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predicting temperature variations and provide technical sup-
port for underground fire monitoring.
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Introduction

Forest fires are classified into surface, canopy, and under-
ground fires. Underground fires occur less frequently than 
the other types, but the damage can be significant (Watts and 
Kobziar 2013). Underground forest fire is slow spreading, 
long-lasting and having low temperature smoldering com-
bustion without flame (Ohlemiller 1985; Rein 2013). These 
fires cause fatal damage to plant roots (Page et al. 2002; 
Davies et al. 2013), destruction of soil structure and ground 
collapse (Hadden et al. 2013), and higher greenhouse gas 
emissions than other categories of forest fires (Turetsky et al. 
2004). Forested peatlands and wetlands with rich organic 
matter, such as those in boreal and tropical forests, are 
prone to underground fire (Huang et al. 2016). Soil carbon 
in these forests accounts for 25% of carbon reserves on land 
and plays essential roles in ecosystem stability, biodiversity 
maintenance, and hydrological cycling (Page et al. 2011). 
Therefore, large underground fires will substantially impact 
global climate, ecology, and human health (Davies et al. 
2013; Hu et al. 2018). Wetlands were previously assumed 
to be fire-resistant due to their high humidity (Kuhry 1994). 
However, recent studies reported that smoldering has been 
widely observed in wetlands (Turetsky et al. 2004; Shetler 
et al. 2008). Quantitative studies in the field on smouldering 
events are seldom conducted as they are challenging due to 
their randomness and unpredictability (Davies et al. 2013). 

Abstract Underground fires are slow spreading, long-last-
ing and low temperature smoldering combustion without 
flames, mainly occurring in peatlands and wetlands with 
rich organic matter. The spread of the smoldering is main-
tained by heat released during combustion and monitoring 
this is an important approach to detect underground fires. 
The Daxing’an Mountains region is a hotspot for under-
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gmelinii plantation in the Tatou wetlands of the Daxing’an 
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equation with three parameters had the highest accuracy in 
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Therefore, combustion studies simulating underground fires 
are often carried out in the laboratory (Huang et al. 2015).

Large-scale underground fires have been recorded in 
Indonesia, Russia, Spain, and in other countries in recent 
years (Page et al. 2002; Cancellieri et al. 2012; Turetsky 
et al. 2015; Pastor et al. 2018). Underground fires are caused 
by surface fires or lightning (Davies 2016; Restuccia et al. 
2017) with strong concealment and always accompanied by 
surface fires. There are considerable difficulties in moni-
toring and extinguishing them (Rein et al. 2008a, b). Their 
behavior is significantly different from other types of fires 
(Rein 2013), and could occur with a fuel moisture content 
of 100% or higher (Reardon et al. 2007; Lin et al. 2019), and 
persist through heavy rains, weather changes, extinguish-
ing of surface fires, and may last for months or even years 
(Zaccone et al. 2014). The spread of an underground fire 
is maintained by heat released during combustion (Pastor 
et al. 2018), which is key to monitoring (Hartford and Frand-
sen 1992). Studies of smoldering have mainly focused on 
combustion characteristics (Pastor et al. 2018), contributing 
factors (Achtemeier 2006; Wang et al. 2017), combustion 
spread (Huang and Rein 2017), carbon release (Davies et al. 
2013; Hu et al. 2018) and other aspects.

Non-linear mixed effects (NLME) modeling was first 
proposed by Sheiner and Beal (1980), which included both 
fixed and random effects parameters, and could identifying 
average prediction and individual prediction by calculating 
the estimated value of random effect parameters (Leites and 
Robinson 2004; Dorado et al. 2006; Yang et al. 2009). A 
mixed-effects model is a statistical method used in forestry, 
agriculture, ecology, biomedicine, sociology, econom-
ics, and in other fields (Calegario et al. 2005). In forestry, 
NLME modeling has been used in the studies of tree heights 
and diameters, growth processes, average growth, and basal 
area (Budhathoki et al. 2008; Mehtatalo et al. 2014; Ciceu 
et al. 2020) but has been seldom applied to forest fires. The 
mechanism of underground fire smoldering is complicated, 
so its occurrence and development are difficult to predict. 
The gradually rising temperature of a smoldering fire is like 
the growth process of a tree, so NLME modeling is applica-
ble to smoldering. NLME modeling can achieve prediction 
accuracy with fewer independent variables and is suitable 
for studies on underground fire.

