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Introduction

From June 2019 to April 2020, Australian bushfires burnt 
more than 17 million hectares and destroyed more than 3000 
homes (Bushfire and Natural Hazards CRC 2020). These 
devastating natural disasters highlight the urgent need 
for innovative technologies as well as new fire resource 
management systems.

Fire detection and suppression methods have been largely 
the same for many years, using people in fire towers for 
ignition reporting, and a map and pencil to pinpoint the 
location for its suppression. A smarter, more dependable 
detecting system is needed, using modern technologies 
such as cameras, sensors, satellites, robots and artificial 
intelligence. However, there are challenges with the 
associated costs, and there is a lack of confidence in the 
reliability of these technologies.

This study reviews the current technologies, management 
systems and management models used in bushfire detection 
and suppression and proposes a framework that uses 
the operations research method to bring existing fire 
behaviour modelling, geographic information system (GIS) 
applications and available ground-, space- and image-based 
fire detection technologies together into one fire decision-
making framework for efficient resource management.

Current detection technologies and management 
systems

Early fire detection is an important control method and has 
been largely carried out using ground-based, space-based 
and computer image-based methods.
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Ground‑based detection

For more than half a century, a ‘person in a tower’ has 
been used to detect forest fires. However, human observers 
are costly and there is a risk to human safety as well as 
property. In addition, fire towers have a limited lifespan and 
maintenance and replacement costs are high. Moreover, 
fire towers only contribute to fire detection within their 
surroundings, perhaps up to 50 km.

Video-based fire detection monitors identify the location 
of fires and provide an alert, but these technologies require 
advanced image processing (Çelik et al 2007; Vipin 2012; 
Çetin et al 2013). The German Aerospace Institute (DLR), 
as part of the NASA Mars Pathfinder Mission (NASA, 2014) 
have provided panoramic pictures at different magnification 
levels, which gives a warning and displays the fire location 
in a GIS.

Non-visual infrared- based wireless sensor networks 
(WSNs) (Bouabdellah et  al. 2013) require advanced 
algorithms to improve communication speed and energy 
efficiency. Recently more technically advanced solutions, 
such as infrared visible light cameras and thermal imaging 
cameras, have been developed for fire detection, which 
require routing protocols for rapid data transmission 
(AL-Dhief, Sabri, Fouad, Latiff, Albader, 2019). Cetin 
et al. (2013) suggests that point sensors in WSNs can cause 
information delay, while video-based fire detection provides 
a volume of videos with timely and accurate information on 
fire size and growth. Integrating both non-visual and visual 
applications can reduce false alarms.

Manned and unmanned aircraft equipped with imagery 
sensors provide flexible fire detection by moving quickly 
to affected areas and spotting different fire occasions. 
Unmanned arial vehicles (UAV) have been used for for-
est fire detection, location and monitoring, but they have 
high costs, regulatory restrictions, and issues of robust-
ness (Ollero et al. 2006). Discontinued remote-controlled 

flying quadcopter aircrafts have also been developed and 
are equipped with gas sensors and a thermal camera to fly 
to a fire and determine the origin of the reported fire loca-
tion (Krüll et al 2012). Augmented Reality (AR) drones can 
reduce the number of false alarms than other detection sys-
tems and have a lower cost than manned aircraft, but they 
require a large power supply and can only carry limited 
weight. Table 1 lists some mainstream commercially avail-
able fire detection applications.

Recently smart firefighting robots or automated ground 
vehicles have attracted attention because they decrease 
risks to people firefighting and can increase their efficiency 
(Krasnov and Bagaev, 2012).

Space‑based detection

Another fire detection technology currently in use are 
imagery sensors on Earth-orbiting satellite systems. These 
can detect fires on a global scale and monitor them on a 
frequent basis. They are particularly useful for post-fire 
assessments of damage, determining the area burnt and 
when it occurred. However, Parks (2014) found that, while 
satellite detection provides global coverage and reasonable 
temporal resolution, the coarse spatial resolution of freely 
available satellite imagery often prevents it from accurately 
determining the exact fire location. Various fire monitoring 
systems, such as Geoscience Australia’s Digital Earth 
Australia (DEA) hotspots system, provide location and 
heat information. For example, this broad area training 
method extracts the expected diurnal cycle of a pixel using 
temporally rich data and has shown potential for use in 
fire detection. Hally et al (2019) used this method on the 
advanced Himawari Imager sensor pixels and detected 
positive thermal anomalies in up to 99% of cases based on 
low, Earth-orbiting satellite active fire products.

