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(> 20 years) concluded that stands can return to pre-treat-
ment densities in terms of total trees per hectare and forest 
floor duff levels when there are no maintenance treatments 
applied. Several studies showed the average ponderosa pine 
seedling presence, survival and growth found in today’s for-
ests to be at a high density; this combined with missed fire 
cycles could contribute to future fire risk and reduce the 
efficacy of maintaining fuel reduction goals.

Keywords  Regeneration · Ponderosa pine · Frequent-
fire · Treatments · Thinning · Burning

Introduction

Forest management in western frequent-fire forests is 
driven by the need for ecological restoration and hazard-
ous fuel treatments to reduce the risk of uncharacteristic, 
high-severity fire. Today’s ponderosa (Pinus ponderosa 
Douglas ex P. Lawson & C. Lawson) forests are currently 
five to 20 times denser than estimates of historic forests, 
and often burn with high-severity from both natural- and 
human-caused fire starts (Covington and Moore 1994; 
Allen et al. 2002; Graham and Jain 2005; Hagmann et al. 
2013; Huago et al. 2019). In the western United States, the 
majority of these forest types are on federally owned land, 
with the largest portion managed by the United States For-
est Service (USFS). Some of the largest barriers to restor-
ing these forests and reducing wildfire risk is the cost of 
fuel treatments, increased numbers of people moving in 
the wildland urban interface, social acceptance of thinning 
and burning, and smoke tolerance from managed wildfire 
and prescribed burning (Schoennagel et al. 2017; Merschel 
et al. 2021). Current management priorities in frequent-
fire forests include reducing tree density, reducing fuels, 

Abstract  Understanding naturally occurring pine regen-
eration dynamics in response to thinning and burning treat-
ments is necessary not only to measure the longevity of 
the restoration or fuels treatment, but also to assess how 
well regeneration meets forest sustainability guidelines and 
whether natural regeneration is sufficient for maintaining a 
sustainable forest structure and composition. A synthesis 
review was carried out on the effects of mechanical thinning 
and prescribed burn treatments on natural pine regenera-
tion response in frequent-fire ponderosa pine forests across 
the western United States. The focus was on site-specific 
variability in pine regeneration dynamics, temporal trends 
in regeneration presence and abundance, and response 
to treatment as described in the current literature using 
29 studies that met our evidence-based review protocols. 
Data showed that the effects of thinning and burning treat-
ments on regeneration depended on time since treatment. 
Mechanical thinning, prescribed burning, and thinning plus 
burn treatments all increased seedling density, but there was 
high variability among sites and studies. There were mixed 
results in the short-term (< 10 years) with both increasing 
and decreasing regeneration, and a general increase in regen-
eration 11 − 20 years post-treatment. Some long-term studies 
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decreasing fire hazards and severity, enhancing forest eco-
system components, and improving biological diversity 
via mechanical thinning and prescribed burning treatments 
(Healthy Forests Restoration Act of 2003 [P.L. 108–148]).

Understanding naturally occurring ponderosa pine 
regeneration dynamics in response to thinning and burn-
ing is necessary, not only to measure the longevity of 
the restoration or fuels treatment, but to assess how well 
regeneration meets forest sustainability guidelines under 
the National Forest Management Act (1976). Frequent-
fire forests have complex dynamics that have evolved over 
millennia (Swetnam 1993; Stephens et al. 2003). Pre Euro-
American settlement, frequent, low-severity surface fires 
dominated the disturbance regime and maintained rela-
tively open, multi-aged and diverse forested stands (Agee 
1993; Covington and Moore 1994; Keeley and Zedler 
1998; Stephens et al. 2003, 2015; Hagmann et al. 2013). 
Changes in historical disturbance regimes, in combina-
tion with climatic change and more frequent occurrence of 
large-scale high severity fire have led to additional barriers 
and challenges to natural regeneration. Warmer and drier 
conditions are predicted across the western U.S. (Seager 
et al. 2007; Gutzler and Robbins 2011; IPCC 2013, 2018), 
and changes in vegetation composition in forests are pre-
dicted in the near future (Allen et al. 2010; Breshears et al. 
2005; Hanberry 2014). Changes in seasonal precipitation, 
soil conditions, and soil water availability affect regenera-
tion establishment and persistence (Petrie et al. 2016; Dey 
et al. 2019). Prolonged drought conditions, warmer tem-
peratures, and reduced precipitation may impact natural 
pine regeneration and persistence, however the specific 
environmental conditions necessary for successful regen-
eration in any given region vary (Petrie et al. 2016).