The frequency of underground fires in the boreal for-
ests has increased in recent years (Sinclair et al. 2020), due 
to global climate change and the impact of human activi-
ties (Turetsky et al. 2015). The coniferous forests in the 
Daxing’an Mountains region, the southernmost margin of 
the Far Eastern Siberia boreal forests into China, is char-
acterized by the largest number of underground fires in the 
country. The growth of Larix gmelinii (Rupr.) Rupr. planted 
in the Tatou wetlands of the Daxing’an Mountains has been 
poor because of the geographical and climatic conditions, 

and the decomposition of fallen branches and leaves slow so 
that the content of organic matter in humus increased, pro-
viding abundant fuel for underground fires. Rising tempera-
ture is one of the stages during the smoldering (Pastor et al. 
2018); one of these is the buildup of temperatures causing 
significant damages. However, this process is easily moni-
tored. This study focused on the process of rising tempera-
tures in a Larix gmelinii plantation in the Tatou wetlands, 
analyzed smoldering temperature variations of humus of dif-
ferent particle sizes, and developed a method to predict tem-
peratures of underground fires by non-linear mixed effects 
(NLME) modeling to provide support for underground fire 
monitoring and control.

Materials and methods

Study area

Forest fires in the Daxing’an Mountains region occur fre-
quently; the area burned is largest in China. The study area 
is in the Jiagedaqi Forest Management Technology Promo-
tion Station (123°57′–124°0′ E, 50°20′–50°23′ N), located 
in the northwest of Heilongjiang province, on the southeast 
slopes of the Daxing’an Mountains (Fig. 1a). The region 
has a continental monsoon climate with four distinctive 
seasons, a changeable climate and large diurnal and sea-
sonal temperature differences. Annual average temperatures 
are − 1 to 2 °C, the annual effective accumulative tempera-
ture 1800–2000  °C, the frost-free period 90–120  days, 
and annual rainfall 450–500 mm. The technology promo-
tion station was founded in 1973, 15 km to the south of 
the Jiagedaqi region, the north and west portions of the 
station is connected with the Dongfeng Forest Station of 
the Jiagedaqi Forestry Bureau. The total area of the station 
is 7326  ha2. The main species in the study area are Larix 
gmelinii, Quercus mongolica Fisch, Betula platyphylla Suk., 
Populus davidiana Dode, and Betula dahurica Pallas (Tang 
et al. 2022).

Sample collection and processing

Three 30 m × 20 m sample fields were established and 
three 0.5 cm × 0.5 cm quadrats selected (sampling depth 
was the 46-cm thickness of the humus layer) in the diago-
nals according to Pastor (2018) (Fig. 1b, c). All the humus 
in the quadrats was collected, and after removal of sur-
face litter and in the humus layer, taken to the laboratory, 
stored in kraft paper sacks and dried for 48 h at 105 °C 
to remove as much moisture as possible. As an uneven 
distribution of humus particles will affect the tempera-
ture measurements accuracy (Huang and Rein 2017), the 
dried humus was ground and sieved into particle sizes 
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of ≤ 20 mesh (moisture content 0.28%), ≤ 40 mesh (mois-
ture content 0.49%), ≤ 60 mesh (moisture content 0.43%), 
and ≤ 80 mesh (moisture content 0.49%) for the combus-
tion experiments(Fig. 1d).

Combustion experiments

The combustion furnace was designed for studying a one-
dimensional downward combustion process (Fig. 2) (Huang 

Fig. 1  a The study area; b, 
c study location and sample 
collection; d sample after 
pretreatment for the combustion 
experiment

a b

c d

Daxing’an 
Mountains region

Jagedaqi Forestry Bureau

Fig. 2  Schematic diagram of the smoldering combustion process
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and Rein 2017). The unit was cylindrical (20- cm high with 
10- cm walls) of aluminum silicate ceramic fiber with excellent 
heat insulation. A K-type thermocouple (30 cm long × 2 mm 
diameter) recorded temperature variations of the humus dur-
ing combustion. The data were transmitted to a laptop by data 
acquisition module composed of a 16-channel NI9213 volt-
age acquisition board card and DAQ-9174 case (4 card slots), 
with temperature measurement accuracy < 0.25 °C. The data 
acquisition software (Labview2018) recorded temperature 
variations collected by the thermocouples. A far-infrared heat-
ing plate (30 cm long × 20 cm wide × 5 cm thick) was used 
as an ignition device. A temperature control meter between 
the far-infrared heating plate and the power supply kept the 
temperature of the heating plate constant.

