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standardized precipitation-evapotranspiration indices (SPEI) 
strengthened in the mid- and lower-transect. Comparison 
between growth and vegetation data showed that tree growth 
was more sensitive to drought in stands with higher species 
richness and greater shrub cover. Drought stress on growth 
may be increased by heavy competition from shrub and 
herb layers. These results show the non-stationary nature 
of tree growth-climate associations and the linkage to for-
est community structures.   Vegetation components should 
be considered in future modeling and forecasting of forest 
dynamics in relation to climate changes.

Keywords Climate change · Tree rings · Altitudinal 
gradient · Community structure · Plant diversity

Introduction

The relationship between radial growth of trees and climatic 
factors has long been assumed to be stable over time in cli-
mate reconstruction studies (Fritts 1976), rendering it the 
basis to predict forest carbon fluxes and sinks, or to assess 
forest health risks in a changing environment (Braswell et al. 
1997; Vaganov et al. 1999). However, shifts in tree growth 
sensitivities from temperatures to moisture in the late twen-
tieth century (Jacoby and D’Arrigo 1995) and the instability 
of growth-climate response has been widely reported from 
boreal forest zone to mid- and low-latitude forests (Briffa 
et al. 1998; Barber et al. 2000; Wilmking and Myers-Smith 
2008). Characteristics of the instability and mechanisms 
behind it differ from one region to the next (Briffa et al. 
1998; D’Arrigo et al. 2008; Wilmking and Myers-Smith 
2008). Nevertheless, there is a lack of information on how 
forest community structures affect climate-growth relation-
ships despite the instability of growth-climate response and 
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its causes have received increasing interest in forest ecology 
and global climate change.

Declining temperature and increasing moisture sensitivi-
ties in tree growth are widely reported for high-latitude for-
ests, possibly due to rising temperatures in combination with 
increased drought stress (Jacoby and D’Arrigo 1995; Briffa 
et al. 1998; Driscoll et al. 2005). In addition to changes in 
climate, nutrient availability and microsite conditions could 
also change the sensitivity to temperature variations (Wilm-
king et al. 2004; Wilmking and Juday 2005). A recent study 
showed that temporal variability in tree growth response 
to climate is universal and relates to severe disturbances 
or physiological states of trees (Peltier and Ogle 2020). 
Similar changes in the relationships between growth and 
climate were also reported for high-altitude forests such as 
on the Tibetan Plateau. For example, growth of Picea cras-
sifolia Kom. on the northeastern Tibetan Plateau showed a 
strengthening of correlations of annual radial growth with 
summer temperatures but with a very high spatial hetero-
geneity, i.e., positive on some sites and negative on oth-
ers (Zhang and Wilmking 2010; Wang et al. 2020). In the 
eastern and southeastern Tibetan Plateau, divergent tree 
growth response to recent climate warming was observed 
between Abies fargesii Franch and Larix kongboensis R.R. 
Mill (Zhao et al. 2018; Yu et al. 2023). In contrast, studies 
of tree-ring data in the European Alps showed no unusual 
late twentieth century divergent growth responses (Büntgen 
et al. 2008). An examination of the data handling procedure 
suggested that divergent growth response would have been 
prevented if the sites and trees were carefully selected and 
appropriate techniques for tree-ring detrending and growth-
climate regression were used (Esper and Frank 2009). To 
date, the causes and spatial scale of changing tree growth-
climate response are still debated.

Tree growth-climate relationships may exhibit significant 
differences along an altitudinal gradient in the same region 
(Kharal et al. 2017; Gaire et al. 2023). For example, previous 
studies have reported that temperature is the limiting factor 
at the treeline while tree growth is more sensitive to fluctua-
tions in precipitation at lower altitudes (Lv and Zhang 2012; 
Kharal et al. 2017; Panthi et al. 2020). In addition to climate 
conditions, forest community structure may vary at differ-
ent altitudes because decreasing temperatures could restrict 
some plant species as altitude increases (Rahbek 1995; Ma 
et al. 2010), resulting in communities at lower altitudes 
that are more diverse and denser in composition than those 
at higher altitudes (Kraft et al. 2011). Forest community 
structure may affect tree growth in two alternative ways by 
either exaggerating or buffering the climate change effects 
on growth (Pretzsch and Dieler 2011; Clark et al. 2012, 
2016). Despite the important role of vegetation communi-
ties on tree growth and its climate response, this has been 
largely overlooked in previous studies. Therefore, clarifying 

the associations between vegetation communities and tree 
growth-climate response remains an important objective.