Satellite sensors provide observation and measurement 
data on fire hotspots, fire temperatures, actively flaming 

Table 1  Ground-based sensor methods of fire detection applications

System Range Sensor type Fire identification method Source

AlarmEye Unspecified Video camera Image colour analysis https:// www. austfi re. com. au
EYEfi SPARK Unspecified HD video camera Thermal 

sensor lightning sensor
Human https:// www. eyefi. com. au

ForestWatch Optimal 8–16 km max 40 km Video camera Image colour analysis https:// evsol utions. biz/ fores twatch/
ADELIE 20 km in clear weather Video camera Image colour analysis http:// www. parat ronic. info
Faedo 19 km Video Camera Image colour analysis https:// www. indra compa ny. com
Wildland 

Detection 
Systems

10 km Video camera Image colour analysis http:// www. wildl andsy stems. com/ 
index. html

Project VERSI 5–10 km Thermal camera video camera Thermal analysis Image 
colour analysis

http:// www. sr7. eu/ idiom as/ ing/ vigil 
ancia_ fores tal. php

Firehawk 15-km radius HD video camera Image colour analysis https:// home. fireh awk. co. za/

https://www.austfire.com.au
https://www.eyefi.com.au
https://evsolutions.biz/forestwatch/
http://www.paratronic.info
https://www.indracompany.com
http://www.wildlandsystems.com/index.html
http://www.wildlandsystems.com/index.html
http://www.sr7.eu/idiomas/ing/vigilancia_forestal.php
http://www.sr7.eu/idiomas/ing/vigilancia_forestal.php
https://home.firehawk.co.za/
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and smouldering fires, smoke, and gas emissions, burned 
areas and areas vulnerable to wildfire outbreaks. Zhukov 
et al (2005) demonstrated that the best sensors for space-
based fire detection are those in the middle infrared part of 
the electromagnetic spectrum. Combining these with RGB 
(red, green, and blue) near infrared and thermal infrared 
spectral bands from other platforms, or even the same sen-
sor platform, allows classification as well as an estima-
tion of quantitative fire parameters. Satellite platforms are 
either on a near-polar orbit approximately 700 km from 
Earth or are geostationary (about 35,000 km away). There-
fore, early detection of fires from space is limited due to 
the spatial resolution of geostationary satellite sensors 
(e.g., Himawari-8/9 AHI with 2 km for mid infrared) and 
the revisiting time of orbital satellite sensors (e.g., VIIRS 
of 12 h). Table 2 compares fire detection features of cur-
rently available satellite sensors.

Recent research approaches for early fire detection 
from space include detection of small fires with SWIR 
bands from high or very high resolution satellites, such 
as Sentinel-2, Landsat-8 and WorldView-3 (Liew 2021); 
Machine-Learning-based approaches such as for the 
detection of fire smoke (Zhao et al 2022; Zhao et al 2024a, 
b); and the use of CubeSat constellations or high-altitude 
platform systems (HAPS) to address gaps in spatial, 
temporal and spectral resolution (Tan 2020).

Nevertheless, no satellite system provides optimal 
characteristics for fire detection and monitoring; hence, 
combining various sensors is required to optimise use 
of current systems (Papaioannou et al. 2020). Moreover, 
due to limitations of each instrument, satellite imagery-
based fire information is best used in conjunction with 
other methods such as fire towers and on-ground sensor 
networks (Jones et al 2017; Umar et al. 2017).

Underlying image‑based fire detection algorithms 
and technologies

Modern fire detection systems analyse video frame 
images for the colour and shape of smoke and flames, but 
it is still a challenge for reliable identification because of 
their variability in shape, motion, transparency, colours, 
and patterns (Cetin et al 2016). Although source data can 
be provided by ground- and air-based camera sensors 
(from cameras mounted on observation towers or drones, 
respectively), the underlying detection technology still relies 
heavily on image colour analysis for long-range detection. 
The infrared thermal imaging application is usually effective 
only within a short distance.