Successful ponderosa pine regeneration is episodic in 
nature, constrained by climate, and sensitive to specifically 
timed precipitation and temperature patterns (Brown and Wu 
2005; League and Veblen 2006; Savage et al. 2013; Flath-
ers et al. 2016). Successful regeneration rates are further 
regulated by soil moisture, predation of seeds/cones, seed-
bed conditions, and competition with grasses and under-
story vegetation (Pearson 1950; Meagher 1950; Heidmann 
2008; Puhlick et al. 2012; Flathers et al. 2016; Petrie et al. 
2016). Historically, regeneration was naturally limited by 
frequent, low-severity fires (Brown and Wu 2005; Savage 
et al. 2013). In recent decades, fire regimes in the western 
U.S. have changed in response to warming temperatures 
and drought, and fire seasons have become longer, wildfires 
are more frequent and larger, and area burned is increasing 
annually (Westerling et al. 2011; Moritz et al. 2012; Den-
nison et al. 2014; Jolly et al. 2015; Abatzoglou and Williams 
2016; Westerling 2016). In addition, patches burned at high 
severity often have limited adjacent seed sources for regen-
eration, and forests may experience an ecosystem conversion 

to shrubs or grasses post-wildfire (Owen et al. 2017; Korb 
et al. 2019).

Studies on the relationship between ponderosa pine cone 
and seed production with stand structure and abiotic con-
ditions demonstrate that thinning can increase individual 
tree reproductive output, and greater cone production and 
cone mass was observed at lower tree densities (Flathers 
et al. 2016). Seedling mortality was high the first two years 
(Stein and Kimberling 2003; Sheppard et al. 2006; Keyes 
et al. 2007) but slowed around seven years of age (Sheppard 
et al. 2006). Ponderosa pine regeneration was also highly 
influenced by parent material and soil type, with sedimen-
tary soils most often having more water availability and soil 
moisture than basalt soils (Heidmann 1988; Puhlick et al. 
2012), and often had higher densities (Ffolliott and Baker 
1977; Heidmann 1988; Goodwin 2004) and grew faster on 
sedimentary soils.

Abundant ponderosa pine seed crops can lead to prolific 
regeneration and growth, often exceeding thousands of stems 
per hectare (Shepperd and Battaglia 2002; Battaglia 2007; 
Flathers et al. 2016). Historically, frequent, low-severity fires 
kept seedling density low and limited survival through time 
to the densities observed in historic reconstructions (Brown 
and Wu 2005; Savage et al. 2013). However, the absence of 
frequent fires and intact fire regimes, combined with good 
seed years, has led to seedling and sapling densities well 
above those estimated historically in many areas, and have 
contributed to the high fuel loadings seen in contemporary 
forests. This excess regeneration can increase surface fuel 
accumulation and create ladder fuels, thus increasing crown 
fire hazard (Battaglia et al. 2009).

Maintaining fuel treatment effectiveness to reduce wild-
fire hazard is a management priority, as costs of mechani-
cal treatments are high and the pace and scale of treatment 
implementation can be challenging. Treatments generally 
consist of the removal of trees via mechanical thinning and 
prescribed fire, or use of prescribed fire alone. These treat-
ments are meant to reduce surface fuel accumulations and 
high severity wildfire behavior (Agee and Skinner 2005). 
Regeneration dynamics and the continued growth of seed-
lings and saplings affect fire hazard and stand density and 
are important factors to consider when evaluating treatment 
effectiveness and longevity.

Understanding regeneration dynamics in frequent-fire 
forests and expected needs in a climate-altered future are 
integral for managing for resilience. In this review, we 
qualitatively synthesized publications that examined natu-
ral pine regeneration following restoration or fuel reduc-
tion treatments in frequent-fire ponderosa pine forests. The 
directional and temporal responses of natural pine regen-
eration to thinning and burning treatments were examined, 
and how time since treatment had influenced the presence/
absence and abundance of ponderosa pine regeneration. The 
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results of our synthesis are discussed in the context of the 
contemporary challenges and climate change, management 
recommendations are made in consideration of maintain-
ing treatment effectiveness and reducing wildfire risk, and 
research gaps are identified. To our knowledge, there has not 
been an effort to synthesize these publications for scientists 
and land managers, and this synthesis will address if natural 
pine regeneration post-treatment is sufficient to meet forest 
sustainability guidelines for federally managed lands.