Humus of different particle sizes were placed in the com-
bustion furnace at ambient temperatures and the shape of the 
particles maintained as much as possible. Holes were arranged 
every 3 cm on the side of combustion furnace and K-type 
thermocouples inserted into the humus through the holes. 
The K-type thermocouples and data acquisition module were 
connected temperature variation data transmitted to the laptop 
every 10 s. To ensure combustion continued after removing the 
heating plate (ignition device), heating time and temperature 
were set to 1.5 h and 500 °C. A 2-cm gap between the heating 
plate and combustion furnace allowed for air flow.

Non‑linear mixed effects model

The general form of a non-linear mixed effects model is:

where Ti is the dependent variable of subject i and refers to 
the predicted combustion temperature; f  is the actual value, 
specific parameter vector �i and variable value vector ti of 
the differentiable function in the subject, and refers to actual 
combustion temperature of the underground fire; � is the p
-dimensional fixed effect parameter vector; bi is the q-dimen-
sional random effect parameter vector; D is the covariance 
matrix between random effects; Ai and Bi are correlation 

(1)

Ti = f (�i, ti) + �i

�i = Ai� + Bibi

�i ∼ N(0, �2) bi ∼ N(0,D)

matrices with appropriate dimensions ( 0 or 1); ti is the inde-
pendent matrix; �i is the random error vector associated with 
Ti ; and,�2 is the covariance matrix of the random error.

Base model

Logistic, Richards, and Korf nonlinear models, widely 
used in forestry to predict the tree growth, height, and DBH 
(Calama and Montero 2004; Rijal 2012; Sharma et al. 2016; 
Pan et al. 2020) (Table 1), were selected as the base models 
to study temperature variations in the combustion process.

Model selection and validation

The base model was selected according to the values of 
Akaike’s Information Criterion-(AIC) and Schwarz’s Bayes-
ian Information Criterion-(BIC). Model accuracy was evalu-
ated with different parameters according to the values of 
Root Mean Square Error (RMSE). Smaller values of AIC 
and BIC indicate the better fitting degree of the equation; 
smaller values of RMSE indicates the higher accuracy of 
the model (Akaike 1974).

where Tij is the actual value, T̂ij the predicted value, n the 
sample amount, L the maximum likelihood (ML) value, and 
p is the number of model parameters.

Statistical analysis

Excel and Origin were used to analyze the combustion tem-
perature variation data with different humus particle sizes 
and from different depths, and the relationship between 
the maximum temperature and the combustion depth; 
NLMIXED and NLINE modules of Statistical Analysis 

(2)AIC = −2 ln L + 2p

(3)BIC = −2 ln L + p ln n

(4)RMSE =

�

∑n

i=1
(Tij−T̂ij)

2

n−1

Table 1  Base models

Tij is temperature at depth j with time t of particle size i;�
1
,�

2
,�

3
 are the parameters of the equation; bi1,bi2,bi3 

are random effect parameters corresponding to �
1
,�

2
,�

3
;�ij is the random error

Model Base model Mixed-effects model

Logistic Tij =
�
1

1+Exp(
�2−tij

�3
)
+ �ij Tij =

(�
1
+bi,1)

1+Exp(
(�2+bi,2 )−tij

(�3+bi,3 )
)
+ �ij

Richards Tij = �
1
[1−Exp(−�

2
tij)]

�
3 + �ij Tij = (�

1
+ bi,1)[1−Exp(−(�2 + bi,2)tij)]

(�
3
+bi,3) + �ij

Korf Tij = �
1
Exp(

−�
2

t
�3
ij

) + �ij Tij = (�
1
+ bi,1)Exp[

−(�
2
+bi,2)

t
(�3+bi,3 )

ij

] + �ij
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System-(SAS) were used to select, fit, and verify the non-
linear mixed effect models.

