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Introduction

Smoke monitoring from forest fires depends on visual moni-
toring (Alamgir et al. 2018) and developing early smoke 
detection technology based on video for large areas is of 
practical importance. Video-based smoke detection can 
be divided into three categories: traditional methods, deep 
learning-based methods, and methods combining both 
(Wang et al. 2020). Traditional video-based methods detect 
the smoke using the set features of the smoke extraction 
results (Nguyen et al. 2020), which can be either static or 
dynamic. When the recognition object is only a single smoke 
image frame, researchers often choose the static character-
istics of smoke such as color, Local Binary Pattern (LBP), 
shape, wavelet, hog, irregularity, and density (Gaur et al. 
2020). Among these features, color-based image segmenta-
tion has a wide range of applications in obtaining smoke 
candidate regions and analyzing the results (Appana et al. 
2017). In addition to color space using Red–Green–Blue 
(RGB) (Yuan et al. 2017a, 2018; Sousa and Gamboa 2020), 
HSV, YUV (Prema et al. 2016), YCbCr (Wang et al. 2017; 
Ye et  al. 2017; Yuan et  al. 2017b; Sousa and Gamboa 
2020), Hue-Intensity-Saturation(HIS) (Yuan et al. 2017a, 
2018) and grayscale space were all investigated as smoke 
characteristics.

However, the complexity of the forest environment 
and the problems of sharpness and distance of the mate-
rial obtained by videoing make it difficult to detect smoke 
using a single static feature (Wu et al. 2021). To address this, 
the dynamic characteristics from the relationship between 
frames, such as motion direction, texture (Zhao et al. 2021), 
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fixed source (Gao and Cheng 2019, 2021), and fluid char-
acteristics of smoke, can be combined with static charac-
teristics such as color to detect smoke, one of the major 
advantages of video-based smoke detection compared to 
photo-based detection. For such dynamic characteristics, 
advanced classifiers are needed to better categorize and 
detect smoke in video images. Currently, there are exist-
ing classifiers used for dynamic feature detection (Xia et al. 
2019), including support vector machines (SVM) (Barmpou-
tis et al. 2013; Ye et al. 2015), AdaBoost (Yuan et al. 2015; 
Zhao et al. 2015), hidden Markov models (HMMs) (Savci 
et al. 2019), K nearest neighbors (KNN) (Zhao et al. 2021), 
conditional random fields (Cheng et al. 2019), Gaussian 
process regression (Yuan et al. 2017a), and Bayes classifier 
(Piccinini et al. 2008). In addition, combinations of these 
classifiers were also investigated.

The dynamic characteristics of smoke are different from 
other moving objects and using the above-mentioned tra-
ditional machine learning methods to process the motion 
information in the original format is difficult (Wang et al. 
2020), resulting in the development of deep learning meth-
ods. The Convolutional Neural Network (CNN) can auto-
matically extract features from the original data, and classify 
and optimize them to obtain better results (Li et al. 2020). 
He et al. (2021) developed an attention module combined 
with spatial and channel attention that was deeply integrated 
with CNN to improve detection in conditions of fog and light 
smoke. Li et al. (2020) reconstructed a neural network model 
into a new SC-CNN model, and by using a new regular-
ized loss function-score clustering, the new model reduced 
over-fitting issues and improved model accuracy. Xu et al. 
(2019) developed a deep saliency CNN network using a 
combination of a deep feature map and a saliency map at 
both pixel-level and target-level to detect smoke. In addition, 
better model performance usually requires larger models. To 
address the compatibility of performance and model size, 
Jadon et al. (2019) proposed a new shallow neural network, 
FireNet, which achieved the optimal frame rate for fire detec-
tion to date.

To further reduce false detection and missed detection 
rates under changing smoke detection from forest fires, 
Gao and Cheng (2019) proposed the “smoke root”, which 
is defined as smoke source that do not change with time, 
believed to be the most fundamental feature of forest fire 
smoke that distinguishes it from other disturbances. Diffu-
sion of smoke roots would not change over time, even in 
changing scenes. The stability of smoke roots is a feature 
that other natural phenomena such as clouds and fog do not 
have. To detect the smoke roots, the dynamic feature area 
of the fire can be obtained through the ViBe algorithm, the 
connected domain by opening and closing operations, and 
the detection of skeleton and skeleton endpoints by the use 
of the Zhang-Suen skeleton extraction algorithm (Zhang and 

Suen 1984). The stable skeleton endpoints between consecu-
tive frames are regarded as smoke root candidate points and 
were put into a two-dimensional smoke simulation engine to 
generate smoke used to overlap with the monitored smoke 
for detection. If more than 70% of the pixel values matched 
the simulated smoke and the monitored smoke, this region 
was a smoke root. Since the ViBe algorithm could not detect 
light smoke in a long distance, the algorithm was combined 
with the MSER algorithm through Bayesian fusion to form a 
better shape of smoke candidate regions for a complete, full-
size smoke detection using video (Gao and Cheng 2021).