In this study, the temporal characteristics of tree growth-
climate response of Abies georgei var. smithii (Viguiéigu-
Gaussen) W. C. Cheng & L. K. Fu (Smith fir) along an 
altitudinal gradient in the Meili Snow Mountain on the 
southeastern Tibetan Plateau were investigated. Differences 
in hydrothermal mountain conditions provide a diversity 
of vegetation communities along an altitudinal gradient. 
However, the influence of vegetation structure on instabil-
ity about tree growth-climate associations is not well rec-
ognized (Zhang and Wilmking 2010; Yu et al. 2023). The 
objectives of this study is to identify, along an altitudinal 
gradient, spatial–temporal patterns of tree growth-climate 
associations and the link to vegetation structures. It was 
hypothesized that climate warming-induced changes in 
tree growth-climate relationships would be exaggerated by 
denser community structures at lower altitudes. Evidence 
of such processes would provide insight into the feedback 
between forest growth and climate changes and contribute to 
the design of future research on forest dynamics.

Materials and methods

Study area and climate

We collected increment cores of Smith fir trees and forest 
community structure data in 20 m × 20 m vegetation plots 
from the treeline to the lower limit of the forest distribution 
located on the southwest of Meili Snow Mountain, south-
eastern Tibetan Plateau (98.46–98.50°E, 28.528–28.555°N). 
The regional climate is influenced by the southwest Asian 
monsoon (Bird et al. 2014; Yu et al. 2016). Because the 
meteorological station closest to the sampling site started 
climate observations in 1958, climate data was obtained for 
1958–2019 from Climate Unit (CRU) 4.05 dataset (http:// 
clime xp. knmi. nl). Over the study area, mean annual air tem-
perature is 3.1 ℃ and annual total precipitation 767 mm, 
with 78% falling in the monsoon period from May to Sep-
tember (Fig. 1a).

Trends in mean annual air temperatures and total pre-
cipitation were investigated using the non-parametric 
Mann–Kendall technique (Yue and Wang 2004). Kendall’s 
tau (t) was calculated to evaluate the nonparametric correla-
tion between climate factors and time. The absolute value 
of t was used to evaluate the strength of the trend. A posi-
tive value implies an increasing trend and a negative one a 
decreasing trend. Over the period 1958–2019, annual air 
temperatures showed an increasing trend (t = 0.51, p < 0.01) 
and annual total precipitation an insignificant decreasing 
trend (t =  − 0.12, p = 0.83) (Fig. 1b).

http://climexp.knmi.nl
http://climexp.knmi.nl
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Vegetation survey and tree‑ring data

Forests growing between 3600 and 4200 m a.s.l. are domi-
nated by Smith fir, which is gradually replaced upwards by 
Rhododendron shrubs and by Pinus yunnanensis Franch. at 
lower elevations. Plots 20 m × 20 m were established every 
100 m between 3600 and 4200 m a.s.l. Four 10 m × 10 m 
shrub quadrats and four 1 m × 1 m herb quadrats were set 
out in each plot in a diagonal direction. In each quadrat 
or plot, the plant species were identified, and their abun-
dance, height and cover recorded. For trees, individual 
DBH (diameter at breast height) and crown width were 
recorded, and seedlings of each tree species were also 
recorded. In forest plot, increment cores were taken from 
Smith fir trees with DBH > 15 cm.

In the laboratory, increment cores were mounted, pol-
ished and measured according to standard dendrochrono-
logical techniques. The sequences of tree-ring widths were 
crossdated and the quality of crossdating was validated 
using the program COFFCHA (Holmes 1983) to ensure 
each ring was assigned the calendar year of its forma-
tion (Schweingruber 1988). To obtain well-replicated 
chronologies, the tree-ring samples were grouped into 
three altitudes, treeline (4200 m a.s.l.), middle elevation 
(3900–4100 m a.s.l.) and lower elevation (3600–3800 m 
a.s.l.). A standard tree-ring chronology was developed 
for each elevation group by fitting a negative exponential 
curve or a straight line of negative slope to the tree-ring 
sequences to remove any biological growth trends and 
computing bi-weight robust means of the resulting ring-
width indices (Cook 1985).