Materials and methods

This synthesis was carried out using evidence-based review 
protocols (Pullin and Stewart 2006; Lortie 2014) to find the 
relevant body of literature that exists on this subject area. 
Search strings and multiple relevant databases were used to 
identify relevant publications. The search strings included: 
ponderosa pine OR pinus ponderosa, AND regeneration 
OR seedlings OR saplings, AND treatment, AND thin OR 
burn OR restoration OR fuels reduction. Five independent 
online science-based search engines were examined, includ-
ing CAB Abstracts, ProQuest, BIOSIS, and Web of Science, 
Google Scholar, and the literature cited of relevant publica-
tions prior to March 2021. The potentially relevant publi-
cations were screened to eliminate those that did not meet 
our inclusion criteria (Table 1), and the remaining papers 
were searched to determine if all criteria were met. Papers 
were removed that were conference papers or conference 
abstracts, as the rigor and quality of information was incon-
sistent. Modeling studies were removed that did not present 
empirical field data as a response variable for ponderosa pine 
regeneration. Papers were excluded that focused on facili-
tated regeneration, including seeding, sowing, planting, or 
any other form of regeneration manipulation. Reviewers did 
not assess papers that they authored. A final set of papers 
that met the criteria were summarized. Because this was 

strictly a synthesis review and not a meta-analysis, we did 
not report statistical effect size. The quality of each paper 
was assessed based on whether the paper was peer reviewed 
or grey literature (e.g., theses, agency reports, other). Pub-
lications produced by the initial search were supplemented 
with additional publications that were determined to be 
missing based on our personal knowledge of the subject.

Qualitative data on treatments and regeneration responses 
were compared across treatments. Regeneration was defined 
as individuals from new germinants to seedlings less than 
diameter breast height (dbh, 1.37 m above ground) and 0.25 
to 10 cm dbh. Treatment type and time since treatment were 
used as data extraction variables. Time since treatment was 
binned into four categories: very short-term (≤ 1 year), 
short-term (2 − 10 years), moderate-term (11 − 20 years) and 
long-term (> 20 years). Regeneration response to treatments 
was assessed as a categorical (increase or decrease) change 
in presence or absence, density (number per hectare), and 
abundance. Regeneration responses to either control plots or 
untreated areas, and among treatment types, were compared. 
These studies were summarized by study area, dominant for-
est type, elevation, annual precipitation, and parent material 
(Table 2).

Results

Literature review

The initial review of titles and abstracts from our search 
strings produced 109 papers that addressed ponderosa pine, 
natural regeneration and treatments (thinning, burning, thin-
ning plus burning). After assessing these papers to meet our 
criteria, a final set of 29 papers addressed natural regen-
eration responses following fuel reduction, restoration, and 
fire risk reduction treatments in ponderosa pine ecosystems 
(Table 2). Of these final set of papers, the majority (26) were 

Table 1   Criteria for 
publications used in this review 
of changes in regeneration 
presence, absence, and 
abundance after thinning and 
burning treatments

Criteria Description

Species Ponderosa pine (Pinus ponderosa P. Lawson & C. Lawson)
Range Western United States
Population Publication analyzed naturally occurring regeneration post- treatment

 Not facilitated regeneration (no planting, seeding, or sowing)
 Ponderosa pine one species in a multi-species group
Ponderosa pine was the dominant species in a multi-species group

Comparator Publication analyzed treatment type (thinning, burning, thin-
ning + burning) and time since treatment as an explanatory variable 
of post-treatment regeneration

Outcomes Publication analyzed regeneration density, presence or absence as a 
measure of post-treatment regeneration abundance as the response 
variable

Other Publications were refereed journal, grey literature, government reports
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Table 2   Studies included in this systematic review and their geographic location, forest type, elevation, annual precipitation, parent material, 
treatment type (thin, burn, thin + burn), and time since treatment

Study # Authors Study location Forest type Elevation (m) Annual 
precipitation 
(cm)