By considering the small diffusion range and relatively 
stable position of the combustion source in the early stages 
of a fire, it may be assumed that the source position of the 
smoke is relatively fixed in the continuous frames. This 
relatively stationary position of combustion is defined as a 
“smoke root”. According to the smoke root detection method 
developed by Gao and Cheng (2019), the premise of smoke 
root detection is to extract the smoke candidate regions suc-
cessfully and find the stable skeleton endpoint that does not 
change with time, regarded as a smoke root candidate. Com-
plete and accurate extraction of smoke candidate regions is 
critical for smoke root detection. Under different environ-
mental conditions, detection results would vary with differ-
ent detection algorithms. Figure 1 shows the results of the 
smoke candidate regions obtained by the ViBe algorithm, 
the smoke skeletons and the skeleton endpoints obtained 
using the method of Gao and Cheng (2019) in two different 
environmental conditions. The ViBe algorithm can extract 
some smoke pixels, but voids and missed detection will also 
occur under some environmental conditions. Although the 
algorithm produces a good smoke contour, it can also result 
in an “empty region” at the center and edges of the smoke, 
making it impossible to obtain the connected smoke candi-
date regions and limiting the search process of smoke root 
candidate points. To address these issues, this study inte-
grates the dynamic and static characteristics of smoke into 
the ViBe algorithm to obtain more complete smoke candi-
date regions and develops a new smoke roots search strategy 
to improve detection rate and calculation efficiency.

Smoke roots are a source of smoke that are stable in 
consecutive frames so the continuity between frames is key 
for determining smoke roots. According to Gao and Cheng 
(2019), smoke root candidate points were identified as sta-
ble skeleton endpoints in five consecutive skeleton images. 
However, for a video with a rate of twenty-five frames per 
second or higher, the time required to obtain five image 
frames was only 0.2 s or lower. Such a brief time was insuf-
ficient to result in a significant change in the shape of the 
smoke. Therefore, many fake or false smoke roots would 
be determined as endpoints that did not change with time 
and entered into the next two-dimensional smoke simu-
lation engine to generate candidate points, which would 
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significantly increase the amount of calculation and reduce 
the calculation efficiency.

To address this challenge, in this study, a new multi-frame 
discrete confidence strategy was developed to process the 
multi-frame connected domain images and determine the 
smoke root. This new strategy introduces the concept of con-
fidence into the process of determining smoke roots, and 
represents the relative magnitude of the probability that the 
correct smoke roots appear on the image frame.

To detect the smoke roots, root candidate points are iden-
tified by analyzing the continuity of smoke roots between 
frames and overlapping the simulated smoke with the actual 
monitored smoke. Since deep learning methods only extract 
features from original data, they do not conform to the prin-
ciple of the smoke root detection in method and original 
intention. Thus, although deep learning methods have been 
applied to recognizing dynamic features of smoke and 
flames, there are limited studies on applying deep learning 
networks to identify and extract the basic features of smoke 
from smoke images. In this study, a new smoke roots search 
algorithm, based on a multi-feature fusion dynamic extrac-
tion strategy and multi-frame discrete confidence strategy, 
was developed to extract smoke root features for higher 
detection efficiency and more accurate detection. This paper 

has two major contributions: (1) A proposed new forest fire 
smoke roots search algorithm fusing the dynamic and static 
characteristics of smoke to obtain complete smoke contours 
through motion and grayscale detection. This new algorithm 
will improve detection capacity and accuracy of the edges 
and roots of smoke which are difficult to identify by the 
dynamic extraction algorithm; (2) A proposed new multi-
frame discrete confidence strategy to reduce the number 
of smoke root candidate points or skeleton endpoints for 
smoke root detection. By applying the double-layer confi-
dence selection process, this new strategy can obtain more 
smoke root skeleton endpoints with a high degree of confi-
dence, thus reducing the need for large number of skeleton 
endpoints as required by the traditional smoke root detection 
method (Gao and Cheng 2019).

Materials and methods

The flowchart of the developed algorithm (Fig. 2) consists 
of three steps: the first is to extract the smoke regions from 
the continuous video frames through the multi-feature fusion 
method with the combination of dynamic and static stack-
ing strategies; the second is to extract ten eligible connected 

Fig. 1  Different results in different environmental conditions using Gao and Cheng (2019)’s method

Fig. 2  Flow steps of smoke root detection during the image processing stage
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domain frames as the base frames for determining the smoke 
root candidate points; and, the third is to extract the skeleton 
and skeleton endpoints of the selected connected domain 
frames, and screen out smoke root candidate points that have 
higher confidence through the multi-frame discrete confi-
dence determination strategy. These candidate points are 
then put into the two-dimensional smoke simulation engine 
to generate the simulated smoke.

Smoke candidate regions extraction

Extracting the smoke regions from the continuous frames of 
the video is the first step in the smoke detection and smoke 
root acquisition. The ViBe algorithm was used as a fore-
ground detection algorithm based on background updating. 
Gao and Cheng (2019) used this algorithm to extract the 
dynamic pixels from the video frame and applied the clos-
ing operation to select a large range of dynamic points from 
a connected domain. The closing operation was to expand 
the images to make the dynamic area a connected domain, 
identified as the smoke regions. Such a connected domain 
was then skeletalized and the points that were stable in the 
consecutive frames were considered smoke root candidate 
points.

Since the ViBe algorithm requires to establish and update 
the background pixels in the initial image frame, the image 
with the first frame number does not result in a good extrac-
tion. On the other hand, the dynamic extraction algorithm 
alone cannot identify the smoke regions under conditions of 
excessive smoke density. Thus, the extracted smoke regions 
using the ViBe algorithm may be incomplete or unable to 
form connected domains, resulting in ineffective detection 
of some smoke that is more scattered. To address this issue, 
this study developed a new region stacking strategy Fig. 3 
using multi-feature fusion that stacks the dynamic and static 
candidate regions (Fig. 3).

