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Abstract This study investigated three-dimensional (3D)
texture as a possible diagnostic marker of Alzheimer’s disease
(AD). T1-weighted magnetic resonance (MR) images were
obtained from 17 AD patients and 17 age and gender-matched
healthy controls. 3D texture features were extracted from the
circular 3D ROIs placed using a semi-automated technique in
the hippocampus and entorhinal cortex. We found that
classification accuracies based on texture analysis of the ROIs
varied from 64.3% to 96.4% due to different ROI selection,
feature extraction and selection options, and that most 3D
texture features selected were correlated with the mini-mental
state examination (MMSE) scores. The results indicated that
3D texture could detect the subtle texture differences between
tissues in AD patients and normal controls, and texture
features of MR images in the hippocampus and entorhinal
cortex might be related to the severity of AD cognitive
impairment. These results suggest that 3D texture might be a
useful aid in AD diagnosis.
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Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative
disorder, is the most common cause of dementia in the

elderly (Petrella et al. 2003). Early AD symptoms include
memory loss and confusion with time or place, while
advanced AD patients often suffer from loss of the ability
to take care of oneself, communicate with others and
recognize family members (Alzheimer’s Association 2010).
The number of people with AD is increasing in ageing
populations, which has a marked impact on healthcare
systems, families and caregivers (Alzheimer’s Association
2010). A definitive diagnosis of AD relies on pathological
confirmation obtained from an autopsy or biopsy which is
not always available. In the developed world, the diagnostic
accuracy of AD varies from more than 90% in an academic
clinical setting (Cummings et al. 1998) to a substantially
lower percentage in a general community setting (Petrella et
al. 2003), while in developing countries, the accuracy of AD
diagnosis is much lower. For example, the rate of missed
diagnosis has reached more than 75% in mainland China
(China Alzheimer’s Project, 2011) and often the AD patients
that hospitals confirmed are severe AD cases, which leave
few options for treatment. Therefore, accurate AD diagnosis
is crucial prior to proper treatment—although current
medical interventions cannot stop or cure this disorder, they
could help retard the progression of AD symptoms.

Brain atrophy on magnetic resonance imaging (MRI) has
been detected more consistently than decline on specific
cognitive tests in patients with AD (Jack et al. 2004).
Medial temporal lobe atrophy (especially in the entorhinal
cortex, hippocampus, amygdala, and parahippocampal
gyrus) is often seen in MRI images of AD patients (Jack
et al. 2004; Kesslak et al. 1991; Petrella et al. 2003). The
pathologic progression of AD is believed to develop from
entorhinal cortex to hippocampus to neocortex (Karas et al.
2003), and pathological studies have demonstrated that
amyloid plaques and neurofibrillary tangles are present in
the hippocampus at the onset of AD (Delacourte et al.
1999; Petrella et al. 2003). Consequently, there is a need to
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develop objective, sensitive and easily-obtained imaging
markers that may serve as supplements to current clinical
and neuropsychologic tests to facilitate AD diagnosis
(Petrella et al. 2003), especially in developing countries
(Kalaria et al. 2008).

A number of approaches such as volumetric and
subtraction MR techniques, shape and thickness analysis
have been developed to improve the diagnostic accuracy of
AD (Colliot et al. 2008; Desikan et al. 2009; Gerardin et al.
2009; Petrella et al. 2003). Classification with support
vector machine (SVM) has been applied to whole brain
MRI images of AD (Klöppel et al. 2008) and automated
ROI segmentation on MRI images together with volumetric
and thickness analysis has obtained high classification
accuracy (Desikan et al. 2009). In addition, serial imaging
measures have been proposed, including structural atrophy
rate measured by longitudinal MRI scans and glucose
metabolism changes obtained with serial positron emission
tomography (PET) (Drzezga et al. 2003; Du et al. 2003;
Fox and Freeborough 1997; Fox et al. 1999, 2000;
Minoshima et al. 1997; Silverman et al. 2001; Small et al.
2000). A yearly decline in hippocampal volume and an
increase in temporal horn volume have been found
approximately 2.5 times greater in patients with AD than
in control subjects (Jack et al. 1998). Further, the annual
volume changes of the hippocampus, entorhinal cortex,
ventricle, and whole brain in mild cognitive impairment
(MCI) and AD have been studied (Jack et al. 2004, 2008).