Results

Maximum combustion temperature variations 
of humus of different particle sizes

There was no flame or spark during humus smoldering, 
and the surface was carbon black and the deep layer brick 
red after combustion. The maximum combustion tempera-
ture of different particle sizes increased with depth. There 
was a positive linear relationship between depth and tem-
perature (P < 0.05) in both particle ≤ 40 mesh size and ≤ 80 
mesh size. The equations were y = 435.68 + 27.87 x and 
y = 453.82 + 21.82 x respectively. The highest combustion 
temperature of all particle sizes was at the 15-cm depth with 
particles ≤ 40 mesh size (897.5 °C), the highest combustion 
temperature with particle ≤ 80 mesh size was 844.9 °C.

There was a positive linear relationship between 
depth and temperature (P < 0.01) in both particle ≤ 20 
mesh size and ≤ 60 mesh size; the equations were 
y = 474.76 + 17.42 x and y = 468.84 + 20.21x, respectively. 
Combustion temperature variations with particle size ≤ 20 
mesh at different depths fluctuated the lowest, the highest 
combustion temperature was 741.6 °C and the lowest was 

543.3 °C. The highest combustion temperature with particle 
size ≤ 60 mesh was 780.4 °C and the lowest was 553.3 °C 
(Fig. 3). 

Selection and validation of NLME models

The NLME models were selected based on 60% of the 
humus combustion data with different particle sizes. AIC, 
BIC evaluated the approximation based on the three models. 
The AIC (135,343) and BIC (135,373) values of the Rich-
ards equation with different particle sizes were the smallest. 
It may be concluded that Richards equation provided the 
best approximation and was therefore chosen as the basic 
equation for the relationship between humus combustion 
temperature and time (Table 2).

Richards equations of combustion temperature variation 
were set with no parameter mixing, and one, two, and three 
parameters mixing for different particle sizes. All equations 
with different parameters were convergent, and the RMSE 
values of models with mixed parameters were smaller than 
the traditional models. The precision of models with mixed 
parameters was higher than the conventional models. The 
RMSE value of the three parameters was the least, therefore, 
the accuracy of Richards equation with three parameters 
mixing was the highest (Table 3).

Depth (cm) Depth (cm) Depth (cm) Depth (cm)

linear approximation

P value = 0.003< 0.01 P value = 0.013< 0.05 P value =0.004<0.01 P value = 0.042< 0.05
≤ 20 mesh ≤ 40 mesh ≤ 60 mesh ≤ 80 mesh

Te
m

pe
ra

tu
re

(°
C

)

Fig. 3  Maximum combustion temperature of humus for different depths and particle sizes; lower panel are photos of humus after combustion
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Mixed‑effects model approximation of Richards 
equation

The relationship between combustion temperature and time 
at different depths with different particle sizes was fitted by 
Richards equation with three parameters mixing. According 
to the temperature variation,�1,�2 and �3 were the estimated 
values of equations at 15- cm depth for each particle size, 
and bij was the parameter mixing effect at different depths 
(Table 4). The approximation of Richards equations with 
different particle sizes is shown in Fig. 4

Discussion and conclusions

Variation characteristics of humus combustion 
temperature

Peatland and humus are the main combustibles of under-
ground fires, and peatland fires is of wide concern for the 
frequent occurrence of large-scale fires (Davies et al. 2013). 
Commercial peat moss with its homogenous texture and con-
sistent components has been widely used in characterizing 
smoldering and contributing factors, instead of using peat-
lands in the field (Huang and Rein 2017). More researchers 
have started using underground combustibles to approximate 
reality (Pastor et al. 2018). In this study, actual humus from 
the Tatou wetlands of the Daxing’an Mountains was used to 
study temperature variations of vertical smoldering, and the 
results are reliable and highly applicable.