The first step of the new stacking strategy is to extract 
dynamic features from the first 50 input frames to create a 
model image made up of the extracted ViBe dynamic fea-
tures from the input frames (Fig. 3). Such extracted dynamic 
area contains both the correct smoke regions and part of 

the background noise. An erosion operation with a core of 
1 × 1 is performed on the extracted dynamic area to eliminate 
background noise and obtain a set of dynamic pixels that 
only belong to the smoke regions, resulting in binary images. 
The resulting dynamic pixel set, and the eroded input frame 
are then added on to the model image to obtain a binarized 
image, M (i, j) with all dynamic pixel point sets which can 
be presented as:

where, Pi (x, y) is….., x is the x coordinate and y is the y 
coordinate of dynamic pixel point.

After obtaining all the dynamic feature pixel points using 
Eq. (1), a small rectangular frame is used to frame all the 
smoke dynamic feature pixels on the binarized model image. 
The coordinates of the four end points of the rectangular box 
are obtained by adding 10 pixels to the pixel points of the 
higher smoke temperature in the vertical direction as:

The binarized model image with the dynamic feature area 
of smoke can be built (Fig. 4).

After a binarized model image of the smoke is obtained, 
the second step is to perform fusion feature extraction 

(1)M(i, j) =

�

1,
∑

Pi(x, y) ≠ 0

0,
∑

Pi(x, y) = 0

(2)
(xmin, ymin), (xmax, ymin), (xmin, ymax + 10), (xmax, ymax + 10)

Fig. 3  Smoke candidate regions detection frame stream

Fig. 4  Built model image
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on the input image and model image of each following 
frame (Fig. 3). The image fusion is applied to distinguish 
the foreground and background areas. The area enclosed 
by the rectangle in the input frame is considered as the 
foreground area, F (x, y), and the area not enclosed is the 
background area as:

Within the foreground area, the foreground pixels with 
corresponding static characteristics of the smoke are 
extracted, and pixels without the static characteristics of 
the smoke are considered as the background pixels and 
are not extracted. The single-channel grayscale process-
ing is applied on the input frame to process the images, 
resulting in a feature image of the binarized smoke regions 
represented as:

where, (x, y) belonging to the rectangular area, and f (x, y) 
is the pixel value of the single-channel grayscale image at 
the position (x, y).

(3)

F(x, y) =

{

0, (x, y) ∉ the rectangular area

Static feature extraction, (x, y) ∈ the rectangular area

(4)F(x, y) =

{

0, f (x, y) < average × 1.1

255, f (x, y) ≥ average × 1.1

(5)average =

∑n

i=1
f (x, y)

n

Finally, the obtained feature image with binary smoke 
regions from Eq.  (4) is closed to obtain the connected 
domain. Figure 5 shows three smoke image examples in dif-
ferent conditions obtained using the ViBe algorithm (second 
column) and using the new algorithm developed above (last 
column). The completeness and roundness of the obtained 
connected domain from the developed algorithm exceeds 
the connected domain obtained by the ViBe algorithm. In 
addition, the new algorithm also simplifies the smoke region 
generation and significantly reduces the amount of calcu-
lation needed for further obtaining smoke root candidate 
points.

Smoke roots determination

As seen in the first and second rows of Fig. 6, to start the 
new strategy for smoke root determination, ten connected 
domain images are selected by the adaptive threshold (AT) 
method. The first connected domain image is considered as 
the first frame of the ten connected domain images. When 
the connected domain change rate of the next input frame 
exceeds the pre-set threshold, this frame is selected as the 
next image until the rest of the nine frames are extracted. 
These ten images are then set as the base judgment image set 
from which smoke root candidate points are extracted. The 
purpose of such a process is to extract a sufficiently large 
change in smoke to filter out the “false smoke roots”, and 
to adapt to smoke with different rates of spread in different 

Fig. 5  Comparing the results of connected domain using ViBe algorithm and the newly developed algorithm
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environments. This new strategy can detect the candidate 
points of the smoke roots rapidly when the smoke spreads 
quickly and detect the smoke roots correctly and smoothly 
when the smoke spreads too slowly.

After the base judgment image set are extracted, shown 
in the third row of Fig. 6, the skeletonization processing is 
then performed on the ten base judgment images to deter-
mine the smoke root candidate points, obtain the skeletons, 
and extract the skeleton endpoints. For the skeleton end-
point in each set of endpoints, the skeleton endpoint stack-
ing search strategy is applied to obtain the integer set of 
search results corresponding to the skeleton endpoints on 

each image frame. Such a stacking strategy superpositions 
the endpoints of the ten frames of skeleton endpoint images 
on a single channel model image through coordinate projec-
tion to obtain a model image with all skeleton endpoints. 
This stacking strategy is applied to each endpoint on each 
frame on the projected model image to obtain the statistical 
number of sets. A search strategy is then used to search the 
model image with R = 5 as the radius for the search point 
coordinates (i, j). Whenever a pixel is found, the search 
count is increased by 1, and a two-dimensional integer group 
M[N][m], the stacking number of pixels of the mth skeleton 
endpoint of the Nth frame, is obtained, where N represents 

Fig. 6  Flowchart of the new 
multi-frame discrete confidence 
strategy to determine smoke 
root from connected domain 
frames
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the Nth frame and is between one and ten and m is the end-
point meeting the searching criteria with an upper limit of 
the number of skeleton endpoints in the Nth frame.