Texture features play an important role in image analysis
research and may develop into a useful clinical imaging
tool. Various medical applications of texture analysis
provide a quantitative means of analyzing and characteriz-
ing properties of tissues, physiological and pathological
stages and reveal often invisible information on tissues of
interest (Harrison et al. 2008). In neuroimaging studies,
texture analysis has been used to detect lesions and
abnormalities for quantifying contralateral differences in
epilepsy (Namer et al. 2001), hippocampal sclerosis
(Boniha et al. 2003) and cancer (Rangayyan et al. 2010),
aiding the automatic delineation of cerebellar volumes
(Saeed and Piri 2002), characterizing spinal cord pathology
in multiple sclerosis (MS) (Mathias et al. 1999), and
monitoring therapeutic response in MS patients (Zhang et
al. 2003). 2D texture analysis has been applied to the
classification of AD, including: 2D texture features of
spatial gray-level dependence and a linear discriminant
function used for differentiating AD from normal subjects
(Freeborough and Fox 1998), texture features extracted
from GLN (gray level nonuniformity) and RLN (run length
nonuniformity) for classification (Kaeriyama et al. 2002),
MRI features extracted for separability among AD, MCI
patients, and matched controls (Liu et al. 2004), and texture
analysis on PET brain images (Sayeed et al. 2002).

In recent years, 3D texture features have been developed
which contain more spatial information (along the extra
dimension) and higher sensitivity and specificity than 2D
techniques (Kovalev et al. 2001). 3D texture features based
on co-occurrence matrices (COM) obtained separation
between MCD (MCI or mild AD) and controls (Kovalev
et al. 2001). It was also found that 3D texture analysis was
a promising supplement to the current techniques for
diagnosing autism (El-Baz et al. 2007). 2D and 3D textures
were compared in classification of AD. It was found that
3D texture in the hippocampus was better than 2D texture,
which could be an early indicator of AD (Kumar et al.
2005).

We hypothesized that the options in 3D texture analysis
including regions of interest (ROIs) selection, feature
extraction and selection, statistical analysis and classifica-
tion are important to AD classification and the 3D texture
analysis processing pipeline could be optimized to improve
the accuracy of AD classification. In this preliminary study,
we investigated the effects of these options on the accuracy
of distinguishing AD from healthy subjects in order to
improve AD classification and obtain a useful aid for AD
diagnosis.

Materials and methods

Subjects

17 AD patients (8 males and 9 females, mean age 65.6 years
with a range from 51 to 82 years) and 17 age- and gender-
matched healthy controls (6 males and 11 females, age
65.2±7.8 years with a range from 51 to 84 years) were
included in this study. All participants underwent a clinical
screening procedure including Mini-Mental State Examina-
tion (MMSE) (Folstein et al. 1975) and Clinical Dementia
Rating (CDR) (Morris 1993) scores. All AD patients met
National Institute of Neurological and Communicative
Disorders and Stroke-Alzheimer’s Disease and Related
Disorders Association criteria for AD (McKhann et al.
1984) with (Chinese-version) MMSE scores<15 and had
no visible lesions on conventional MRI. To increase the
likelihood of making a correct AD diagnosis, patients
recruited in this study had moderately severe or severe
dementia, based on CDR scores of 2 or 3, respectively. For
normal controls, the inclusion criteria were: a normal
neurological examination, a CDR (Hughes et al. 1982;
Morris 1993) scale score of 0, normal cognition (MMSE
score>27), no history of neurologic and psychiatric con-
ditions, and normal conventional MRI examinations. All
participants were recruited and evaluated by Xuanwu
Hospital, Beijing. Local ethical committee approval and
written informed consent from these participants were
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obtained before initiating this study. The descriptive
information for these subjects is listed in Table 1.