Parent material Treatment type Time since 
treatment

1 Abella and 
Covington 
2007

Northern Ari-
zona

P. ponderosa 2300 57 Basalt Thin + Burn 5–6 yrs

2 Bailey and 
Covington 
2002

Northern Ari-
zona

P. ponderosa 2240 57 Basalt Thin + Burn 5–6 yrs

3 Battaglia et al. 
2008

Black Hills, 
South Dakota

P. ponderosa 1000–2207 41–74 Granite, Schist Burn 1 yr

4 Battaglia et al. 
2009

Black Hills, 
South Dakota

P. Ponderosa 1000–2200 41–74 Granite, Schist Burn 8 months

5 Bigelow et al. 
2011

Sierra Nevada, 
California

P. ponderosa, 
P. jeffreyi

1200–1650 38–200 Granite, Slate, 
Sandstone, 
Chert

Thin + Burn 4 yrs

6 Briggs et al. 
2017

Front Range, 
Colorado

P. ponderosa 1960–2740 55 Granite, Gneiss Thin 1–2 yrs

7 Clyatt et al. 
2017

Southwestern 
Montana

P. ponderosa P. 
menziesii

1300–1500 40 Granite Thin, 
Thin + Burn

23 yrs

8 Cueno 2011 Black Hills, 
South Dakota

P. ponderosa 1006–2164 41–74 Mica schist, 
Metamor-
phosed 
quartzite and 
pelite

Thin, 
Thin + Chip, 
Thin + Burn

2 yrs

9 Fajardo et al. 
2007

Southwestern 
Montana

P. ponderosa P. 
menziesii

1500 40 Granite Thin, 
Thin + Burn

10 yrs

10 Ffolliott and 
Guertin 1990

Northern Ari-
zona

P. ponderosa 2000 64 Volcanic Burn 1, 2, 11, & 24 
yrs

11 Ffolliott et al. 
2009

Northern Ari-
zona

P. ponderosa 2000 64 Volcanic Burn 1 yr, 43 yrs

12 Fiedler et al. 
2010

Western Mon-
tana

P. ponderosa P. 
menziesii

1263–1388 50 Granite Thin, Burn,
Thin + Burn

3 yrs

13 Flathers et al. 
2016

Northern Ari-
zona

P. ponderosa 2266 56 Basalt Thin 12 yrs

14 Francis et al. 
2018

North-central 
Colorado

P. ponderosa P. 
menziesii

2350–2650 40–55 Alluvium Thin, 
Thin + Burn

3,4,8,12 yrs

15 Fulé et al. 2002 Northern Ari-
zona

P. ponderosa, 
Q. gamebelli

2290 36.8 Sandstone Thin, Burn,
Thin + Burn

1 yr

16 Fulé et al. 2007 Northern Ari-
zona

P. ponderosa 
Q. gamebelli

2000–2250 43 Basalt Thin + Burn 1 yr, 5 yrs

17 Gaines et al. 
1958

East-central 
Arizona

P. ponderosa 2255 49 Basalt Burn 2 months, 2 yrs

18 Kalabokidis 
and Waki-
moto 1992

Western Mon-
tana

P. ponderosa P. 
menziesii

1250 45.5 Volcanic Thin + Burn 1 yr

19 Metlen and 
Fiedler 2006

Western Mon-
tana

P. ponderosa P. 
menzeseii

1250–1350 55 Volcanic Thin, 
Thin + Burn, 
Burn

1,2,3 yrs

20 Moghaddas 
et al. 2008

Sierra Nevada, 
California

mixed conifer 1100–1410 160 Granite, Grano-
diorite

Thin, burn,
Thin + burn

4 yrs

21 Roccaforte 
et al. 2010

Northwest 
Arizona

P. ponderosa 
Q. gambelii

2000–2250 31–39 Basalt Thin + Burn 6–7 yrs

22 Roccaforte 
et al. 2015

East-central 
Arizona

P. ponderosa 2340–2580 49.4 Volcanic Burn, 
Thin + Burn

1 yr, 5yrs
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in refereed journals and three were considered grey litera-
ture. Studies were located in Arizona (12), Colorado (4), 
Montana (5), New Mexico (1), Oregon (1), South Dakota 
(3), and California (3) (Tables 2 and 3, Fig. 1). Treatment 
type varied by study and a single study could focus on mul-
tiple treatments (Table 2). Treatment goals varied by study 
and included forest restoration, fuel reduction, fire hazard 
reduction and research. The most pertinent studies were 
published relatively recently, with 25 of the 29 published 
after 2000.