Colour analysis is one of the oldest detection techniques 
used in video-based fire detection and is still used today 
in most detection methods. Most systems use RGB colour 
space, as many visible range cameras are in RGB format. 
The established rule is that flame pixels are RGB values with 
much larger pixel value differences (R > G > B) compared 
to smoke pixels that have RGB values close to each other 
(Cetin et al 2016). Recent research has improved colour 
analysis. For example, Vipin (2012) proposed a method to 
detect fire in images based on seven rules using both RGB 
and YCbCr colour space. Giwa and Benkrid (2018) created 
a conversion matrix for colour differentiation in an effort 
to reduce false alarms due to objects that have flame-like 
colours. Cruz et al (2016) developed a Forest Fire Detection 
Index to detect flames and smoke, especially in forested 
environments.

Since the visible spectrum (RGB colours) is associated 
with a distinct range of light wavelength (e.g., 650 nm for 
red), light spectrum analysis can also be used in fire detec-
tion. Dennison (2006) suggested that fire detection in 
shortwave infrared (SWIR) imaging spectrometer data was 

Table 2  Satellite sensors suitable for fire detection

* Himawari-8/9 based hotspots are loaded onto the sentinel hotspots platform approximately 17 min after acquisition time (in rare cases up to 
30 min)

Jlv Spatial resolution of 
respective relative bands

Revisit time Latency Information Costs

Himawari-8/9 AHI 2 km 10 min 17 min* Hotspots Free
MODIS 500 m/1 km 1 day 10–30 min (NRT) Hotspots Free
AVHRR 1.09 km 12 h 10–30 min (NRT) Hotspots Free
Suomi-VIIRS 375/750 m 12 h 10–30 min (NRT) Hotspots day and night band Free
Landsat-7/8/9 30/60/100 m 8 − 16 days Initial TIRS: < 12 h (avg 4–6 h) 

2Tier1/Tier2: 14–26 days
Burned areas Free

Sentinel-1 A/B 10 m 6 days 2–12 h (avg 5 − 6 h) Cloud-free hotspots Free
Sentinel-2 A/B 10/20 m 3 − 5 days 2–12 h (avg 5 − 6 h) Burned areas Free
Sentinel-3 A/B 1 km 1 day 2–12 h (avg 5 − 6 h) Hotspots day and night band Free
RadarSAT 3 m 1 day 4 h Cloud-free burned areas US$12/km2

WorldView-3 0.37/1.24/3.7 m  < 1 day n/a Burned areas US$58/k2
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possible using the proportion of reflected and emitted radi-
ance absorbed by atmospheric carbon dioxide. In practice, 
special sensor devices such as spectrometers are used for 
this type of analysis.

Machine learning- based methods have recently been 
introduced to improve colour analysis to increase predic-
tion accuracy and reduce false positives. Gunay et al. (2011) 
proposed a fire smoke detection method that uses adaptive 
decision fusion, on online learning framework that combines 
the results from its five sub-algorithms: slow-moving object 
detection, smoke-coloured region detection, wavelet trans-
formation, shadow detection and elimination, and classifi-
cation based on a co-variance matrix. Each sub-algorithm 
gives values between − 1 and 1 with weights adjusted.

By combining image colour analysis with other methods, 
such as infrared thermal analysis, vendors have released 
fire detection systems for commercial applications and the 
Convolutional Neural Network Analysis for better detect fire 
location (Frizzi et al 2021).

In summary, discontinued remote-controlled flying 
quadcopter (Drone) and GPS tools can be applied as image 
and position validation for more accurate point observation. 
Satellite data would be easily applied for fire detection once 
the technology is sufficiently developed; therefore, future 
research in analysing satellite image data is important.

Current fire management models

Fire behaviour models apply mathematical algorithms to 
analyse the relationships between burning conditions and 
important variables in the burning environment (Rothermel 
1972; Alexander and Cruz 2013; Zazali et al 2020), such 
as fuel loading, wind velocity, temperature, humidity, 
slope, and solar aspect. Models are expected to predict 
fire behaviour, including fire initiation, propagation, and 
risks, to help fire managers and stakeholders to make 
fire suppression decisions, primarily functioned for fire 
prevention management.