Smoldering combustion of humus is sustained by the heat 
released by itself. The maximum temperature was 897.5 °C 
in this study, close to 900 °C of a similar study using peat 
(Huang et al 2015). Most studies have reported that the max-
imum temperature of peat smoldering was around 600 °C 
(Bar-Ilan et al. 2004; Huang and Rein 2017), lower than 

our result. Using different experiment devices and materi-
als might account for the difference. It could also reflect 
the different temperatures of humus and peat smoldering. 
The mass loss of combustibles was small, and the humus 
afterwards was brick red due to sufficient burning and high 
temperatures (Fig. 3) and in addition, there was no ash after 
combustion, only a thin layer of carbonized humus. The 
heat release was impeded by the humus of the upper layers 
when the fire was spreading downwards, so the temperature 

Table 2  Fit statistics

Particle size/mesh Model AIC BIC

 ≤ 20 Logistic 136,412 136,442
Richards 135,343 135,373
Korf 135,435 135,465

 ≤ 40 Logistic 130,938 130,968
Richards 129,637 129,666
Korf 129,825 129,855

 ≤ 60 Logistic 143,822 143,851
Richards 142,650 142,680
Korf 142,774 142,804

 ≤ 80 Logistic 131,762 131,791
Richards 131,430 131,459
Korf 131,823 131,853

Table 3  Approximation results of mixed-effect models with different 
parameters

Particle size Parameter Mixed-effects RMSE P value

 ≤ 20 mesh No parameter mix-
ing

– 97.53  < 0.001

One parameter 
mixing

β1 66.21  < 0.001
β2 39.36  < 0.001
β3 23.08  < 0.001

Two parameters 
mixing

β1 β2 19.63  < 0.001
β1 β3 19.91  < 0.001
Β2 β3 20.38  < 0.001

Three parameters 
mixing

β1 β2 β3 17.48  < 0.001

 ≤ 40 mesh No parameter mix-
ing

– 101.83  < 0.001

One parameter 
mixing

β1 105.33  < 0.001
β2 47.09  < 0.001
β3 27.24  < 0.001

Two parameters 
mixing

β1 β2 21.49  < 0.001
β1 β3 22.36  < 0.001
Β2 β3 23.57  < 0.001

Three parameters 
mixing

β1 β2 β3 19.51  < 0.001

 ≤ 60 mesh No parameter mix-
ing

– 94.43  < 0.001

One parameter 
mixing

β1 65.22  < 0.001
β2 40.93  < 0.001
β3 24.14  < 0.001

Two parameters 
mixing

β1 β2 24.25  < 0.001
β1 β3 20.14  < 0.001
β2 β3 20.77  < 0.001

Three parameters 
mixing

β1 β2 β3 18.46  < 0.001

 ≤ 80 mesh No parameter mix-
ing

– 103.81  < 0.001

One parameter 
mixing

β1 71.84  < 0.001
β2 38.15  < 0.001
β3 26.39  < 0.001

Two parameters 
mixing

β1 β2 19.71  < 0.001
β1 β3 22.39  < 0.001
β2 β3 22.89  < 0.001

Three parameters 
mixing

β1 β2 β3 18.89  < 0.001
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Table 4  Fitting results of Richards equation