Half of the reviewed studies (15) reported both pre- 
and post-treatment effects on regeneration. Other studies 
included control data for overstory measurements pre- and 
post-treatment, but no control data on regeneration. The 
most commonly reported regeneration responses were 
presence/absence, stem density (number per hectare), sur-
vival, and growth (height and diameter). Because regen-
eration response metrics varied among studies and den-
sity responses were variable, regeneration responses were 
characterized as either increasing or decreasing following 

treatment compared to control plots, pre-treatment informa-
tion, untreated areas, or plot-level monitoring.

Summary of regeneration responses to thinning 
and burning treatments

There were varying time since treatment effects on the 
regeneration response. Thin, burn, and thin plus burn treat-
ments displayed both increasing and decreasing trends in 
regeneration responses compared to pre-treatment or control 
plots, and through time. Studies with repeated measurements 
showed a time since treatment effect on the regeneration 
response.

In the short-term (≤ 1 year) thin and thin + burn treat-
ments both increased and decreased regeneration density 
within one-year post-treatment. Burn-only treatments also 
displayed mixed effects ≤ 1 year post-burn where low- to 
moderate-severity fire both increased and decreased the pres-
ence and density of regeneration compared to pre-treatment 
levels (Gaines et al. 1958; Battaglia et al. 2008; Roccaforte 

Table 2   (continued)

Study # Authors Study location Forest type Elevation (m) Annual 
precipitation 
(cm)

Parent material Treatment type Time since 
treatment

23 Sackett, S.S. 
1984

Northern Ari-
zona

P. ponderosa 2270 56 Volcanic Burn 4 yrs

24 Stevens et al. 
2014

Eastern and 
southern 
California

P. ponderosa 2000–3800 40–180 Granite, Slate, 
Sandstone, 
Chert

Thin + Burn 2–10 yrs

25 Stoddard et al. 
2015

Southwestern 
Colorado

mixed conifer 2438–2743 55 Granite, Sand-
stone, Shale, 
Limestone

Burn, 
Thin + Burn

5 yrs

26 Thomas and 
Waring 2015

Northeastern 
New Mexico

P. ponderosa 2350–2530 41.4 Sandstone and 
Shale

Thin + Burn 20, 25 yrs

27 Waltz et al. 
2003

Northwestern 
Arizona

P. ponderosa 
Q. gambelii

1675–2620 40–45 Basalt and lava/
Cinder

Thin + Burn 1 yr

28 Westlind and 
Kerns 2017

East-central 
Oregon

P. ponderosa 1570–1740 46 Volcanic Thin + Burn 5, 15 yrs

29 Wolk and 
Rocca 2009

Northern Colo-
rado

P. ponderosa 1921–2069 49 Granite, Sand-
stone, Shale, 
Limestone

Thin, 
Thin + Chip, 
Thin + Burn

5 yrs

Table 3   A total of 29 studies by treatment type, time since treatment, and regeneration response

Numbers correspond to study numbers in Table 2. Some studies had multiple re-measurements and treatment types and appear multiple times

Treatment Time since treatment- Regen response

 < 1–1 yr  < 1–1 yr 2 − 10 yrs 2 − 10 yrs 10 − 20 yrs 10 − 20 yrs 20 + yrs 20 + yrs

Increase Decrease Increase Decrease Increase Decrease Increase Decrease

Thin Only 14 15, 19 8, 14, 20, 22, 29 12,19 9, 13, 14 7
Burn Only 3, 10, 17 4, 15, 19, 22 20, 22, 23 12,17, 19, 25 10 7, 10, 11
Thin + Burn 14, 18, 27 6, 15, 16, 18, 19, 22 5, 8, 14, 20,22, 29 1, 2, 6, 12, 16, 

