some really
big data. As the bond between neuroimaging and genomics
grows tighter, with both areas growing at incredible rates, disk
storage, unique data compression techniques (like those pro-
posed for genomics (Hsi-Yang Fritz et al. 2011); see also
http://www.sequencesqueeze.org/) and data processing
considerations rapidly become a scientific imperative.

Multisite consortia and data sharing

Along with advances in the ability to obtain data there has been
an increase in the numbers of multisite consortia like ADNI for
examining the healthy and diseased brain. The demand for
multiscale data in the investigation of fundamental disease
processes has been recognized for several years (Jiang et al.
2008), as well as the need for cooperation across centers and
even disciplines to integrate and interpret the data (Van Horn
and Toga 2009b). Examples of multisite neuroimaging efforts
can be found in the ubiquitous application of neuroimaging in
health but also in devastating illnesses such as Parkinson’s

(Evangelou et al. 2009; see also http://ppmi.loni.ucla.edu/),
psychiatric disorders (Schumann et al. 2010), and also the
mapping of human brain connectivity (Toga et al. 2012). In
addition to databases of aging and aging-related diseases, large-
scale examples from the NIH-based National Database of
Autism Research (NDAR; Hall et al. 2012) and the Federal
Interacgency Traumatic Brain Injury Research (FITBIR;
Bushnik and Gordon 2012) exist to gather neuroimaging,
genetic, and phenomic data on autism and brain injury, respec-
tively. The various “grass roots” collections of resting-state
fMRI data maintained as part of the “1000 Functional
Connectomes” project (http://fcon_1000.projects.nitrc.org/)
(see Biswal et al. 2010) and task-based OpenfMRI (http://
www.openfmri.org) (Poldrack et al. 2013) are other notable
examples.

What is more, pressures to share these data as openly as
possible have put the onus on both the data collectors and
database curators to store data efficiently and safely while
providing data efficiently to anyone who would like to use
it. However, inherent in multilaboratory projects are sociolog-
ic, legal, and often ethical concerns that must be resolved
satisfactorily before they can work effectively or be widely
accepted by the scientific community (Beaulieu 2001). While
this often involves some expectations on the part of data
collectors, etc., the exchange, storage, and computation on
brain imaging data has many advantages including 1) maxi-
mizing the cost of their collection over the widest possible set
of researchers, 2) allowing their use in new methods develop-
ment, 3) promoting data re-analysis and re-purposing, 3) new
means for collaboration, 4) hypothesis generation, and 5)
clever forms of visualization. In other words, archived data
can be subjected to novel approaches which can highlight
relationships not envisioned by the original data collectors
and shed new light on important mechanisms which are then
worthy of additional study (Van Horn and Ishai 2007).

Examples of big neuroimaging databases

Despite the ever present challenges of archiving massive quan-
tities of large brain imaging data, prominent examples for
storing, sorting, and mining data exist. Key examples include
XNAT Central (https://central.xnat.org/) (see Marcus et al.
2007) which contains data from several thousand subjects
and is playing a key role in the data management and
informatics of the Human Connectome Project (HCP)
(Marcus et al. 2013); the SumsDB effort (http://sumsdb.wustl.
edu/sums/index.jsp) for cortical surface-based atlasing of neu-
roimaging results (Van Essen 2005); and the NIH MRI Study
of Normal Human Brain Development (http://www.bic.mni.
mcgill.ca/nihpd/info/data_access.html) (Evans 2006)
containing multisite neuroimaging data of children from ages
6 to 18 years old accompanied by comprehensive neurological
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assessments and neuropsychological testing results (Almli et al.
2007). Such resources represent leading efforts among a grow-
ing set of online repositories for the storage and sharing of raw
and processed neuroimaging data and results.