Fire management factors

A fire management system can help agencies make decisions 
when there are conflicting objectives and uncertainty 
(Martell 2015). Suppression decisions can be complicated 
due to lack of access to the fire because of steep slopes or 
particular types of vegetation (McCarthy et al 2003), forest 
road and firebreak standards (Demir et al 2009) and fire 
access roads (Akay et al 2012), as roads directly impact fire 
control activities, different road function design is critical for 
wildfire management (Thompson et al 2021).

Fuel management strategies have been presented as 
mechanical (physical) fuel load removal, controlled 
(prescribed) burns and chemical treatments. Fernandes 

et  al (2000) examined the effects of fuel management 
and suggested that, in a short-term fire management plan, 
prescribed burning and physically removing fuels effectively 
reduce fire hazards. Despite fuel conditions significantly 
affecting fire line construction rates, the costs of prescribed 
burns and fuel load removal are high, and further cost-
effectiveness analysis is needed.

Martell (2001) suggested zone-based land management to 
reduce fire risk. First, the region should be partitioned into 
zones or compartments that are reasonably homogeneous 
with respect to forest ecosystems, land use patterns and 
values at risk. Next, the potential beneficial and detrimental 
impacts of fire in each zone should be assessed. The 
appropriate level of protection or fire regime for each should 
be selected and a plan developed to minimise the cost of 
achieving that objective. Finally, a fire management plan 
should be implemented, monitored, and revised over time.

About 72% of fires are caused by negligence or 
carelessness, such as from picnic fires, burning rubbish and 
cigarettes, while less than 3% were deliberately lit, 3.5% 
were accidental, 7% were from lightning and 15% were 
unknown causes (Demir et al 2009). They also suggested 
a number of strategies to reduce fuel along roadsides and 
railways and in recreational areas. Hence, area fuel reduction 
is carried out under silvicultural programs.

Dispatch travel model

After a fire ignition point is identified, fire trucks need to 
reach it from their standby locations quickly via the most 
optimal and safest road network. Based on graph theory, 
a GIS-based network analysis analyses the shortest arrival 
time by considering road lengths, fire truck speed, fire 
behaviour, vegetation, and population [by the likely level 
of communications network]. Graph theory requires a 
network incidence matrix and a set of linked impedance 
values to analyse all moves between the sets of origins and 
destinations (fire ignition points and suppression resource 
locations). Detailed information is found in Wilson and 
Wiitala (2005), Scott and Dunn (2015) and Taylor (2017).

Some researchers have applied a simulation model using 
GIS-based satellite imagery processing workflows. Bona-
zountas et al. (2007) developed a decision support system 
supported by GIS and Visual C +  + technologies using a 
common user interface to produce an integrated computer 
system based on fuel maps from semi-automatic satellite 
imagery processing, socio-economic risk modelling and 
probabilistic models to manage fires. Linear programming 
models have been used to optimise resource allocation, espe-
cially for truck delivery (Dantzig and Ramser 1959; Vasic 
and Predic 2011). Discrete dynamic shortest-path algorithms 
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have been used for ambulance allocation which can also be 
used to support equipment allocation in fire suppression.

Data analysis model

An understanding of the fire condition and behaviour is 
required for decisions that suit the characteristics of the 
fire for the most efficient fire management. Some of the 
models utilize predictions of fire behaviour; for example, 
the Phoenix Rapidfire model uses a range of environmental 
conditions and fire behaviour components to simulate 
fire behaviour and progression (Cruz et al 2014). They 
pointed out that the model is to ‘make them respond to the 
dynamic nature of the interaction between the fire and its 
environment’. However, it has limitations of simulation 
models in general, as it did not clearly demonstrate the 
ability to present real fire propagation mechanisms and does 
not include fire detection, fire controlling routes and facility 
management tools.

Some models utilize machine learning considering 
various factors to analyze fire probability and occurrence. 
They incorporate spatiotemporal analysis to examine the 
impacts of fire on the environment and socio-economy 
(Vilar del Hoyo et al. 2011). Machine learning techniques, 
specifically the maximum entropy model (MaxEnt) and 
random forest model (RF), are employed to predict the 
habitat suitability of animals in  situations where fires 
occur (Oliveira et al 2012; Tariq et al 2022). There are 
other similar simulation models such as AUSTRALIS 
which is designed as a predictive aid for bushfire response 
management and Aurora, a web-based fire spread map and 
community warning delivery system (Cruz et al 2014).