MRI acquisition

T1-weighted MR images of the 17 AD patients and 17
matched normal controls were acquired with a 3 T MRI
scanner (Trio, Tim, VB15, Siemens, Erlangen, Germany)
using a three dimensional (3D) magnetization prepared
rapid gradient echo (MP-RAGE) sequence, and a multi-
channel phase array head coil (12 elements) was equipped
with the maximum gradient strength of 40 mT/m and a
maximum slew rate of 200 Tm–1 s–1. The MRI scans were
conducted in the Department of Radiology, Xuanwu
Hospital in Beijing. The scan parameters are as follows:
TR=2,000 ms, TE=2 ms, Inversion time (TI)=900 ms, Flip
angle=9°, matrix=256×224, FOV=256×224 mm2, slice
thickness=1 mm, slices=176, bandwidth=210 Hz/Pixel,
and pre-scan normalization was selected to correct B1
inhomogeneity. In this study, gradient unwarping was not
performed and parallel imaging technique (PAT) was not
adopted in order to maintain higher signal-to-noise ratio
(SNR).

ROI selection

3D ball-shape ROIs were placed in the left and right
temporal regions of the hippocampus and entorhinal cortex
on the MR image of each subject with the MRI texture
analysis software MaZda (version 4.6) where the location
and size of the ROIs could be manually adjusted and the
ROIs could be saved for later use. MaZda was developed at
the Institute of Electronics, Technical University of Lodz
(TUL), Poland (Szczypinski et al. 2009). 3D ROI capability
was the new feature of version 4.6 MaZda. In order to
investigate the impact of ROI selection on the accuracy of
texture analysis, 3D ball-shape ROIs were placed in three
ways (named as Type I, II, and III ROI) for each subject:
Type I ROIs with a size of 0.08 in MaZda (equivalent to

around 2,226 voxels) and a radius of 8.1 pixels were placed
in the regions of the hippocampus and entorhinal cortex
including part of adjacent cerebrospinal fluid (CSF)
(Fig. 1a); Type II ROIs with a size of 0.05 in MaZda
(equivalent to around 463 voxels) and a radius of 4.8 pixels
were placed within the hippocampus and entorhinal cortex
(Fig. 1b); Type III ROIs with a size of 0.03 in MaZda
(equivalent to around 165 voxels) and a radius of 3.4 pixels
were placed in the central part of the hippocampus and
entorhinal cortex (Fig. 1c). The 3 types of 3D ROIs were
placed by one of the authors (J.Z., with some neuroana-
tomical expertise in the hippocampus and entorhinal
cortex).

3D texture analysis

Compared with 2D texture, 3D texture increases the
dimensionality while keeping the rotation and reflection
invariance (Kovalev et al. 2001). Over 100 3D texture
features were extracted from image histogram, gradient, co-
occurrence matrix (COM) (Haralick et al. 1973), and run
length matrix (RLM) (Galloway 1975) in the ROIs using
the software MaZda (Strzelecki et al. 2006). The texture
parameters used in the analysis are listed in Table 2. Default
parameter setting of MaZda was used and the number of
bits per pixel used was: 12 for histogram features, 6 for
gradient features, 6 together with the 1 distance between
pairs of pixels for COM features, and 6 bits per pixel for
RLM features.

Feature selection was performed with 4 approaches:
Fisher, classification error probability (POE) and average
correlation coefficients (ACC) (POE+ACC), Mutual Infor-
mation, and MI_PA_F (a combination of mutual informa-
tion, POE+ACC and Fisher). The Fisher approach is widely
used in multivariate analysis. In the MaZda program, it
selected 10 features (extracted by different feature extrac-
tion approaches such as COM and RLM) based on
maximizing the Fisher coefficient, i.e., the ratio of
between-class variance to within-class variance (Schürman
1996):
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where F is the Fisher coefficient, D is the between-class
variance and V is the within-class variance, μi and Vi are
the mean and variance of class i, and Pi is the probability of
class i.

The POE+ACC approach selected 10 features based on
minimizing both POE and ACC between chosen features
(Mucciardi and Gose 1971; Dash and Liu 1997). The

Table 1 Descriptive information for the subjects in this study

AD
patients

Normal
controls

t-test
(p value)

Sample size 17 17

Age (years, mean±SD) 65.6±8.5 65.2±7.8 0.88

Gender (Male: Female) 8: 9 6: 11 0.50

Education (years, mean±SD) 10.7±4.3 12.2±3.5 0.29

MMSE 5.53±4.47 28.88±0.78 <0.01

CDR 2.24±0.44 0±0 <0.01

SD standard deviation; MMSE mini-mental state examination; CDR
clinical dementia rating scale
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mutual information approach selected 10 texture features
with largest mutual information coefficient (i.e., the largest
dependence between features and class categories). The
MI_PA_F approach selected 30 texture features in total for
classification.