Speaking from our own experience, the Laboratory of
Neuro Imaging (LONI), formerly based at the University of
California Los Angeles (UCLA) and now based at the Uni-
versity of Southern California (USC), has been serving as a
repository for single and multi-site neuroimaging research
studies for many years (Toga 2002b). The LONI Image and
Data Archive (IDA) provides a comprehensive and interactive
environment for safely archiving, querying, visualizing and
sharing neuroimaging clinical and neurocognitive data. It
presents a user-friendly environment to users for archiving,
searching, sharing, tracking and disseminating neuroimaging
data. All data is stored on redundant servers with daily and
weekly on- and off-site backups. The IDA stores data from
ADNI and the Michael J. Fox Foundation, among other
prominent multi-site neuroimaging initiatives.

Archiving data in the IDA is straight-forward, secure, and
requires no specialized hardware or software. The IDA auto-
matically facilitates the de-identification and pooling of data
from multiple institutions, protecting data from unauthorized
access while providing the ability to share data among collab-
orative investigators. Integration of the LONI Debabeler file
format translation engine (Neu et al. 2005) allows users to
upload and download image data in a number of common
neuroimaging file formats (e.g. DICOM, Analyze, NIFTI,
MINC). Once archived, data can be downloaded and/or
streamed into automated tools for processing and analysis
(Dinov et al. 2009, 2010a).

Presently, the IDA repository contains over 14,000 imag-
ing series for thousands of subjects, with growth averaging
~400 new image series per month, encompassing 130 TB of
storage. This includes structural, functional, diffusion, and
other MRI-based data types, in addition to studies of a range
of PET ligands. Since the inception of the IDA, data drawn
from it has been utilized in literally hundreds of research
articles published in the peer-reviewed literature.

All in all, resources such as these are amassing brain
imaging data at already impressive scales. However, will such
archives be ready for still more data as investigators acquire
more information through scanning as well as other measures
of brain form and function? The next wave for neuroimaging
genetic examinations of the brain will certainly test the com-
putational and storage infrastructures of these and other
databasing efforts.

The role of cyberinfrastructure

Individual desktop computers are now no longer suitable for
analyzing potentially petabytes worth of brain and genomics

data at a time.What is needed is to combine effort from across
multiple, distributed processing elements and leverage the
combined power they possess toward massive-scale analyses
of neuroscientific resources. The motivating interest in emerg-
ing forms of computing for biomedicine is the coordination of
resource sharing and problem solving in dynamic, multi-
institutional, spatially dispersed, virtual organizations who
can gather and exchange data. While the National Science
Foundation (NSF) has made major investments in the com-
puter architecture needed for physics, weather, and geological
data (e.g. XSEDE, https://www.xsede.org/, and the Open
Science Grid, https://www.opensciencegrid.org), the NIH
has invested warily (e.g. BIRN, http://www.birncommunity.
org/), despite strongly encouraging data re-use from online
data repositories. More than just the sharing of files, this
would involve direct access to computer resources, software,
data, and services, increasingly required by a range of collab-
orative problem-solving and resource-brokering strategies
emerging from industry, science, and engineering. The Neu-
roimaging Informatics Tools and Resources Clearinghouse
(NITRC; http://www.nitrc.org) and the International
Neuroinformatics Coordinating Facility (INCF; http://incf.
org) have begun to deploy local clusters with Amazon EC2
server technology toward this goal but a larger effort will be
required involving dedicated processing centers or distributed
grids of linked computer centers. Resource availability can be
open or highly controlled with providers and consumers
defining clearly and carefully just what is shared, who is
allowed to use resources, and the conditions under which it
occurs (Van Horn and Toga 2009a). It shouldn’t come as a
surprise that, like so many other forms of data-rich science,
big computing is an ideal frawework for big neuroimaging.

Models for data management and availability

The organizing, annotating, archiving, and distributing of neu-
roimaging and biomedical data in useable and structured frame-
works have become critical elements across a range of neuro-
scientific efforts (Toga 2002a). With all this brain data flying
around needing someplace to land, several well known efforts
to construct and populate large brain anatomy (Mazziotta et al.
2001), function (Van Horn et al. 2005), and genetics (Saykin
et al. 2010) databases have arisen over the years in order to
make such data open to a still broader audience of researchers.
In fact, for many recent large-scale neuroimaging projects, such
as the Human Connectome Project (HCP; www.
humanconnectomeproject.org), their existance is predicated
on the expectation that the data obtained will be well
organized and available to the community for examination
and study.