With the search strategy applied, the dispersion degree of 
the ten integer sets is then calculated corresponding to the 
ten frames of images, and the skeleton frame with the largest 
dispersion factor is selected as the base frame. Considering 
that a higher probability of the correct smoke roots occurs 
on the frame of the image with the greatest dispersion factor, 
the stacking and searching process for the skeleton endpoints 
is repeated on the base frame to obtain the integer set of 
searched skeleton endpoints of the base frame. The pixels 
whose search results are greater than the threshold (equals 5 
in this study) are identified as a smoke root with higher con-
fidence, which indicates that the points searched in at least 
the threshold times of frames of skeleton endpoint images. 
These detected smoke roots, obtained by further screening, 
represent the source points of the smoke. These identified 
smoke root pixels are labeled for further smoke detection 
analysis if needed.

Datasets

To validate the new smoke detection algorithm, publicly 
available video datasets from forest fires were used to per-
form the smoke roots detection, including eighteen smoke 
videos with a resolution of 480 × 320, and a frame rate of 25 
frames per second. The input video materials used can be 
downloaded via    **CHENG DATASET (2021). The new 
algorithm was implemented using C +  + in Visual Studio 
2015 and OpenCV 4.3.0 to detect the fire and to visualize the 
predicted image based on the smoke eigenvalue generated 
in the process. The results were compared with the detec-
tion obtained from the traditional ViBe algorithm from Gao 
and Cheng (2019) to evaluate the effectiveness of the new 
algorithm. The CPU used was the Intel Core i7-10710U and 
the GPU was the MX250.

Results

Parameter settings

To compare with the smoke root detection results from 
Gao and Cheng (2019), the same parameters were set for 
the ViBe extraction of smoke candidate points. For the 
new method developed in this study, the adaptive threshold 
(AT) is an empirical value (Table 1). Table 2 also shows the 
smoke detection results based on the Choquet fuzzy integral 
algorithm developed by Wang et al. (2017), which detected 
smoke rather than smoke roots. Therefore, to compare the 
results obtained by Wang et al. (2017), the Choquet fuzzy 
integral algorithm was used to extract the smoke candidate 

regions followed by the smoke roots extraction method in 
this study. Further details of comparisons between the smoke 
roots detected based on the Choquet fuzzy integral algorithm 
and the new algorithm are presented later.

Since image detection and fusion is a pixel-level process, 
a large number of isolated points need to be included in the 
connected domain. To reduce computation needs, this study 
applied erosion and expansion operations on the smoke fore-
ground pixels from Gao and Cheng (2019). Table 3 lists 
the expansion and erosion cores used in this paper. In the 
smoke root search and detection process, the search radius 
R was set at 5.

Table 4 shows the adjusted adaptive thresholds set by the 
new method to obtain the base judgement image database 
and the number of frames required to successfully detect 
smoke root candidate points, which are the time and the 
number of detected candidate smoke roots. When a propor-
tion of the acquired connected domain is greater than the 
adjusted AT compared to the previous frame of the judg-
ment image, the next connected domain frame is extracted 
as the frame of judgment image of the smoke roots search 
strategy. The selection of different thresholds for different 
samples depends on the inconsistent diffusion speeds of the 
smoke for different samples. The connected domains of sam-
ples with slower smoke diffusion change slowly, while for 
the faster smoke diffusion change quickly. For slow smoke, 
a relatively small frame extraction threshold is needed to 
have enough search frames during the ten seconds of the 
sample video. For samples with fast smoke diffusion, their 

Table 1  Adaptive threshold used in the new developed algorithm

Video AT Video AT Video AT

T1 0.20 T7 0.20 T13 0.15
T2 0.20 T8 0.20 T14 0.20
T3 0.20 T9 0.15 T15 0.20
T4 0.20 T10 0.05 T16 0.15
T5 0.15 T11 0.15 T17 0.20
T6 0.20 T12 0.20 T18 0.18

Table 2  Forest fire smoke detection results by Wang et  al. (2017) 
(“N” = not detected; “Y” = successfully detected)

Video Detect suc-
cessfully

Video Detect suc-
cessfully

Video Detect 
success-
fully

T1 Y T7 N T13 N
T2 N T8 Y T14 N
T3 N T9 Y T15 Y
T4 Y T10 N T16 N
T5 N T11 Y T17 N
T6 Y T12 N T18 N
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connected domains change at a faster rate, and a smaller 
frame extraction threshold is required to make the time span 
of extracting search frames long enough. For smoke with a 

moderate diffusion rate, the search frame is extracted with 
a 20% frame extraction threshold to ensure that the sample 
length can extract sufficiently long time span of frames and 
the sufficiently large inter-frame differences.