19, 21, 14, 25
9, 14, 26, 28 5, 28 7 26
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et al. 2015) (Table 3). Mixed responses were observed at 
shorter times since treatment ranges (2 − 10 years). Both 
increases and decreases in the presence and density of 
regeneration were observed following all three treatments 
(thin-only, burn-only, thin plus burn) (Table 3) and exhibited 
mixed patterns. Some studies such as Bigelow et al. 2011, 
further delineated treatments into thinning intensities. In this 
category, Bigelow et al. 2011 found increased regeneration 
following medium intensity thinning, but decreased regen-
eration in the most intense thinning treatment. Our sample 
depth did not allow for the examination of different thin-
ning intensity impacts on regeneration. In the moderate-term 
(11–20 years), there was a pattern of increased regeneration 
and density, especially in thin-only and thin + burn treat-
ments (Ffolliot and Guertin 1990; Fajardo et al. 2007; Flath-
ers et al. 2016; Francis et al. 2018; Thomas and Waring 
2015). Increased regeneration followed low- to moderate-
severity burn-only treatments (Ffolliott and Guertin 1990). 
Studies greater than 20 years showed an overall decrease 

in regeneration post-treatment across all treatment types 
(Ffolliot and Guertin 1990; Ffolliott et al. 2009; Thomas 
and Waring 2015; Clyatt et al. 2017).

Discussion

Thinning and burning treatments had variable effects 
on natural regeneration in frequent-fire pine forests and 
strongly depend on the time since treatment. This showed 
some consistent trends, most often as an increase in 
regeneration 11 − 20 years following treatments. Stud-
ies displayed both increases and decreases in regenera-
tion immediately following treatment (≤ 1 year) across all 
treatment types due site variability and treatment goals. 
Where decreases in regeneration density was observed, it 
suggested that this was due to initial site disturbance by 
heavy equipment and removal of overstory trees (Harrod 
et al. 2009; Bigelow et al. 2011). Increases in regeneration 

Fig. 1   Geographical distribu-
tion of ponderosa pine, review 
studies, and locations included 
in this review; location numbers 
correspond to Tables 2 and 3
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after burn-only treatments were due to exposure of min-
eral soil and increased availability of nutrients and light. 
Low- to moderate-intensity burning increases soil nutri-
ent availability (nitrogen) and provides favorable seedbed 
conditions (Battaglia et al. 2008, 2009).

Both increases and decreases in regeneration were 
observed 2 − 10 years post-treatment across all treatments 
and are attributed to site specific drivers and differences 
in biotic and abiotic factors associated with post-treatment 
seedling establishment. Ponderosa pine has episodic regen-
eration patterns throughout its range (Cooper 1960; Bailey 
and Covington 2002; Shepperd et al. 2006), and regenera-
tion requirements include sufficient seed supply, light litter 
and forb cover, adequate soil moisture, and low seed and 
seedling predation by mammals and birds (Schubert 1974; 
White 1985). A general pattern of increased regeneration 
11 − 20 years following all treatments was observed. This is 
consistent with research that shows ponderosa pine seedling 
established 10 years post disturbance (Bonnet et al. 2005; 
Fajardo et al. 2007; Haire and McGarigal 2010). In stud-
ies where time since treatment was greater than 20 years, 
there was a trend in decreased regeneration compared to 
untreated stands, as some long-term studies reported that 
stands return to pre-treatment density and forest floor duff 
levels without subsequent maintenance treatments applied 
every 2–10 years (McDonald and Reynolds 1999; Ffolliott 
et al. 2009; Clyatt et al. 2017). This was due to survival of 
regeneration, ingrowth of small trees and accumulation of 
surface fuels. Some short-term (≤ 1 year) decreases in regen-
eration may be due to mortality (upper end of regeneration 
height and dbh class), whereas later increases and decreases 
in the short-term (2 − 10 years) are reflective of the combina-
tion of recruitment, seedling mortality, and growth out of the 
seedling/sapling class into the overstory.