Statistical analysis and classification

To identify the impact of different analytic methods on the
accuracy of classification, we first took the 34 MRI images
as a whole, extracted texture features, and reduced the
features with the Fisher approach. Then, we applied the raw
data analysis (RDA), principal component analysis (PCA),
linear discriminant analysis (LDA) with 1-NN (1-nearest
neighbor) classifier for classification, and applied non-
linear discriminant analysis (NDA) with artificial neural
network (ANN) classifier for classification. The analysis
was performed using B11 (version 3.3) of MaZda compan-
ion software. The results were considered an estimate of the
classification accuracy for the whole data set (treated as the
training set).

The MRI images were then split into a training set and a
test set. 20 MRI images (10 AD patients and 10 controls)
were randomly assigned to the training set and the
remaining 14 MRI images (7 patients and 7 controls) were
assigned to the test set. In our previous study on texture
analysis of multiple sclerosis (MS) (Zhang et al. 2008), we
found that the classification performance of 1-NN was
lower than that of artificial neural network (ANN). Thus,
the classification on the test set was performed with the
non-linear ANN classifier in B11.

In order to test whether the 3D texture features are
correlated with clinical measures, Pearson correlation
analysis was performed with statistical software SPSS
(13.0) on the 10 selected texture features (after feature
selection with Fisher approach) and the MMSE scores.

Results

Texture analysis using all MR images as the training set

When using the whole data set as the training set, the 1-NN
classification accuracy of the training set for raw data
analysis (RDA), PCA and LDA is relatively low (63.2–
89.7%), but the ANN classification accuracy is relatively
high for NDA (92.6–98.5%) (Table 3). Regardless of the
different analytic approaches (RDA, PCA, LDA or NDA),
higher classification accuracy was obtained from the
training set of Type I ROI compared with those of Type II
and III ROIs (Table 3).

Classification results of the test set

Among the four feature selection and reduction approaches,
the Fisher approach tends to generate relatively high
classification accuracy regardless of ROI selection. The
POE+ACC approach leads to the same high classification
accuracy (96.4%) as the Fisher approach for Type I ROI
(Table 4). Although the MI_PA_F approach used more
features for classification than other feature selection
approaches, it did not generate a more accurate result, but
relatively low classification accuracy. Compared with Type
II and III ROIs, the classification accuracy for Type I ROI
is much higher for the test set, which is consistent with the
observations obtained from the training set.

Correlation analysis

The results of correlation analysis between 3D texture
features and the MMSE scores showed that most of the
texture features were significantly correlated with the scores
of MMSE. In order to analyze the correlation results (for
possible trend), 4 texture features (after feature selection
and reduction) that were in common with 3 types of ROIs
and significantly correlated with MMSE scores were

Fig. 1 Illustrations of ROI selec-
tion in the hippocampus and
entorhinal cortex. a Type I ROI
(size=0.08) (relatively large ROI
that might include adjacent CSF).
b Type II ROI (size=0.05). c
Type III ROI (size=0.03)

Table 2 Texture parameters used in the analysis

Histogram Mean, variance, skewness, kurtosis, percentiles
1%, 10%, 50%, 90% and 99%

Absolute gradient Mean, variance, skewness, kurtosis and
percentage of pixels with nonzero gradient

Run-length matrix Run-length nonuniformity, grey-level
nonuniformity, long-run emphasis, shortrun
emphasis and fraction of image in runs

Co-occurrence matrix Angular second moment, contrast, correlation,
sum of squares, inverse difference moment,
sum average, sum variance, sum entropy,
entropy, difference variance and difference
entropy
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selected and their correlation results are summarized in
Table 5. Among them, three COM texture features were
negatively correlated with the MMSE scores (Table 5),
while one COM texture feature was positively correlated
with the clinical scale (Table 5). These findings suggest that
the 3D texture features obtained from structural MR images
are correlated with the severity of cognitive impairments of
AD that the MMSE scores reveal.