Statistical analysis

Climate data covering the study area for 1958–2019 was 
obtained from Climate Research Unit dataset CRU TS v4.05 
(Harris et al. 2020). The climate variables were monthly mean 
temperature, monthly mean diurnal temperature range, total 
monthly precipitation, and 6-month scale standardized precip-
itation-evapotranspiration index (SPEI). The climate-growth 
relationships were investigated using Pearson correlations with 
a monthly window from September of the previous year to 
September of the following year over 1958–2019. In addition, 
temporal variability of the growth-climate relationships was 
analyzed using correlations between the tree-ring chronologies 
and the most correlated climatic variables over a 30-year slid-
ing window. The analyses were carried out using the package 
cor (Best and Roberts 1975) in the R-4.2.2 program (R Core 
Team 2022).

To characterize the vegetation structure, species informa-
tion was compiled for each plot, including name, frequency 
of occurrence, density, coverage, species richness and num-
ber of seedlings. The importance value for each plant was 
obtained by averaging its values of relative frequency, density 
and coverage.

To evaluate the possible linkages of community structure 
with tree growth, the mean sensitivity of interannual change 
of tree-ring widths were calculated for each sample using the 
following (Lyu et al. 2016a):

(1)S =
1

n − 1

n−1
∑

i=1

2 ∣ R
wn

− R
wn−1 ∣

R
wn

+ R
wn−1

Fig. 1  a climatic diagrams and b changes 1958–2019. MAT and MAP in (a) are mean annual temperature and mean annual total precipitation, 
respectively. The solid line is significance (p < 0.05) while the dashed line is an insignificant (p > 0.05) trend
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where, S is mean tree-ring sensitivity; Rwn is the raw ring 
width for year n; Rwn-1 is the ring-width before year n. The 
mean sensitivity ranges from 0 to 2; if it is 0, there is no 
difference among the annual rings, and if it is 2, the tree 
grows in one year and stops growth in the next. Finally, lin-
ear regression analysis was applied to assess the relationship 
between the percentage of tree growth reduction and forest 
community structure (Montgomery et al. 2021).

Results

Development of tree‑ring chronology

Tree-ring sequences, with years ranging from 50 to 314, 
were cross-dated and subjected to analyses (Table 1). With 
increasing altitude, the average sensitivity of tree rings 
decreased from 0.21 to 0.14, and the mean standard devia-
tion from 0.51 to 0.15, indicating a reduced sensitivity and 
variation in tree rings with increasing altitude. There were 
no significant differences in the mean auto-correlation and 
mean inter-series correlations at different altitudes. Values 
of the expressed population signal (EPS) > 0.85 started from 
1860, 1905 and 1920 in the chronologies for upper, middle 
and lower altitude trees, indicating that chronologies after 
these years contained strong common signals for the sam-
pling sites (Fig. 2).

Relationship between tree‑ring chronologies 
and climatic factors

Analyses of growth-climate relationships showed that 
ring widths were positively correlated with November 
temperatures of the previous growth year for all altitudes. 
Positive correlations between ring width and April and 
July temperatures of the following year were observed at 
the treeline (Fig. 3a). At middle and lower altitudes, ring 
widths were positively correlated to SPEI from the previ-
ous September to the following September (Fig. 3b). How-
ever, there were no significant correlations with monthly 
SPEI for trees at the treeline. For monthly precipitation 

and diurnal temperature differences, tree-ring indices had 
no significant correlations with total monthly precipitation 
(Fig. 3c), but a significant correlation with monthly diur-
nal temperature range in March and April of the following 
year at middle and lower altitudes (Fig. 3d).

The moving correlation analyses using a 30-year sliding 
window showed a significant positive correlation between 
tree rings and November temperatures of the previous year 
starting in the late-1950s to the mid-1970s for the upper 
altitude, in the early half of the 1970s for the middle alti-
tude, and in the early 1970s to mid-1980s for the lower 
altitude (Fig. 4a). Annual growth was significantly posi-
tively correlated with annual SPEI from the early 1970s 
for the lower and middle altitudes, and showed an increas-
ing trend. Tree rings at the treeline were not correlated 
with SPEI in any window of the analysis (Fig. 4b).