There were weak trends by type of treatment (thin-only, 
burn-only, and thin plus burn) and intensity of thinning. All 
treated stands demonstrated a change in regeneration density 
relative to the controls. In these studies, thin and thin plus 
burn treatments decreased ponderosa pine regeneration at 
one- and five-year intervals. Bailey and Covington (2002) 
observed 18–41 seedlings ha−1 in thinned areas and only 12 
seedlings ha−1 on thin plus burn sites. However, a study in 
Montana showed that at ten years post-treatment, ponderosa 
pine had higher recruitment in the thin-only and thin plus 
burn treatments relative to controls, with the highest recruit-
ment on thin plus burn sites (Fajardo et al. 2007). Thin-
ning and thinning plus burning also increased the amount of 
regeneration and were effective at facilitating new cohorts of 
ponderosa pine in New Mexico (Thomas and Waring 2015). 
Reduction of the middle canopy layer by thinning plus burn-
ing in Washington State increased regeneration density rela-
tive to controls within a 10-year period (Harrod et al. 2009). 
Results from northern Arizona show that average seedling 

density ranged from 536 to 14,184 seedlings per ha−1 in 
harvested stands (Puhlick et al. 2012).

Several studies of ponderosa regeneration patterns after 
thinning in Montana (Fajardo et al. 2007), New Mexico 
(Thomas and Waring 2015), Colorado (Shepperd et  al. 
2006), and Arizona (Bailey and Covington 2002; Puhlick 
et  al. 2012; Flathers et  al. 2016) reported significantly 
greater regeneration densities in thinned stands versus un-
thinned stands (e.g., Fig. 2). Mechanical thinning and thin-
ning plus prescribed fire increased seedling density over 
time but there was high variability among sites (Schwilk 
et al. 2009). Disturbances such as thinning and burning can 
lead to increased ponderosa pine regeneration by creating 
microsites for germination, or can reduce regeneration by 
causing direct injury or mortality (Bailey and Covington 
2002). Regeneration can also be linked to variables such as 
stand density, light availability, soil moisture, disturbance, 
masting, and site productivity (Gray et al. 2005; Zald et al. 
2008; Schwilk et al. 2009). Burn-only treatments created 
site conditions favorable to ponderosa pine seedling estab-
lishment two years following burning (Ffoliott and Guertin 
1990). However, these treatments did not reduce tree den-
sity enough for high numbers of seedlings to persist in the 
long term (> 20 years). Without repeated prescribed fire, 
the forest floor returned to pre-fire conditions (Ffolliott and 
Guertin 1990).

Thinning and burning treatments have impacts on under-
story vegetation (Abella and Springer 2015), wildfire behav-
ior (Fulé et  al. 2012), wildlife diversity and abundance 
(Kalies et al. 2010), and change existing overstory spatial 
structures (Schwilk et al. 2009). Understory vegetation can 
reduce seedling mortality by protecting seedlings from wind 
and direct sunlight which may cause desiccation, but can 
also negatively affect regeneration via competition for soil 
moisture (Pearson 1942; Heidmann et al. 1982). Regenera-
tion is influenced by spatial patterns and quality of overstory 
trees in a stand. Overstory tree basal area and density have 
negative relationships to pine seedling density and survival. 
Stands with high tree density and basal area have higher 
litter and duff depths which can limit seedling establish-
ment (Graham 1990), and increase shade limiting seedling 
survival (Pearson 1950).

Several studies showed that the average ponderosa pine 
seedling density found in current forests was significantly 
higher than the historic density needed to maintain multi-
aged, heterogeneous stands. For example, Flathers et al. 
(2016) reported ponderosa pine seedling density ranging 
from 70 seedlings ha−1 in an un-thinned control to 4100 
seedlings ha−1 at mid-level growing stock (97 trees ha−1), 
and averaged 1713 seedlings ha−1 across all thinning treat-
ments. In the Black Hills of South Dakota, ponderosa pine 
regeneration establishment often exceeded 1000 stems 
ha−1 (Shepperd and Battaglia 2002; Battaglia 2007). In the 
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Colorado Front Range, regeneration density was 1243 stems 
ha−1 one year post treatment, more than twice the recom-
mended stocking level (Briggs et al. 2017).

Restoring forest structure that is more resistant to crown 
fire will require maintaining ponderosa pine overstory at 
densities within the historical range of variability. Mast et al. 
(1999) found that successful regeneration as a result of just 
3.6 trees ha−1 per decade was sufficient to produce multi-
aged, heterogeneous stands. Using prescribed fire to limit 
emerging regeneration and reduce accumulation of surface 
and ladder fuels can sustain fuel treatment goals (Sackett 
and Haase 1998; Brose and Wade 2002; Fulé et al. 2002; 
Raymond and Peterson; 2005; Hunter et al. 2007). Ponder-
osa pine regeneration often establishes within 10 years post 
treatment, and in many areas is prolific with over 1000 seed-
ling per hectare (Battaglia et al 2008, 2009) (e.g., Fig. 2). In 
the absence of additional mechanical treatment or prescribed 
fire, these seedlings grow to saplings that develop into ladder 
fuels 10–20 years post treatment and increase the potential 

for crown fire if regeneration densities are not regulated by 
additional fuel treatments (Battaglia et al. 2009).