Adjusting the adaptive thresholds does not affect the 
acquisition of correct smoke roots but instead it will reduce 
the detection of fake smoke roots. The T2 sample was ana-
lyzed as an example using different ATs to obtain the smoke 
roots (Table 5). It shows that a larger AT requires more 
frames obtain ten frames of the judgment image and fewer 
smoke root candidate points are obtained. A smaller AT 
requires fewer frames to obtain the ten frames of judgment 
image and a greater number of smoke root candidate points 
are obtained. Since larger AT need longer stacked search to 
reach the degree of change in the connected domain, fewer 
“fake smoke roots” are considered as candidate points. 
Although the AT does not affect whether the smoke roots 
are detected or not, too many detection frames will increase 
the amount of calculation to obtain the frames of judgment 
image in the early stage, and more will also increase the 
amount of calculation in the later two-dimensional smoke 
simulation process. Thus, to be computationally efficient 
with fewer fake smoke root detection, the AT is adjusted to 
an appropriate value (Table 4).

Performance evaluation of the new algorithm

Two indicators used to evaluate the performance of the 
algorithm, include detection accuracy and the number of 
effective connected domains. To quantify the detection accu-
racy, an artificial ROI (region of interest) area was set in the 
smoke source area of the image as the reference smoke roots, 
and used to compare whether the detected smoke roots by 
different detection methods were correct. The ROI areas for 
each forest fire event were marked with a red frame in the 
image frame, and the coordinates of these areas were stored 
for later comparison. If the detected smoke roots candidate 
points fell in the ROI area, the detection was considered 
successful, which was also the detection accuracy index 
proposed by Gao and Cheng (2019). The shape of the ROI 
area is rectangular but the size for different fires are different 

Table 3  Smoke foreground pixels via Gao and Cheng (2019) 
(“N” = not detected; “Y” = successfully detected)

Test video First 
available 
frame

Close/Erode/Dilate 
Kernel

Roots 
num-
ber

Detected 
success-
fully

T1 81 21*21 3*3 21*21 0 N
T2 65 21*21 1*1 25*25 0 N
T3 19 21*21 3*3 21*21 2 Y
T4 80 21*21 1*1 29*29 2 N
T5 46 21*21 3*3 31*31 2 N
T6 49 21*21 1*1 21*21 1 Y
T7 39 21*21 5*5 25*25 0 N
T8 17 21*21 3*3 21*21 0 N
T9 52 21*21 3*3 29*29 2 Y
T10 68 21*21 3*3 29*29 2 Y
T11 76 21*21 1*1 21*21 0 N
T12 52 21*21 3*3 25*25 2 N
T13 15 21*21 3*3 21*21 0 N
T14 15 21*21 7*7 25*25 0 N
T15 213 21*21 9*9 35*35 2 N
T16 80 21*21 5*5 25*25 2 N
T17 20 21*21 3*3 21*21 1 Y
T18 67 21*21 7*7 31*31 2 Y

Table 4  Adjusted adaptive thresholds (“N” = not detected; 
“Y” = successfully detected)

Test video Roots 
number

Detected frame Adjusted AT Detected 
success-
fully

T1 4 184 0.20 Y
T2 1 203 0.20 Y
T3 1 151 0.20 Y
T4 2 127 0.20 Y
T5 1 245 0.15 Y
T6 2 60 0.20 Y
T7 1 57 0.20 Y
T8 1 47 0.20 Y
T9 1 206 0.15 Y
T10 1 125 0.05 Y
T11 1 194 0.15 N
T12 3 175 0.20 Y
T13 3 195 0.15 Y
T14 1 164 0.20 Y
T15 1 157 0.20 Y
T16 2 213 0.15 Y
T17 1 129 0.20 Y
T18 2 217 0.18 Y

Table 5  Smoke root detection of different ATs

Test video AT Detected Frame Roots 
num-
ber

T2 0.25 255 1
T2 0.20 203 1
T2 0.15 152 3
T2 0.10 96 3
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(Table 6). Among the available 27 videos, 18 showed a for-
est fire.

Table 7 compares the detection accuracy of three different 
smoke detection algorithms, including the ones proposed by 

Gao and Cheng (2019) and Wang et al. (2017), and the one 
developed in this study. The results were obtained using the 
foreground extraction algorithms of each method to obtain 
smoke candidate regions, followed by extracting the smoke 
root candidate points using the same method and param-
eters. From Table 7, it is shown that the new algorithm can 
detect smoke roots with an accuracy of 94.9%, a significant 
improvement compared to those of Gao and Cheng (2019) 
and Wang et  al. (2017) algorithms of 31.6 and 52.6%, 
respectively.

In addition to the detection accuracy, the fusion image 
of the binarized smoke candidate regions can also be used 
to qualitatively validate the effectiveness of the new algo-
rithm. Figure 7, compare the original image (first row), the 
dynamic and static feature fusion image obtained using the 
new algorithm (second row), the results from the ViBe algo-
rithm (third row), and the results from the Choquet fuzzy 
integration algorithm (fourth row). The new algorithm can 
identify smoke root areas more accurately and more com-
pletely with less false smoke roots compared to the other 
traditional algorithms.