As one might imagine, there are as many data organiza-
tional models as there are laboratories gathering the data.
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Because of the volume of all the study data itself, it is not
uncommon for the imaging data to live apart from the meta-
data describing it, e.g. on its own disk partition or even another
computer system altogether. This information, in turn, can
itself live apart from other data acquired (e.g. demographics,
genetics, phenomics). Organizing and linking all of these
distinct and possibly physically separated data types can be
a major data management challenge.

What is more, multiple models exist for making data avail-
able to others (Van Horn et al. 2001). In the simplest form,
anonymous FTP sites can be used as a place to post datasets
where they may or may not be secure and the intentions of
those accessing the data uncertain. Databases containing sum-
mary results are enormously valuable from a meta-analytic
perspective (Laird et al. 2009), however, the original neuro-
imaging data themselves are likely unavailable. The use of
results-only resources may also require care in due to the
potential for factors such as publication bias (Jennings and
Van Horn 2012). Federated archiving approaches seek to
allow data to remain at the sites that collected it but to permit
users at a consortia of participating institutions to search and
access each other’s data (Helmer et al. 2011). Centralized
approaches also exist in which a single center is the focal
point for databasing and accompanying informatics for multi-
site efforts or multiple-multi-site efforts (Neu et al. 2012).
These and other models have their own unique challenges
for data storage, management, and availability which can be
expected to become more complex as study data sizes grow.
Contributions of raw and processed study data to centralized
or federated repositories can provide maximal information
and utility to subsequent users (Van Horn and Gazzaniga
2005), where the submission of data can be voluntary, as a
condition of publication, or as an agreed upon aspect of multi-
site data consortia (Mazziotta et al. 1995; Toga and Crawford
2010; Van Horn and Gazzaniga 2012).

Standards are frequently non-standard

With a diversity of strorage models also comes a variety of
ways in which study data is managed and meta-data is inter-
nally represented. Having common formatting standards for
meta-data representation and organization has been an impor-
tant topic for neuroinformatics over the past decade (Koslow
2000; Helmer et al. 2011). The creation of data standards
enables both intra- and inter-disciplinary interaction (Van
Horn and Ball 2008), encourages the development of novel
software tools for helping to understand relationships within
and among data elements, and encourages new investigation
of database contents (Neu et al. 2012). Recent efforts from
international data sharing working groups (Poline et al. 2012)
have made considerable headway in helping to develop new
frameworks for organizing study meta-data drawing from the

best parts of extant meta-data frameworks. Best practices for
fMRI results reporting have been recommended (Poldrack
et al. 2008) though may naturally need to mature further as
emerging analytic approaches come into favor. On the other
hand, standards designers need to avoid the feature creep that
often arises which can result in frameworks which are overly
rigid and cannot adapt as new information becomes available
and need to be included. Nevertheless, when fully mature,
these modern schema will significantly improve the descrip-
tion of neuroimaging data sets, encode the provenace associ-
ated with data processing (Mackenzie-Graham et al. 2008;
McClatchey et al. 2013), and help to populate large-scale
archives prospectively, thereby encouraging common analysis
frameworks. Such practical standards will be essential for
multi-site trials and major neuroimaging initiatives, where
data sharing has been expressly mandated by funding
agencies.