Particle 
size/mesh

Parameter Estimate Std error Depth/cm Approximate 95% Confidence limits Equation

 ≤ 20 b
1,1

 − 223.50 2.72 3  − 228.80  − 218.20 T = 574.3 × [1−Exp(−0.53 t)]1.05

b
2,1

0.40 0.01 0.38 0.41
b
3,1

 − 1.48 0.019  − 1.52  − 1.44
b
1,2

 − 207.40 2.44 6  − 212.10  − 202.60 T = 590.4 × [1−Exp(−0.32 t)]1.25

b
2,2

0.19 0.003 0.182 0.194
b
3,2

 − 1.28 0.0185  − 1.32  − 1.25
b
1,3

 − 158.2 2.40 9  − 162.90  − 153.50 T = 639.6 × [1−Exp(−0.19 t)]1.44

b
2,3

0.06 0.002 0.058 0.064
b
3,3

 − 1.09 0.0179  − 1.13  − 1.06
b
1,4

 − 18.40 3.03 12  − 24.35  − 12.45 T = 779.4 × [1−Exp(−0.12 t)]1.68

b
2,4

 − 0.014 0.001  − 0.017  − 0.012
b
3,4

 − 0.85 0.0181  − 0.89  − 0.82
�
1

797.80 2.10 15 793.70 801.9 T = 797.8 × [1−Exp(−0.13 t)]2.53

�
2

0.13 0.0008 0.13 0.133
�
3

2.53 0.02 2.50 2.56
 ≤ 40 b

1,1
 − 304.4 3.3038 3  − 310.80  − 297.90 T = 594.5 × [1−Exp(−0.50 t)]1.26

b
2,1

0.3617 0.00623 0.355 0.37
b
3,1

 − 1.5287 0.0234  − 1.5746  − 1.4829
b
1,2

 − 309.4 3.1742 6  − 315.60  − 303.10 T = 589.5 × [1−Exp(−0.37 t)]1.44

b
2,2

0.24 0.00385 0.23 0.25
b
3,2

 − 1.3514 0.0234  − 1.3972  − 1.3056
b
1,3

 − 225.1 3.1913 9  − 231.30  − 218.80 T = 673.8 × [1−Exp(−0.21 t)]1.48

b
2,3

0.0721 0.00184 0.0685 0.0757
b
3,3

 − 1.3134 0.0214  − 1.3554  − 1.2714
b
1,4

 − 76.2772 3.7035 12  − 83.54  − 69.02 T = 822.6 × [1−Exp(−0.13 t)]1.92

b
2,4

 − 0.00092 0.00134  − 0.00354  − 0.000171
b
3,4

 − 0.867 0.0223  − 0.9107  − 0.8233
�
1

898.9 2.893 15 893.3 904.6 T = 898.9 × [1−Exp(−0.1335 t)]2.79

�
2

0.1335 0.000919 0.1317 0.1353
�
3

2.7887 0.0189 2.7518 2.8257
 ≤ 60 b

1,1
 − 187.5 2.9790 3  − 193.30  − 181.60 T = 606.3 × [1−Exp(−0.42 t)]0.99

b
2,1

0.2824 0.00698 0.2687 0.2961
b
3,1

 − 1.7329 0.0198  − 1.7716  − 1.6942
b
1,2

 − 196.0 2.1628 6  − 200.20  − 191.70 T = 597.8 × [1−Exp(−0.29 t)]1.23

b
2,2

0.1535 0.00295 0.1477 0.1593
b
3,2

 − 1.4939 0.0194  − 1.5319  − 1.4560
b
1,3

 − 132.1 2.1430 9  − 136.30  − 127.90 T = 673.8 × [1−Exp(−0.21 t)]1.48

b
2,3

0.0377 0.00151 0.0348 0.0407
b
3,3

 − 1.3198 0.0187  − 1.3564  − 1.2831
b
1,4

 − 2.0151 2.6009 12  − 7.1129  − 1.0827 T = 822.6 × [1−Exp(−0.13 t)]1.92

b
2,4

 − 0.0189 0.00112  − 0.0211  − 0.0167
b
3,4

 − 0.9724 0.0191  − 1.0099  − 0.9349
�
1

793.8 1.7104 15 790.40 797.20 T = 793.8 × [1−Exp(−0.14 t)]2.73

�
2

0.1381 0.000769 0.1366 0.1397
�
3

2.7252 0.0165 2.6929 2.7575
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of humus smoldering was higher and increased with depth. 
But the mass loss of combustibles in peat smoldering was 
larger according to Huang and Rein (2014). Without being 
impeded by upper layers, the heat released quickly so the 
temperature was lower than the humus.

Combustion depth could go to more than 50 cm (Ballhom 
et al. 2009). However, the combustion depth was found to be 
deeper due to the increased aridity of peatlands and wetlands 
due to global warming (Turetsky et al. 2015). The combus-
tion process is also affected by oxygen levels, so when 
oxygen decreases as depth increases, combustion might be 
extinguished. This observation requires further study.

Applicability of NLME in smoldering temperature 
variation

Unlike surface and canopy fires, the heat released in under-
ground fires is the manifestation of the smoldering process, 
which is also the important basis for fire monitoring and 
fighting. Fire intensity and spread rate are both predicted by 
the heat released (Rein et al. 2008a, b; Kirschke et al. 2013); 
the heat released, and temperature change of the ground sur-
face are useful for judging the occurrence of underground 
fires and the direction for digging fire breaks. Therefore, 
thermos physical models are essential tools for studying the 
mechanism of underground fire occurrence and develop-
ment (Huang and Rein 2014), and an important basis for 
fire monitoring and fighting.