Discussion

In this study, we examined 3D texture features of MRI images
extracted from regions of the hippocampus and entorhinal
cortex in AD and calculated the correlations between the
texture features and the clinical measure of MMSE. Our
preliminary results show that 3D texture analysis could
characterize the differences of texture features in the tissues
of ROIs in AD patients and normal controls.

Abnormalities in the medial temporal region in AD patients

3D texture analysis on MRI is performed by analyzing the
gray tone variations among image voxels in the 3D ROI
which captures the spatial and intensity information from
the abnormalities of brain tissue in brain diseases. Since the
voxel size of the MRI images in this study is 1 mm and the

parameters of 3D texture analysis were set to no less than 6
bits per voxel for texture extraction approaches (histogram,
gradient, COM or RLM), 3D texture is able to detect subtle
differences between the MR images of AD patients and
those of controls. In this study, the differences of 3D texture
between AD patients and normal controls in the hippocam-
pus and entorhinal cortex reflect the abnormal spatial
texture content or abnormalities in the medial temporal
region in patients with AD, compared with normal controls.
These abnormalities are characterized by the appearance of
extracellular amyloid plaques and intracellular neurofibril-
lary tangles (Petrella et al. 2003) which disintegrates
microtubules, collapses the neuron’s transport network,
and damages the function of the neuron as well as the
communication between neurons (NIA 2009). Accompanied
by the progress of AD, widespread neuron death (or loss)
leads to brain atrophy.

This study shows that ROI selection plays an important
role in texture analysis. A relatively large ROI including
part of the CSF near the hippocampus and entorhinal cortex
generates a higher classification accuracy, while a smaller
ROI within the hippocampus and entorhinal cortex generates a
much lower classification accuracy. This may be because
more distinctive 3D texture features could be extracted from
the large ROIs (that includes part of the brain surface) which
helps distinguish brain tissues of AD patients from those of
normal controls.

Table 3 Texture analysis

Using 4 analytic approaches with all MR images (n=34) in the training set (Classification accuracy from the training set)

Analytic approach RDA PCA LDA NDA

Classification approach 1-NN 1-NN 1-NN ANN

Accuracy (%) Type I ROI 75.0 75.0 89.7 98.5

Type II ROI 72.0 73.2 69.1 94.1

Type III ROI 63.2 63.2 77.9 92.6

RDA raw data analysis; PCA principal component analysis; LDA linear discriminant analysis; NDA non-linear discriminant analysis; 1-NN 1-
nearest neighbor classifier; ANN artificial neural network classifier; Type I ROI: size=0.08, radius=8.1 voxels; Type II ROI: size=0.05, radius=
4.8 voxels; Type III ROI: size=0.03, radius=3.4 voxels

Table 4 Texture analysis

Using 4 feature reduction approaches with 20 MR images in the training set and 14 in the test set (Classification accuracy from the test set)

Feature reduction approach Fisher PCC+AOE MI MI_PA_F

Accuracy (%) Type I ROI 96.4 96.4 71.4 85.7

Type II ROI 75.0 64.3 67.8 64.3

Type III ROI 82.1 64.3 75.0 78.6

Fisher fisher approach; POE+ACC classification error probability (POE) and average correlation coefficients (ACC) approach; MI mutual
information; MI_PA_F a combination of feature reduction approaches: mutual information, POE+ACC and Fisher
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The correlation results indicate that most 3D texture features
correlated with the MMSE scores, supporting the findings that
AD atrophy rates of hippocampus and enthorhinal cortex were
significantly correlated with the scores of MMSE (Jack et al.
2004). It was found that progressive functional decline was
correlated with MMSE scores over the course of AD as
follows: MMSE scores of 20–23 correspond to mild AD
(e.g., short-term memory loss), 10–19 correspond to moderate
AD (e.g., daily cognitive function impaired), and 0–9
correspond to severe AD (e.g., behavioral disturbance)
(Petrella et al. 2003). Further, the onset and progression of
cognitive symptoms in AD patients are thought to parallel the
pathologic progression of AD-related brain destruction (Karas
et al. 2003). Consequently, the correlation results may further
suggest that the abnormalities in structural imaging detected
by 3D texture are correlated with the severity of cognitive
impairment of AD that the MMSE scores represented.