To quantify the effectiveness of different algorithms 
(Fig. 8), the number and proportion of effective connected 
domain frames can be used as the second validation index. 
These are defined as the connected domain that can obtain 
the skeleton endpoints of the correct smoke root candidate 
points after skeletonization. An example of ineffective and 
effective connected domain frames, obtained using different 

Table 6  Types of smoke, number of frames, and the ROI sizes in the 
18 tests videos with fire

Test video Type Frame ROI size

T1 Mountain smoke 269 20*20
T2 Mountain smoke 269 20*20
T3 Early smoke on flat ground 269 20*20
T4 Early smoke on flat ground 263 20*20
T5 Smoke from residential areas 258 33*33
T6 Low-definition forest smoke 266 20*20
T7 Smoke surrounded by intrusive colors 271 20*60
T8 Smoke surrounded by intrusive colors 271 20*60
T9 Smoke with low definition 269 20*20
T10 Smoke with low definition 264 20*20
T11 Smoke partially obscured by trees 250 60*60
T12 Vegetable field smoke 250 20*20
T13 Vegetable field smoke 253 20*20
T14 Long-distance residential area smoke 250 20*20
T15 Obstructed smoke 251 22*22
T16 Double ignition point smoke 256 22*22
T17 Terrace smoke 252 17*17
T18 Smog with a tendency to spread 250 90*30

Table 7  Comparison of 
detection results between 
different algorithms (“N” = not 
detected; “Y” = successfully 
detected) 

Videos Algorithm used by Gao and 
Cheng (2019)

Algorithm used by Wang et al. 
(2017)

The new algorithm

Roots Successfully Roots Successfully Roots Successfully

T1 0 N 5 N 4 Y
T2 0 N 4 Y 1 Y
T3 2 Y 2 Y 1 Y
T4 2 N 9 Y 2 Y
T5 2 N 6 N 1 Y
T6 1 Y 2 Y 2 Y
T7 0 N 7 Y 1 Y
T8 0 N 12 Y 1 Y
T9 2 Y 9 Y 1 Y
T10 2 Y 5 N 1 Y
T11 0 N 2 N 1 N
T12 2 N 0 N 3 Y
T13 0 N 0 N 3 Y
T14 0 N 0 N 1 Y
T15 2 N 1 Y 1 Y
T16 2 N 8 Y 2 Y
T17 1 Y 2 Y 1 Y
T18 2 Y 17 Y 2 Y
Total 31.6% 52.6% 94.9%
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methods in the same frame is shown in Fig. 9. The frame on 
the left is considered ineffective since it cannot be directly 
refined through the skeleton refinement, and the correct 
smoke roots cannot be effectively extracted through the 
smoke roots search strategy. Thus, the ineffective connected 
domain frames, defined as the foreground frames, require 
preprocessing to obtain a complete connected domain 
through opening and closing operations or as the frames 
that cannot obtain a complete connected domain through 
basic opening and closing operations. The connected domain 
on the right of Fig. 9 is effective since it can be directly pro-
cessed through skeletonization to obtain continuous smoke 
root candidate points that can effectively extract the correct 
smoke roots.

With the effective connected domain frames defined, the 
positive detection (PD) and the detection rate (DR) are used 
to compare the detection effectiveness between different 
algorithms.

Table 8 compares the positive rate and the detection rate 
for the three different algorithms including those of Gao 
and Cheng (2019), Wang et al. (2017), and the developed 
algorithm in this study. It illustrates that the new algorithm 

improves significantly on detection effectiveness of the 
smoke roots, with detections rate of 100% for most of the 
test video and minimum detection rate of 73.3%, compared 
to a minimum detection rate of 11.7 and 0% for those of 
Gao and Cheng (2019) and Wang et al. (2017), respectively.

Discussion

To further investigate the possible influencing factors for 
the detection accuracy of different smoke root detection 
algorithms, Figs. 10, 11, 12 and 13 show the number of 
detected true roots and false detection for the three algo-
rithms. Comparing these figures, shows that the proposed 
new method not only improves the detection rate of true 
smoke roots, but can detect smoke roots in some challeng-
ing environments which the other two algorithms cannot. 
The test videos T1 and T13 (Figs. 7, and 8) were selected 
as examples to further explain such conditions. In T1 and 
T13, there was regular smoke in both scenes and a few light-
colored buildings in the background. Under such conditions, 
the ViBe algorithm failed to extract any smoke roots because 

Fig. 7  Comparison between the original images (first row), the fusion images from the developed method in this study (second row), from the 
ViBe algorithm (third row), and from the Choquet algorithm (fourth row) for T1, T5, T6, T11
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it extracted foreground information based on differences 
between front and rear frames. The high grayscale pixels 
in the center of the smoke mixed with the background area 
and were missed, and the edge of the smoke would not be 
detected due to the slight change in color. Therefore, the thin 
smoke and the background in the central area of the smoke 
that maintained a stable attitude, induced interference to the 
ViBe algorithm. The diffuse and thin smoke displayed by 

T5 (Fig. 7) also showed few smoke regions using the ViBe 
algorithm, verifying this finding. The algorithm developed 
in this study further integrates static features based on the 
ViBe algorithm, so that the pixels in the smoke regions that 
do not conform to the characteristics of ViBe can also enter 
the fusion image by conforming to the static characteristics 
of the smoke. Therefore, under the same circumstances, the 
proposed method in this paper can extract the smoke regions 
more completely.