Factors governing the utility of “Big data” resources

However, simply having “big data” neuroimaging andmaking
it available online is not a means to an end but only the next
step in making that data available for others to explore and
mine. Several factors contribute to a database's use and utility,
including whether it actually contains viable data accompa-
nied by a detailed description of their acquisition (Van Horn
and Toga 2009a); whether the database is well-organized and
the user interface is easy to navigate; whether the data are
derived versions of raw data or the raw data itself; the manner
in which the database addresses the sociological and regula-
tory issues that can be associated with data sharing; whether
the data is fully anonymized and open to anyone who wants it,
only open to members of a multi-site consortium, or if it is
necessary to get IRB approval before access can be granted;
whether it has a policy in place to ensure that requesting
authors give proper attribution to the original collectors of
the data; and the efficiency of secure data transactions. The
systems must provide flexible methods for data description
and relationships among various meta-data characteristics
(Bug et al. 2008). Moreover, those that have been specifically
designed to serve a large and diverse audience with a variety
of needs, represent the types of databases that can have the
greatest benefit to scientists looking to study the disease,
assess new methods, examine previously published data, or
with interests in exploring new ideas (Van Horn and
Gazzaniga 2005; Keator et al. 2013).

Mining data and digging for gold

The successes of molecular biological (Huang et al. 2007),
systems biological (Hood et al. 2004), and astrophysics (Gray
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et al. 2002) infrastructures for archiving and mining data are
well known. With the accumulation of neurobiological data
into large databases and the availability of compute cluster
enabled means for large-scale data processing, a new form of
discovery-oriented neuroscience is on the horizon. Re-
searchers are increasingly mining vast and disparate collec-
tions of data and hunting for unseen patterns that might
provide clues to underlying biological mechanisms (Phan
et al. 2002; Arnone et al. 2009; Frazier and Hardan 2009)
and trends in how studies are conducted (Jennings and Van
Horn 2012). The terabytes-worth of data provide input for
informatics-driven pattern-seeking and other relevant algo-
rithms (Jones and Swindells 2002; Ma et al. 2002; Schutte
et al. 2002) which can provide further understanding into
complex brain processes.

Departing from a purely repository-based approach, a col-
lection of research groups from around the world has adopted
what might be considered more of a social networking strat-
egy for data sharing. The Enhancing Neuroimaging Genetics
through Meta-Analysis (ENIGMA; enigma.loni.ucla.edu)
network brings together interested researchers in imaging
genomics, to understand brain structure and function, based
on MRI, DTI, fMRI and genome-wide association study
(GWAS) data. Among the network’s goals: to ensure promis-
ing findings are replicated via member collaborations, in order
to satisfy the mandates of most journals; gain increased sta-
tistical power; and to share ideas, algorithms, data, and infor-
mation on promising findings or methods. They have provid-
ed the means for imaging, genetics, as well as computer
science, mathematics and statistics experts to make significant
collaborative contributions to these fields fromwhich, without
the needed infrastructure, most of their expertise would have
been excluded (Stein et al. 2012). These successes are not
necessarily unique, but building upon them and extending
them to a wider set of scientific research arenas is an ever-
present theme (Persson 2000; Brookes 2001; Altman 2003).

New computer science designed with big data in mind

While it might be tempting to think that once all the data has
been archived, indexed, and is ready to go, that all one would
need is to start analyzing it and answers to all our questions
about the brain will be revealed. Even examining the contents
of an archive to know what data is available to be analyzed
requires new, cleverly designed and user friendly software
tools and novel approaches for exploratory inspection. Such
tools are only now beginning to appear (Bowman et al. 2012)
and their further development will be essential for dealing
with existing as well as the expected size of neuroimaging
data sets.

Once a selection of data worthy of further analysis has been
identified, a new concern is realized—it becomes clear that

many software packages for neuroimaging data analysis are
ill-suited toward very large data sets involving potentially
thousands of subjects. Algorithm optimization is not often
considered for when data sets are small or modest in size but
as data sets grow memory management is an important factor.
New mathematics and informatics approaches will be needed
to more completely model multi-modal brain imaging data in
the context of cortical anatomy, white matter connectivity, and
functional activity. These will need to work fast, be accurate,
and be interoperable with other tools so that data processing
can be automated as much as possible. Interactive workflow
environments for automated data analysis will also be critical
for ongoing or retrospective research studies involving com-
plex computations on largemulti-dimensional datasets (Dinov
et al. 2010b; Gorgolewski et al. 2011). Yet, few tools, if any,
now exist which enable the joint analysis of both genes and
brain imaging data which would be capable of efficiently
obtaining results while also achieving the requisite degree of
statistical power. Moving forward, software engineers will
need to create brilliant and innovative ways to tackle the
massive amounts of brain and genomic data. These continu-
ous interactions between neuroimagers, geneticists, software
creators, and other biomedical scientists will be essential to
develop these new, memory-efficient software algorithms and
computational tools.