This study was based on NLME modeling to predict 
temperatures of underground fires and focused on the pre-
diction of temperature during smoldering. Simple statisti-
cal models are better for prediction research, and NLME 
is better than ordinary regression models. Many statis-
tical models have been applied to forest fire prediction 
(Bem et al. 2018; Nadeem et al. 2020) and have increased 
prediction accuracy. The variation of temperatures dur-
ing underground fire combustion showed a slow rise at 
the beginning, then a rapid rise, and finally, a stable tem-
perature after reaching the maximum temperature. The 
change curves of the three basic models in this paper are 
“S” type, which are consistent with the change curves of 
underground fires, so the models could be applied to the 
prediction of temperatures during these fires.

In this study, well-replicated underground fire tempera-
tures with varying depths and particle sizes were studied 
(Hall and Bailey 2001). NLME modeling was shown to 
be significantly superior in handling longitudinal, multi-
level and replicated data (Calegario et al. 2005). Rich-
ards equations exhibited the best applicability in fitting 
humus combustion temperatures after evaluating three 
models and have been widely used owing to their biologi-
cal significance, strong adaptability, and high accuracy (Li 
and Zhang 2010). Hang et al. (1997) and Hall and Bailey 
(2001) also found high accuracy of Richards equations, 
consistent with the results of our study.

Table 4  (continued)

Particle 
size/mesh

Parameter Estimate Std error Depth/cm Approximate 95% Confidence limits Equation

 ≤ 80 b
1,1

 − 274.8 3.5598 3  − 281.80  − 267.90 T = 598.8 × [1−Exp(−0.51 t)]1.28

b
2,1

0.4022 0.00657 0.3893 0.4151

b
3,1

 − 0.9529 0.0198  − 0.9917  − 0.9142

b
1,2

 − 278.1 3.3646 6  − 284.70  − 271.50 T = 595.5 × [1−Exp(−0.36 t)]1.44

b
2,2

0.2552 0.00359 0.2482 0.2623

b
3,2

 − 0.7887 0.0191  − 0.8262  − 0.7513

b
1,3

 − 251.5 3.2875 9  − 257.90  − 245.00 T = 622.1 × [1−Exp(−0.22 t)]1.58

b
2,3

0.1185 0.00182 0.1149 0.1220

b
3,3

 − 0.6517 0.0178  − 0.6866  − 0.6168

b
1,4

 − 129.3 3.6739 12  − 136.50  − 122.10 T = 744.3 × [1−Exp(−0.12 t)]1.73

b
2,4

0.0180 0.00120 0.0156 0.0203

b
3,4

 − 0.5026 0.0173  − 0.5364  − 0.4687

�
1

873.6 3.0904 15 867.6 879.7 T = 873.6 × [1−Exp(−0.10 t)]2.23

�
2

0.1040 0.000783 0.1024 0.1055

�
3

2.2323 0.0138 2.2053 2.2592
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Fig. 4  Approximation of Richards equations of temperature and time at different depths with different humus particle sizes
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Conventionally, the least square method was used to esti-
mate model parameters of multilevel data, but this method 
tended to use data lacking independence, time correlation 
and space heterogeneity, and would lead to large prediction 
errors (Mensah et al. 2018). NLME modeling has higher 
accuracy (Sharma et al. 2016) through set up, fixed effect, 
and random effect parameters (Kalle 2009). Based on the 
results of RMSE in this study, the accuracy of models with 
mixing parameters were much higher than traditional non-
linear models, and the accuracy increased as the number of 
parameters increased. Ciceu et al. (2020) also reported the 
high precision of NLME models, although the parameters 
were different due to the research contents and basic mod-
els. Meng et al. (2009) found that a NLME model with two 
parameters was highly accurate. Pan et al. (2020) reported 
that one with three parameters had high precision.

Prospect of using NLME modeling in forest fire 
research

Studies with mixed effects models are emerging research 
areas in forestry (Calegario et al. 2005), but their applica-
tions in forest fire research are rarely reported. Studies of 
forest fires, based on multi-level aspects, such as combusti-
ble characteristics, fire forecasting and fire behavior, should 
reflect both overall change trend and individual differences, 
so NLME has more advantages (Guillermo et al. 2006). 
NLME also has the advantages of high reliability, flexibility 
and accuracy (Sharma et al. 2016), and have great applica-
tion potential in the study of forest fire.
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