Supporting methods in fire detection and suppression

The fire suppression process encompasses operational fire 
management activities, including pre-suppression planning, 
initial fire assessments and initial attack dispatching, 
and is integrated into initial-attack containment models 
(Hirsch et al. 2004). The cost of crew members required 
for fire suppression, influencing cost-effective forestry land 
management, determines the necessary resources (Hirsch 
et al 2004). Efficient fire attack relies on accurate fireline 
estimations, often defined by the beta probability for a more 
precise prediction of fireline construction rate (Gilless and 
Fried 2000). McCarthy et al (2003) studied firefighting 
resource allocation and fireline construction rates to enhance 
construction predictions. They highlighted terrain, debris, 
and operator experience as primary factors.

Reducing bushfire risk rather than increasing suppression 
resources may be a better strategy (Morgan et al 2020), 
especially by using prescribed burning. Florec et al (2020) 
determined that in the south-west forested West Australia 

region, the most cost-effective controlled burn would be a 
15% of the land as an optimal prescribed burning regime. 
The high coefficient value of each treatment size is bigger 
than 1500 ha and the cost per ha A$34. For 500–1500 ha, 
the cost to control a fire would be A$47 per ha.

The cost of implementing each technology would 
be a substantial amount up-front, but it is beneficial to 
government agencies and forest companies (Cetin et al. 
2013). For example, fire alarms require management to 
analyse false alarm frequency and cost–benefit analysis 
but achieve a safer outcome (Marks et al 2017). For forest 
fire alarms, Elmas and Sönmez (2011) applied data fusion 
algorithms such as an artificial neural network, a Naive 
Bayes classifier, fuzzy switching, and image processing 
to form a data fusion framework to help form efficient 
strategies for firefighting.

In an international context, there is a disconnect between 
technical feasibility and firefighting management decision-
making, mainly due to a lack of understanding of these 
techniques and their cost. There is a need to determine the 
right technology at the right cost to make correct decisions. 
The probability distribution of human-caused fire can use a 
Poisson distribution that can fit fire occurrence reasonably 
well, and the Markovian properties can help simplify fire 
management systems (Cunningham and Martell 1973).

Fire suppression strategies

To place the best resources at the right fire location in fire 
suppression management, it is important to first look at 
landscape information with regards to fuel type, route map 
(minimum travel time), water points, fire behaviour with 
regard to moisture, wind speed and direction, the facilities 
available (fire crews, tankers, trucks, aircraft and to whom 
they belong) and the fire management program (Martell 
2007). Some of the traditional methods of dealing with fire 
have been redirected such as prescribed burning (Morgan 
et al 2020).

Calkin et al (2005) suggested including drought factors 
into fire suppression expenditure decision making, assessing 
the possible beneficial and detrimental impacts of fire in 
each zone, selecting an appropriate level of protection for 
each zone and developing a plan to minimize the cost of 
achieving that objective, and implementing, monitoring, and 
revising the fire management plan over time.

In their study of the stochastic Weibull models and 
negative exponential models, Johnson and Wagner (1985) 
suggested that the fire cycle, annual burned area percent, 
average age of the vegetation and renewal rate are important 
in estimating pre- and post-fire suppression distributions.

Many current models tend to be one or two function 
focused. They are compartmentalized in each of the 
operations or scarcely able to systematically analyse for fire 
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detection and suppression decision- making. There needs to 
be a holistic system that enables all the data from different 
technologies to function together.

Integration of simulation and real time detection 
system

Fire detection and suppression systems can be integrated into 
new technologies such as those mentioned previously and 
in UAV and other automated facilities to result in feasible 
operation procedures for management (Ollero et al. 2006). 
For a more efficient system to respond to and extinguishes 
fires, additional tools should be deployed to determine fire 
location, and facilities to access the fire for extinguishing. 
Cetin et al. (2013) identified important aspects to put into 
an integrated system: having the right equipment in the right 
place; being able to access to the most capable tools to assist 
suppression; having an accurate, up-to-date management 
view of the fire (e.g., wind direction, speed and other 
weather conditions, fire direction and growth rate); being 
able to forecast fire size, speed and direction; and making 
the best resource allocation decisions (e.g., whether to send 
two firefighters in an SUV or a C-5 aerial flame suppression 
tanker).