Table 1  Information and 
statistics of tree-ring sequences 
for upper, middle and lower 
altitudes on the Meili Snow 
Mountain

SD, standard deviation; MS, mean sensitivity; AR1, first-order autocorrelation; Rbar, mean inter-series cor-
relation; EPS, expressed population signal

Sites Altitude (m) No. of trees 
(ind.)

SD MS AR1 Rbar Year when 
EPS > 0.85

Upper 4200 9 0.15 0.14 0.88 0.43 1920
Middle 3900, 4000, 4100 31 0.42 0.156 0.87 0.47 1905
Lower 3600, 3700, 3800 44 0.51 0.213 0.85 0.43 1860

Fig. 2  Standard tree-ring width chronologies of Smith fir for a upper, 
b middle, and c lower altitudes on Meili Snow Mountain; dotted lines 
indicate year from which the values of expressed population signal 
were greater than 0.85
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Characteristics of forest community structure 
along the altitudinal gradient

Along the altitudinal gradient, there were 130 plant species. 

For the upper, middle and lower altitudes, the number of 
tree species were 3, 5 and 6, the number of shrub species 
3, 6 and 10, and the number of herb species 13, 13 and 0, 
respectively. Rhododendron spp. are common in the shrub 

Fig. 3  Pearson correlation coefficients between standard tree-ring 
chronologies and a mean monthly air temperature and b standardized 
precipitation evapotranspiration indices SPEI, c total monthly precipi-

tation and d monthly mean diurnal temperature range from the previ-
ous September to September of the following year for 1958–2019

Fig. 4  Moving correlations 
between a standard tree-ring 
chronologies and November 
temperatures of the previous 
year and b annual SPEI with 
a sliding 30-year window for 
1958–2019
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layer at all altitudes, and their importance increases with 
altitude. Species composition became simpler with altitude 
(Table. S1). The species richness (SR) and shrub cover (SC) 
lessened with altitude (Fig. S1). In addition, the number of 
Smith fir seedlings decreased significantly with increased 
shrub cover and species richness (r =  − 0.82, p < 0.01; 
r =  − 0.83, p < 0.01) (Fig. 5).

Relationship between annual rings and forest 
community structure

The mean interannual tree-ring sensitivity in different com-
munities decreased with increasing altitude from 1970 to 
2019, consistent with the changes in shrub cover and spe-
cies richness (Fig. S1). Correlation analysis showed that this 
growth sensitivity was positively correlated with shrub cover 
and species richness (r = 0.82, p < 0.01; r = 0.83, p = 0.005) 
(Fig. 6).

Discussion

In this study, there were significant differences in climate-
growth relationships at different altitudes. Growth at the 
treeline was regulated by temperature (Fig. 3a), which is 
in agreement with the ‘temperature limitation hypothesis’ 
(Körner 1998; Körner and Paulsen 2004). Specifically, 
the positive effects from previous November temperatures 
on growth may be related to higher temperatures would 
prolong the growing season and enhance photosynthe-
sis (Esper et al. 2007). In contrast, drought stress was a 

key factor limiting tree growth at middle and lower alti-
tudes (Fig. 3b). The pattern that temperature limitation 
at the treeline with moisture limitation at middle and low 
altitudes has been reported elsewhere (Di Filippo et al. 
2007; Lv and Zhang 2012; Loehle et al. 2016). Because 
the May–September rain in the Meili Snow Mountain 
area accounts for 78% of the annual amount (Fig. 1a), the 
positive correlation between ring widths and SPEI were 
strongest before the growing season (Fig. 3b). Pre-growing 
season climate effects on growth have also been reported 
in previous studies on the Tibetan Plateau (Liang et al. 
2008; Zhang and Wilmking 2010; Gao et al. 2022).

The best correlated drought stress on tree growth (as 
indicated by the correlation) was not stable over time. Our 
results show that variations in ring widths were mainly con-
trolled by temperatures at the treeline, but have gradually 
weakened since the 1970 (Fig. 4a). The diminished tem-
perature effects on tree growth may be related to tempera-
ture increase (Kuang and Jiao 2016; Thakuri et al. 2019). 
Rising temperatures alleviated the low-temperature limi-
tation on tree growth and thus accelerated photosynthesis 
(Salerno et al. 2015; Thakuri et al. 2019) and ultimately 
growth (Körner et al. 2016; Sigdel et al. 2018; Anderson 
et al. 2020). At the same time, associations between SPEI 
and tree growth were strengthened in middle and lower alti-
tude forests (Fig. 4b), indicating that the drought limitation 
on tree growth have been strengthened by accelerated warm-
ing over past decades (Koerner 2015; Ren et al. 2018; Gao 
et al. 2020). Similarly, intensified drought on growth was 
also observed in other parts of the Tibetan plateau (Liang 
et al. 2016a; Zhang et al. 2017; Yang et al. 2022).