Texture analysis as a data processing pipeline

From the perspective of data processing, texture analysis is
a multi-step data processing procedure or pipeline which
consists of ROI selection, feature extraction and selection,
and classification. The final result of texture analysis, i.e.,
classification accuracy, is not determined by any single
step, but the combination of the options and parameters
selected for each step.

ROI selection plays an important role in texture analysis.
Several MRI-based ROIs (including the hippocampus, the

entorhinal cortex, the ventricle and even the whole brain)
have been selected in AD. Due to the characteristics of AD
progression, each ROI has a different atrophy rate which
reveals different levels of damage in the microstructures
within it (Jack et al. 2004). This may lead to different
texture features extracted from the ROIs and selected for
classification, and thus different classification accuracy in
texture analysis. The results of this study indicate that the
texture analysis and classification results were very differ-
ent when the ROI was selected in different parts of the
hippocampus and entorhinal cortex region and for better
texture analysis and classification, the key to ROI selection
is to choose the ROI that can maximize the texture feature
differences between AD and normal controls.

Feature extraction and selection obtain the texture
features from the ROI and determine which features to be
used for classification. In our previous 2D texture analysis
of multiple sclerosis (MS) (Zhang et al. 2008), we
compared the 16 features extracted from gray-level co-
occurrence matrix (COM) alone and the combined 27
features extracted from 5 different feature extraction
approaches: gradient matrix, COM, RLM, autoregressive
model, and wavelet analysis. We found that the classifica-
tion accuracy was higher with the combined texture
features in more cases compared to those of COM alone.
However, the results of this study demonstrated that the
classification with the combined set of 30 features was
relatively low compared with the 10-feature sets selected by
individual feature selection approaches. This indicates that

Table 5 Pearson Correlation between selected texture features and MMSE scores

R S(1,x,0) DifEntrp S(1,x,0) Contrast S(1,1,0) InvDfMom S(1,y,0) DifVarnc

Type I ROI LRavg −0.806 −0.804 0.748 −0.666
Left −0.792 −0.773 0.742 −0.649
Right −0.709 −0.690 0.679 −0.556

Type II ROI LRavg −0.621 −0.609 0.546 −0.580
Left −0.615 −0.633 0.559 −0.632
Right −0.508 −0.451 0.378 −0.388

Type III ROI LRavg −0.693 −0.638 0.692 −0.630
Left −0.470 −0.448 0.405 −0.427
Right −0.707 −0.611 0.714 −0.609

R Correlation coefficient. Bold fond indicates R is significant (p<0.05);

For Type I ROI, x=1; for Type II ROI, x=0; for Type III ROI, x=−1;
For Type I and III ROI, y=−1; for Type II ROI, y=0

S(1,x,0) DifEntrp difference entropy for (1,x,0) where the greatest distance is 1, a COM feature;

S(1,x,0) Contrast contrast for (1,x,0) where the greatest distance is 1, a COM feature;

S(1,1,0) InvDfMom inverse difference moment for (1,1,0) where the greatest distance is 1 in two dimension, a COM feature;

S(1,-1,0) DifVarnc difference of variance for (1,-1,0) where the greatest distance is 1 in two dimensions, a COM feature;

LRavg The average of texture feature on the left and right ROIs;

Left feature on the left ROI; Right feature on the right ROI
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a combined feature set with many texture features may not
lead to high classification accuracy. In other words,
classification accuracy is not dependent on the number of
features selected or whether they are combined from
different feature extraction or selection approaches but on
the combination of the options and parameters of each step
in the texture analysis pipeline.