Martell (2015) noted that a fire management system can 
be viewed from a supply chain management perspective 
and defined as delivering ‘the right amount to the right 
fire at the right place at the right time and right cost’. Fire 
managers operate in a highly challenging decision-making 
environment characterised by complexity, conflicting 
objectives, and uncertainty.

Current fire decision management systems are mostly 
focused on firefighting decision-making or fire spreading 
simulation and ignore modern and renewed fire detection 
technologies and integration of all relevant functions. Using 
operations research methods to combine fire detection 
technology and resource management decision-making can 
improve both resource use and time efficiency.

Operations research

Victoria Minas, Hearne, Handmer (2012) discussed different 
operations research methods, referred to as operations 
research (OR)/management science by Martell (2015), 
enabling analysis of interactions between people, resources, 
and the environment to aid decision-making in complex 
systems such as fire detection and resource suppression.

Operations Research is a discipline that utilizes 
mathematical and analytical methods to enhance decision-
making processes and address intricate problems. It employs 
a scientific approach and applies quantitative techniques 
to improve decision-making. The primary objective is to 

leverage applied mathematics such as data modeling and 
linear programming, (e.g., Vilar del Hoyo et al. 2011), to 
tackle complex resource optimizations such as multi-point 
fire extinguishing.

OR methods encompass a spatial platform such as the 
R-ArcGIS bridge which addresses challenges related to 
travel time and resource location. GIS technology empowers 
modelers to consider real travel time or estimated travel 
time based on historical travel data, enhancing network 
efficiency. It can combine with other methodologies, such 
as R language, to consider large amounts of information or 
use a linear program model to monitor resource allocation at 
multi-fire locations. It also can include other factors such as 
road conditions, land information and multiple fire-related 
weather indicators. In addition, GIS systems can link with 
other fire detection technologies, such as using sensors and 
drones, to accurately report, reconfirm and indicate fire 
location.

Other studies have applied GIS systems and raster 
imagery data into a simulation model. Bonazountas et al 
(2007) used a GIS network analysis tool, employing 
spatial analysis to calculate travel time, in the same way 
as described by Wilson and Wiitala (2005), where roads 
were converted into raster cells. An accumulated access map 
provides travel time to each given raster cell.

A new framework

The proposed optimised fire suppression decision-making 
framework has four components: fire forecasting and pre-
vention, detection, initial attack, and continuous attack and 
monitoring (Fig. 1).

Fire forecasters may use different types of tools such as 
satellite sensors that can provide heat maps or ground-based 
sensors providing temperature, humidity, and wind data to 
warn of fire hazards. However, prevention methods, such as 
controlled burns and removal of fuel, can efficiently reduce 
fire danger. Although prevention measures may effectively 
reduce fire hazards, they can be costly, and a cost–benefit 
analysis is needed.

Fire detection systems identify sources of heat, smoke, 
and flames. Historically, a person working in a fire tower 
had been the preferred way to detect forest fires. In recent 
years, detection methods have been advanced by satellite, 
camera, sensor technologies and machine learning analysis. 
However, every technology has its disadvantages, so it often 
is better to combine different technologies (e.g., satellite, 
drones, tower cameras) and use smart data management to 
detect fires faster and identify the ignition point.

Detecting the initial fire ignition is vital. Once this 
is confirmed, the quickest decision on equipment, crew 
members, transport routes and defining the fireline will help 
stop the fire spreading. A GIS-based platform can perform 
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spatial analysis using road network data, water features, 
terrain models and land use to provide information for 
efficient decision-making.

Fire continuous monitoring is based on a simulation 
model that brings together information on temperature, 
wind, fuel levels and humidity to inform fire behaviour. This 
can be further extended to estimate the cost of using exter-
nal resources and the introduction of an on-site monitoring 
system such as a camera. Figure 2 illustrates a combined 
technology system for smart fire detection, including human 
media reporting, camera and drone monitoring, and sensor 
and satellite systems. Advanced technology such as artifi-
cial intelligence can be introduced for increased warning 
and therefore increase fire detection accuracy. The current 
framework only addresses certain technologies, and there is 
a lack of coherence.