Wang et al. (2017) Choquet fuzzy integral algorithm 
could not successfully extract the smoke roots in some of the 
scenarios because it was significantly influenced by back-
ground interference. The light-colored background object 
in T13 interfered considerably with the Choquet fuzzy inte-
gral algorithm, making it unable to distinguish the light-
colored background from the smoke regions. The resulting 
foreground smoke regions were too far away from the cor-
rect smoke regions as shown in T13 (Fig. 8). The algorithm 
developed in this paper, on the other hand, used a dynamic 
area frame containing all pixels to set the extraction range 
of the smoke regions after obtaining the dynamic pixel set. 
Such a procedure significantly reduces interference outside 

Fig. 8  Comparison between the original images (first row), the fusion images from the developed method in this study (second row), from the 
ViBe algorithm (third row), and from the Choquet algorithm (fourth row) for T13, T14, T16, T18

Fig. 9  Ineffective (left) and effective (right) connected domain 
frames
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the dynamic area. However, if the interference is too close 
to the smoke source contained in the dynamic area frame, 
it would still affect the detection accuracy of the algorithm. 
Since such interference does not change the basic outline 
of the smoke regions, it will be reflected as additional false 
smoke roots and does not affect the detection results of the 
correct smoke roots.

In addition, when comparing the detection results of T6, 
T14, and T18 (Figs. 7, 8, 10, 11, 12) it can be seen that the 
overall brightness of the environments where the smoke is 
located had a greater impact on the extraction of the fore-
ground area using the Choquet fuzzy integral algorithm. In 

T18 (Fig. 8), both the outline details of the smoke and the 
brighter background were extracted at the same time. In T14 
(Fig. 8), although the dynamic and static characteristics of 
the smoke were obvious, only a few pixels were success-
fully extracted, resulting in an unstable smoke region. The 
contrasting T6 (Fig. 8) had a low pixel rate, but the overall 
area was brighter. Under the premise that the presence of 
fog made the smoke more difficult to distinguish, using the 
Choquet fuzzy integration algorithm, the smoke near the 
smoke source contour can still be extracted.

In Figs. 10, 11 and 12 for T11, none of the algorithms 
can detect the correct smoke roots. Looking at Fig. 8, T11 

Table 8  Comparison of 
positive rate and detection rate 
for effective connected domain 
frames between the three 
different algorithms

Video Smoke/ROI
(frame)

Available frame of 
GAO and Cheng 
(2019) method

Available Frame of 
Wang et al. (2017) 
method

Available frame of 
proposed method

PD DR PD DR PD DR

T1 269 32 11.7% 28 10.4% 218 80.9%
T2 269 203 75.5% 105 39.03 269 100.00%
T3 269 103 38.29 251 93.31% 269 100.00%
T4 263 185 70.3% 263 100% 257 97.77%
T5 258 86 33.3% 27 10.47% 189 73.26%
T6 266 217 81.6% 127 47.74% 266 100.00%
T7 271 232 85.6% 271 100% 271 100.00%
T8 271 160 59.0% 271 100% 271 100.00%
T9 269 217 80.7% 269 100% 269 100.00%
T10 264 133 50.4% 1 0.38% 264 100.00%
T11 250 173 69.2% 174 69.60% 250 100.00%
T12 250 173 58.8% 226 90.40% 250 100.00%
T13 253 238 94.1% 0 0% 253 100.00%
T14 250 235 94.0% 0 0% 253 100.00%
T15 251 39 15.5% 119 47.41% 251 100.00%
T16 256 111 43.4% 256 100% 256 100.00%
T17 252 233 92.5% 252 100% 252 100.00%
T18 250 183 73.2% 250 100% 250 100.00%

Fig. 10  Smoke root numbers 
by Gao and Cheng (2019) 
method
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might have a problem with the scene itself, because the 
smoke roots were not obvious and the portion of the smoke 
covered by trees was almost equal to the portion that can 
be observed, which made the delineation of the ROI area 
doubtful.

From Figs. 10, 11 and 12, it also can be seen that com-
pared with the Wang’s method, the algorithm developed in 
this study greatly reduced the number of fake smoke roots, 
which can significantly reduce the workload in the stage 
of verifying smoke roots candidate points by generating 

Fig.11  Smoke roots number of 
Wang et al. (2017) method

Fig. 12  Smoke roots number of 
proposed method

Fig. 13  The proportion of 
effective connected domain 
frame in the total frame propor-
tion
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simulated smoke using the two-dimensional smoke simula-
tion engine. For example, T16 (Fig. 8) was a video of for-
est fire smoke with two smoke sources. Figure 11 shows 
that the Gao and Cheng (2019) method detected two false 
smoke root candidate points, Fig. 11 shows that the Wang 
et al. (2017) method falsely detected more than six smoke 
root candidate points, and Fig. 12 indicates that the devel-
oped method detected all smoke root candidate points cor-
rectly. The smoke regions obtained by Wang et al. (2017) 
was a smoke profile with a certain concentration, which was 
the core diffusion trajectory of the smoke, and its chang-
ing shape and speed were relatively slow. The second 
smoke source on the right of T16 just began to smoke and 
only a small smoke moved. Since the Wang et al. (2017) 
method requires a certain minimum smoke concentration 
to be detected, the second source of smoke on the right of 
T16 could not be detected using their method. By using the 
method developed in this paper, the smoke regions showed 
the contour of diffuse smoke, and its diffusion shape and 
speed were faster. Therefore, under similar conditions as in 
T16, the method developed in this study can obtain fewer 
candidate smoke roots for a higher quality of smoke root 
detection. It also can extract the smaller smoke source on the 
right of T16 by extracting its static features, and both smoke 
sources in T16 can be detected correctly. Also, when com-
paring smoke videos of T18 and T16 (Fig. 8), in addition to 
the difference in smoke contours, there was also significant 
background interference in T18. For T18, Figs. 10, 11 and 12 
indicate that the methods of Gao and Cheng (2019), Wang 
et al. (2017) and the method developed in this study detected 
one, sixteen, and one false smoke root candidate points, 
respectively. Background interference that does not change 
with the frame will also increase the number of fake smoke 
root candidate points as in the Wang et al. (2017) method, 
which was addressed by the developed method. Although the 
number of smoke root candidate points obtained by Gao and 
Cheng (2019) is smaller, it detected far fewer correct smoke 
roots as indicated clearly by comparing Figs. 10, 11 and 12.