For data analysis and classification, the results demon-
strated that NDA with ANN classifier performed much
better than RDA, PCA or LDA with 1-NN classifier
measured by both Fisher coefficient and classification
accuracy (Table 3), which indicates that NDA with ANN
classifier had more discriminative power than the other
approaches with 1-NN classifier in analyzing the data of
this study. This is consistent with the results of our previous
study for MRI texture analysis of MS (Zhang et al. 2008).
These results revealed that (1) the data used for both studies
were probably comprised of linearly non-separable compo-
nents which need non-linear hypersurfaces rather than
linear hyperplanes to separate; and (2) RDA (without data
transformation), PCA, or LDA (with linear transformation)
could not classify linearly non-separable data components
while NDA transformed the data with a non-linear
transformation and made the data separable in a non-
linear hyper space (Strzelecki et al. 2006; Szczypinski et al.
2009).

Taken together, such a texture analysis pipeline could be
applied to different data sets (MR images of MS, AD, MCI,
etc.), and the overall performance of the texture analysis
pipeline is determined by the combination of the options
and parameters of each step. Consequently, optimization of
the texture analysis pipeline to obtain the best classification
accuracy could be achieved by fine-tuning the options and
parameters of each step along the pipeline.

Methodological issues

It is believed that there is no need for normalization in the
case of characterization or comparison of small, equal-sized
ROI volumes (Kovalev et al. 2001). In addition, normali-
zation could distort the ROIs of the MR images and destroy
the 3D texture. In this study, since the ROIs in the
hippocampus and entorhinal cortex were small (compared
with the whole brain), in order to preserve the delicate 3D
texture of the ROIs, the MRI image of each subject was
kept in their own space and did not register to the standard
brain for normalization. Experiments regarding normaliza-
tion could be conducted in our future studies in order to
understand its impact on ROI distortion and 3D texture.

In addition, there are some limitations in this study. First,
one limitation of this study is the semi-automated ROI
selection. The study shows that placement of ROI is
critical. Although this ROI selection approach with MaZda

does not need one to manually trace the 3D ROI (slice by
slice), it requires manually adjusting the location and size
of the ball-shape ROI with the tools provided by MaZda.
Although this technique is quicker than manual ROI-
racing, it is still time-consuming and lacks reproducibil-
ity. Since reproducibility is a very important criterion for
an imaging clinical tool, further research that includes
placement of the ROI by an imaging specialist such as a
neuroradiologist would be important and future research
should include inter and intra observer variability
measurements. In addition, automatic ROI segmentation
and selection of brain structures such as hippocampus
has been explored by several recent studies (Colliot et al.
2008; Desikan et al. 2009; Gerardin et al. 2009) and is
promising in standardizing ROI selection and improving
reproducibility. Hopefully, tools for automatic ROI selec-
tion will be provided by future MaZda which will make 3D
texture analysis more practical, automated and convenient
for possible future usage in clinical settings. Second, the
preliminary results of this study are encouraging and should
be investigated further. For example, sample size could be
enlarged by recruiting more subjects in our future studies.
In addition, cross-validation or a leave-one-out approach
would be employed to improve classification and use the
sample more effectively. Further, a comparison study
between texture analysis and more established approaches
such as volume and shape analysis could be performed in
the future, and a mild or moderate AD group or an MCI
group could be included to further test the 3D texture
analysis and classification approaches. Finally, the discrim-
ination power of AD (or MCI) abnormalities of 3D texture
might be improved by combining the strengths of texture
analysis with conventional approaches such as volume and
shape analysis.

In summary, texture features play an important role in
image analysis research and may develop into a useful
clinical imaging tool. Texture features are not yet clinically
used but it is an important technique to investigate. In this
study, we investigated 3D texture analysis on MR images of
AD. We found that the classification accuracy of texture
analysis in the regions of the hippocampus and entorhinal
cortex varied from 64.3% to 96.4% due to different ROI
selection, feature extraction and selection options. In
addition, we found that most 3D texture features selected
were correlated with the MMSE scores. These indicated
that 3D texture analysis could characterize the tissue
difference between AD and normal controls, and the 3D
texture features extracted from structural MRI images could
relate to the severity of AD cognitive impairment. These
results suggested that 3D texture might be a useful aid in
AD diagnosis. The findings of this preliminary study
revealed some trends in the 3D texture analysis of AD,
and more work needs to be done in the future to make it a
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truly useful supplement for AD diagnosis, meeting the
demand for improving AD diagnosis, especially in developing
countries.
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