The development of a holistic framework requires the 
efforts of numerous stakeholders, including federal and 
state government policymakers, country fire services, 
forest growers, farmers, researchers, and communities. 
This collaboration is often lacking in existing frameworks. 

Fig. 1  Fire suppression decision-making framework

Fig. 2  Resources involved in the fire suppression system
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There needs to be more effort to join different methods and 
stakeholders together in the system and to implement and 
updated it with new technology.

Green triangle region case study

The developed framework can significantly contribute to an 
advanced fire detection and suppression system. This study 
focused on the Green Triangle region of South Australia and 
Western Victoria, encompassing some 350,000 hectares of 
tree plantations with an estimated value of approximately 
AUS $3.0 billion. The region is equipped with multiple fleet 
trucks, water bombing aircraft and helicopters, and seven 
fire towers managed by Forestry SA in South Australia’s 
southeast on high-risk days to report smoke and potential 
fires.

The current problem revolves around decisions to 
continuously update the fire towers or to transition to an 
automated fire detection system. Presently, the existing 
framework is a combination of traditional operational 
systems and some partial automated ones. It consists of 
a fire tower report (for high fire risk days) and telephone 
reports (on non-high fire risk days). Additionally, a fire 
behaviour estimation system, Phoenix, used for fire 
behaviour estimation and economic analysis, is part of the 
framework. Various spatial tools like ArcGIS and other 
software applications are employed for fire-related analysis.

For Mt. Gamier, it is crucial to periodically establish an 
automated fire detection system, considering that the forest 
owners and ForestrySA are actively seeking solutions for 
reducing detection cost on fire tower and decision-making 
for better detection.

(1) Implementing a human telephone report system, 
enhancing it with automated positioning and 
confirmation technologies for efficiency.

(2) Establishing and monitoring sensor points to form 
a reliable network, enabling analysis and warning 
functions.

(3) Utilizing satellite data (DEH hotspots) for space-based 
fire detection, forecasting, and detection improvement; 
current satellite sensor data still do not provide 
sufficient spatial, temporal, and spectral resolution to 
detect small fires; early detection is far from less than 
an hour).

(4) Continuing to use data analysis model-Phoenix 
Rapidfire for fire behaviour and economic analysis, 
with a potential extension into machine learning.

(5) Incorporating drones to confirm fire warning 
information and predict fire behaviour adjustment; the 
drone has limitations such as battery capacity and the 
restricted application within Australia within governing 
legislation.

(6) Employing machine learning to enhance fire detection 
algorithms, including smoke detection and sensor 
fusion, for improved precision and accuracy.

A data analysis model, Phoenix Rapidfire, has been 
used for fire behaviour and economic analysis. The model 
consists of a fire management business component, a fire 
characterization component, and a fire impact component. 
The model provides a relative measure of any combination 
of these elements in terms of bushfire risk:

(1) Calculate the point rate of spread, flame height, and fire 
line intensity;

(2) Estimate the physical “impact” of the fire on specified 
values and assets;

(3) Provide this information in a form that can be used to 
assess the consequence of these impacts (Tolhurst et al. 
2008).

The stakeholders of the Green Triangle have expressed 
a desire for an automated fire detection and suppression 
system that is more risk-based and cost-effective, enabling 
early suppression responses. Using Phoenix Bushfire 
Modelling to estimate fire losses under a range of fire 
scenarios helps identify the costs of changes to detection 
times in terms of average annual loss and potential 
maximum loss from single fires. A loss of planation assets 
to a bushfire is calculated by the time taken to detect the fire, 
the time to despatch fire crew and travel time, and considers 
fuel, fire history, occurrences, types and the resources 
available. Table 3 shows a summary of fire impacts in terms 
of 95th percentiles, maximum values and averages. These 
are available for areas of plantation burnt, value loss, and 
standing value for each scenario, plantation type, detection 
time and weather. The Phoenix Bushfire Model provides a 
guide to maximum potential loss from a single fire but does 
not consider the likelihood of multiple fires.

The proposed framework integrates insights from the 
outcomes of Phoenix Rapidfire and incorporates data 
analysis models like AUSTRALIS and Aurora. Drawing 
from the current practices in the Green Triangle area, 
this project formulated an evaluation table that assesses 
the current status of the automated fire detection and 
suppression system, focusing on five key fire components: 
identification, confirmation, location, firefighting route 
choice, and decision-making for resource allocation. The 
proposed evaluation is also informed by the most recent 
literature, encompassing matrix information detailing the 
stages of fire suppression and the technologies applied. This 
includes data collection spots, data analysis models, GIS 
applications, and cost estimations (Table 4).