Fig. 5  Changes in Smith fir 
seedlings, shrub cover and 
species richness for each 
20 m × 20 m plot. The solid line 
and shadow show the mean and 
95% confidence interval of the 
linear regression.  adjR2 is R 
squared adjusted by degree of 
freedom
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In addition to climatic forcing, other factors such as 
community structure also affect tree growth and modify 
growth sensitivity to environmental changes (Pretzsch 
et  al. 2013; Primicia et  al. 2015). In this study, tree 
growth was more sensitive to climate changes in denser 
forest communities with higher species richness (Fig. 4 
and Fig. S1), indicating that community structure may 
have exaggerated the sensitivity of tree growth to climate 
changes. Higher stand density may enhance growth sensi-
tivity to moisture variations at lower altitude forests (Gros-
siord et al. 2014; Primicia et al. 2015), because the com-
petition for water would further exaggerate drought stress, 
leading to increased growth variability (Brown et al. 2005; 
Barbier et al. 2008; Raz-Yaseef et al. 2010). The effects 
of competition from shrubs on tree growth has also been 
reported for the Tibetan Plateau (Liang et al. 2016b; Lyu 
et al. 2016b; Wang et al. 2016). Similarly, the importance 
of stand characteristics was found to be three times greater 
than that of climate variables to forest growth in some 
forests of northeastern China (Dong et al. 2024).

Our results disclose that fewer Smith fir seedlings occur 
in lower altitude than upper altitude forests (Fig. 5). Intense 
competition from shrubs would make establishment of seed-
lings difficult (Keeling and Phillips 2007; Luo and Chen 
2015; Poorter et al. 2017). Besides, fewer Smith fir seedlings 
also may be related to restricted sunlight (Szefer et al. 2020; 
Royo and Carson 2022), so that seeds cannot geminate when 
shrub cover is high (Robson et al. 2009; Annighöfer 2018). 

Therefore, future climate change may alter forest structure 
through competitive disturbance and inhibition of stand 
regeneration.

It should be acknowledged that an altitude gradient is 
largely corresponding to a temperature gradient, which could 
directly remove some species and thus change species com-
position along (Rahbek 1995; Rahman et al. 2020). There-
fore, the effect of altitude and community on growth-climate 
response cannot be separated, leading to a lack of evidence to 
support how tree growth patterns are modified by community 
structure. Although both forest community and tree growth 
will respond to climate changes, community structure can-
not adjust immediately to climate warming like tree growth 
because the formation of a new community structure requires 
a relatively long period of time (Littell et al. 2008; Zhu et al. 
2012). Therefore, tree growth-climate relationships are con-
trolled by inter-annual climate variations directly and modified 
by forest community structure through competition or simul-
taneously facilitated indirectly. Given the limited understand-
ing on the effects of community structure on forest dynamics, 
more research is needed to explore the effects of community 
structure on tree growth-climate relationships in forests with 
diverse geographic, climatic, taxonomic and ontogenetic back-
grounds to obtain a reliable understanding of forest dynamics.

Fig. 6  Relationship between 
mean tree-ring sensitivity and 
forest community structure 
indices shrub cover and species 
richness 1970–2019; solid line 
and shadow show the mean and 
95% confidence interval of the 
linear regression.  adjR2 means 
R squared adjusted by degrees 
of freedom
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Conclusions

In this study, changes in the relationship between tree growth 
and climate and its link to forest community structure along 
an altitudinal gradient were investigated. Accelerated cli-
mate warming had alleviated the low-temperature limitation 
on tree growth at the treeline and enhanced drought stress on 
the middle and lower altitudes after 1970. The higher shrub 
cover and species richness may have further exaggerated 
growth sensitivity to drought. Our findings shed new light 
on the linkage of tree-growth response to climate and veg-
etation structure and reveal the instability of growth-climate 
relationships.
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