In addition to the detection accuracy, the effective con-
nected domain is another evaluation indicator for differ-
ent algorithms and refers to the complete and connected 
domain that can be obtained through the skeletonization 
algorithm to reflect the correct smoke roots. Figure 13 com-
pares the efficiency of the connected domain frames for the 
three investigated methods. The efficiency of the connected 
domain frames obtained by the method developed method 
in this study is an improvement compared with the other 
two methods.

The proportion of the effective connected domain for all 
the 18 test videos varied significantly between different vid-
eos ranging from 20 to 80% (Fig. 13). The method of Gao 
and Cheng (2019) obtained the smoke foreground images 
directly through the ViBe algorithm but could not effectively 

obtain the connected domain to be skeletonized when pro-
cessing part of the samples. For their method, for different 
test videos, the process of preprocessing the images into 
connected domains requires separate adjustment of param-
eters for each sample to obtain a good, connected domain 
(Table 3). Even after tuning each sample individually to have 
better performance, the proportion of effective connected 
domain frames was still low. In addition, the background 
database update and establishment process of the ViBe 
algorithm also makes it difficult to obtain the correct smoke 
regions image for the first frame. Since the follow-up smoke 
roots search strategy of their method needs to operate on 
the connected domain of five consecutive frames, there are 
also relatively high requirements for the continuity of the 
effective connected domain. This makes the proportion of 
consecutive connected domain frames that can obtain the 
correct smoke root candidate points smaller, which directly 
lowers the success rate of the method.

For the method of Wang et al. (2017), a proportion of the 
effective connected domain for all the 18 test videos varied 
even larger to 100% (Fig. 13). Their method obtained images 
of the smoke regions through the Choquet fuzzy integration 
algorithm. The effectiveness of this algorithm is suitable for 
different, but not all, smoke environments. For inapplicable 
conditions, the effective connected domain frame proportion 
is low to 0%, and for applicable conditions, the proportion 
is up to 100%. The Choquet algorithm is stable processing 
inter-frame effects, unlike the ViBe algorithm, and integrates 
and improves as processing continues.

The method developed in this study can provide the pro-
portion of the effective connected domain for all 18 test 
videos between 80 and 100% with small variations. The 
method established a model to frame the dynamic area of the 
smoke after obtaining the ViBe smoke foreground image and 
extracted the static feature area from such a dynamic area. 
This process enabled the method to obtain good, connected 
domains that can be skeletonized into effective skeletons for 
different sample videos. More importantly, the subsequent 
adaptive threshold extraction of the skeleton frame strategy, 
and the multi-frame discrete confidence determination strat-
egy, did not require the continuity of the connected domain. 
Using this method, high-confidence smoke root candidate 
points can still be obtained even when with a few ineffec-
tive frames, effectively reducing the probability of a missed 
detection.

Conclusion

In this study, a new smoke root detection method was devel-
oped to extract smoke regions and smoke roots effectively. 
The new method retains the dynamic feature smoke regions 
obtained through the ViBe algorithm, uses the ViBe feature 
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image to establish a model image to determine the smoke 
dynamic area frame, and obtains the smoke regions through 
the static feature extraction method. Such a process solves 
the problem of missing the detection of the smoke regions 
induced by voids or empty spaces. The smoke dynamic area 
frame excludes areas outside the smoke regions for a better 
outline and shape, and provides a solution to detect smoke 
more accurately under complex conditions. In addition, the 
smoke region images obtained are extracted by the adap-
tive threshold in real time. Ten frames of smoke connected 
region images that meet the extraction conditions are used 
for skeletonization, followed by endpoint extraction and a 
multi-frame discrete confidence determination strategy to 
extract smoke root candidate points. Such a process will 
significantly improve the detection accuracy and rate of 
smoke roots. Based on the analysis of 18 test videos and a 
comparison between three different smoke detection meth-
ods, including those of Gao and Cheng (2019), Wang et al. 
(2017), and the one developed in this study, the following 
conclusions can be made:

(1) The results show that the minimum detection rate based 
on the new model significantly increased to 94.9%.

(2) The proportion of effective connected domain in smoke 
frames can be increased to 100% and the new model 
under similar environmental conditions achieved simi-
lar improvement. Even if the Choquet algorithm is 
used to obtain the smoke regions, the detection rate 
increased from 38.9 to 52.6% using the judgment strat-
egy developed in this study.

(3) The new method also requires fewer smoke root can-
didate points for more accurate detection, resulting in 
higher computational efficiency in generating simu-
lated smoke for the two-dimensional smoke simulation 
engine to verify the smoke root candidate points.

The new method can solve the challenges of reducing the 
impacts of smoke voids and background interference in the 
extraction of the smoke regions, and can be widely applied 
for forest fire detection.
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