Based on this framework, appropriate technologies can 
be selected and combined to create a feasible and reliable 
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next-generation fire detection solution. For example, an 
ArcGIS-based platform could overcome some of the disad-
vantages of the Phoenix bushfire model and improve other 
aspects of bushfire-related management. Fire suppression 
would consider cost allocation between modern detection 
systems, land management, human resources, equipment, 
and the fire detection system as a whole to seek an optimised 
solution.

While the integration of high-altitude pseudo-satellite 
(HAPS), unmanned aerial vehicles (UAVs), both aerial 
and around based, and sensor-based fire detection systems 
is on the horizon, challenges persist. Testing for reliability 
is expensive and effective stakeholder management is cru-
cial due to the potential for different priorities of private 

ownership of plantations. Consequently, a clear operation 
procedure must be developed and continually devoted to the 
establishment of an automated fire detection/distinguishing 
system.

Conclusions

Using the Green Triangle as a case study, this paper shows 
that forest fires pose a high risk to the plantation forest 
industry and communities. In comparison to the high cost 
associated with the current human fire detection method, an 
integrated fire resource suppression system can encompass 
fire detection and suppression measures. New technologies 

Table 4  Evaluation table of the fire suppression and modelling system

Fire detection Fire suppression 
resources

Original data sources Data analysis model: 
phoenix rapidfire

ArcGIS platform Cost

Generation of hotspots
Fire forecast and 

prevention
Satellite Online inform Used for fire forecast High
Fuel management: 

controlled burn pruning 
and agroforestry 
(grazing control of 
fuel)

Planning and scheduling Used for fire 
management and loss 
prediction

Middle

Facility improvement 
(airtanker, robots) crew 
member and training

Planning and investment Used for fire 
management and loss 
prediction

High

Land planning: transport 
and firebreak system

Planning document Used for fire 
management and loss 
prediction

Travel time calculation Low

Identification of ignition point
Fire detection: checking 

hotspots within 20 min
Camera system AR drone 

confirmation
Video information and 

GIS
Fire ignition point, 

fireline estimation
Fire location detection Middle

Sensors (theorem, smoke, 
flame)

System signals and GIS Fire location detection Low

Human online report Descriptive information 
Pictures

Faulty report filtering Low

Human tower Phone call Fire location 
confirmation

High

Decision for initial attack
Fire initial attack: travel 

time and attack time 
within 30 min

Transportation and GPS Road map and transport 
monitoring

Transport and time 
calculation

Low

Fire suppression 
equipment and robots

Equipment supply Resource transportation High

Human crew Human resource supply Resource allocation Middle
Suppression necessities Resource supply Resource supply Resource supply Low

Decision for clean up
Fire continuous-attack 

and monitoring
AR drones Video information and 

GIS
Fire monitoring and 

report
Low

Camera as secondary 
information?

Video information and 
GIS

Fire monitoring and 
report

Low

Any on-site monitoring 
system?

Monitoring data Fire location monitoring Middle

Human inspections Documents Fire loss Middle
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such as online media, smart cameras, sensors, satellites, 
and artificial intelligence can be used for an advanced fire 
detection system, and existing fire simulation technologies 
such as the Phoenix Rapidfire can be used for fire behaviour 
simulation and cost estimations. All the information can be 
further imported into a GIS for fire suppression decision-
making. At the same time, other supporting technology, such 
as GPS data resources, should be utilized in the firefighting 
fleets optimization decision- making. Some recent study has 
included include the transitional way and modern method 
and Artificial learning (Zhao et al. 2024a, b). An automated 
fire detection and suppression system should be developed 
to improve fire-related information transfer and exchange 
for greater efficiency.

When making decisions about fire suppression, estimating 
detection time and travel time is challenging. Currently, 
there are applications to develop an integrated and smart 
fire detection and resource suppression system equipped 
with artificial intelligence and image processing technology. 
In such an approach, validation for the system output is 
necessary utilizing AR drone, GPS data and satellite images.
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