Big data in the era of ADNI2, the HCP, the HBP,
and BRAIN

As the NIH and other major funding agencies spearhead big
picture multi-center brain science efforts, the needs for big
data solutions will grow. The HCP consortia are now releasing
large datasets which even the best neuroimaging researchers
are struggling to analyze. More of that data is on the way.
ADNI2, the premier neuroimaging data collection effort for
understanding the aging brain, will be providing imaging,
phenomic, and exomic information which we have yet to get
our heads around how best to analyze. The HBP, involving
data collection sites throughout Europe, will likely eclipse
that! And while the basis for infrastructure support is also
changing, the simple thought that data and processing will
simply be done “in the cloud” is somewhat naïve. The “cloud”
must exist somewhere and system failures have been known
to happen. Though commercial solutions such as those offered
by Google, Amazon, and Microsoft can provide an attractive
solution for individual centers, dedicated neuroscience com-
putational databasing and data processing resources remain
essential. As the BRAIN initiative takes shape, it is clear that
demonstrable access to data, processing workflow methods,
running on remote CPU clusters dedicated to this purpose is
the best way to ensure that we can keep up in the extraction of
real findings as opposed to a collection of results.
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Conclusions

Neuroimaging research, by its very nature, is data intensive,
multimodal, and collaborative—factors which have been in-
strumental in its success and growth. Indeed, we contend that
neuroimaging is an emerging example of discovery-oriented
science, wherein patterns of brain structure and activity present
across multiple subjects and dozens of studies can be system-
atically extracted, examined, and result in new knowledge. Yet
the infrastructure needed for supporting this advancing form of
brain research where data is king is still maturing. The rapid
processing of large quantities of data in this way will lead to
new scientific outcomes and patterns of results not envisioned
during the examination of each study individually. Patterns
may suggest fundamental mechanisms. Confirmed mecha-
nisms add to the knowledgebase of neurobiological science
and provide the basis for further experimentation and the
generation of still more valuable data that can be included in
still greater analyses. Greater knowledge about fundamental
brain processes then suggests new and testable hypotheses that
lead to novel experimentation, the data from which should then
be contributed back into a publicly available archive—continu-
ing a healthy and helpful cycle.

The next steps for the development of resources supporting
“big data” brain imaging at the Exabyte scale will require the
further creation of new tools and services for data discovery,
integration, analysis, and visualization. Components for dis-
covering data residing in database architectures must be de-
veloped (sort of a PubMed for data discovery). Present exam-
ples exist such as the “EB-eye” resource for genomics (http://
www.ebi.ac.uk/ebisearch/) or the Neuroscience Information
Framework (NIF; http://neuinfo.org) for neuroscience
terminologies. Such meta-resources will need to include con-
textual information that allows data to be accessed, under-
stood, reused, and the results reproduced. Integrating a
broader spectrum of neuroscience data and providing tools
for interrogating and visualizing those data will enable inves-
tigators to more easily and interactively investigate broader
scientific questions.

Beyond just neuroimaging data, architectures for peta-scale
biomedical data must be flexible enough to allow integration of
additional clinical and biochemical data and analysis results
into the database and employ tools for interactively interrogat-
ing and graphically visualizing database contents (Bowman
et al. 2012). Frameworks for storing and making available big
neuroimaging data, their standards, and the infrastructure for so
doing must be enriched with modern data processing workflow
design and execution systems in place to permit exchange of
processing methodologies between labs, among consortia
members, or by independent researchers. Comprehensive
mechanisms to gather, organize, and distribute data, results,
and information between and among project participants, but
also to the scientific community at large, are worth being

examined, developed, and deployed. For the “big data” science
of human brain imaging, now is the time to begin.
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