Disturbance can create ideal conditions for prolific regen-
eration in low-density stands of mature pine with frequent 
disturbance (Oliver and Ryker 1990; Shepperd and Battaglia 
2002), and promote rapid growth of new or existing pine 
regeneration (Fajardo et al. 2007). Use of prescribed fire is 
necessary to control prolific regeneration and repeated use of 
prescribed fire is needed in treated stands to continue treat-
ment effectiveness when open stands are desired. Repeated 
prescribed burning of surface fuels can enhance the seedbed, 
but repeated fire entry is shown to limit seedling survival 
during the first two decades following treatment (Bailey and 
Covington 2002). Dormant-season, low-severity fire can be 
used to control ponderosa pine regeneration density without 
killing the overstory (Battaglia et al. 2009). Retaining groups 
of overstory trees may also prevent regeneration from fully 
occupying all areas of the stand, and maintain a discontinu-
ous, irregular forest structure (Youtz et al. 2007).

Fig. 2   Two ponderosa pine plots (EB 3–2-2 and EB 3–2-7) in north-
ern Arizona at the Centennial Forest Long-term Ecological Assess-
ment and Restoration Network (LEARN). Photos taken in 2019 show 
increased regeneration 15  years post thinning and 8  years post pre-
scribed burning, and two plots pre-treatment (2001) and post-treat-

ment (2019). Plots were mechanically thinned in 2004 and prescribed 
burned in 2011. Pre-treatment plots had zero and 100 seedling ha−1 
respectively, and post-treatment seedlings increased to 7,400 and 
10,600 seedlings ha−1 respectively by 2019
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Regeneration rates varied by site and are dependent on 
local precipitation and temperature, soil type, fire history, 
understory production, and other biotic and abiotic factors. 
Evaluating adequate regeneration establishment rates is 
complex and should be considered on a site-by-site basis 
where an understanding of the historical range of variability 
of forest structure and fire regimes is considered. Some ways 
to evaluate adequate pine regeneration rates in frequent-fire 
forests include using site-specific historical reference condi-
tions (Fulé et al. 2002; Reynolds et al. 2013), silvicultural 
frameworks based on expectations of stand density, growth 
and mortality (Bailey and Covington 2002), or long-term 
monitoring and empirical data, and using simulation mod-
eling (Puhlick et al. 2012). Historical stand density in pon-
derosa pine forests ranged from 10  to 125 trees ha−1 in the 
southwest (Reynolds et al. 2013), from 11 to  96 ha1 in the 
Sierra Nevada (Stephens et al. 2015), zero to 320 trees ha−1 
in the Colorado Front Range (Brown et al. 2015), and aver-
aged 97 trees ha−1 in lower montane forests in the Colorado 
and Wyoming Front Range (Battaglia et al. 2018). In west-
ern ponderosa pine forests, openings between trees were his-
torically maintained by frequent (1 − 12 years) low severity 
fire regimes (Covington and Moore 1994; Allen et al 2002; 
Taylor and Skinner 2003; Reynolds et al. 2013; Stephens 
et al. 2015). Fires were complex and effectively reduced 
competition between grasses and seedlings, prepared local-
ized seedbeds for successful seedling establishment, and reg-
ulated seedling density and survival (Bailey and Covington 
2002). The historical range of variability in tree density in 
western ponderosa pine forests leaves room for management 
decisions based on directives and priorities such as fire risk 
reduction, restoration, hydrology, fuels reduction, or habitat 
management for wildlife.

It was beyond the scope of this study to assess pon-
derosa regeneration rates with climate change (see Petrie 
et  al. 2016); however, climate and wildfire will impact 
natural regeneration of ponderosa pine forests under pre-
dicted increased temperatures and drought conditions and 
changes in fire regimes. This suggests that climate change, 
including projected changes in precipitation, temperature, 
and soil moisture (Heidmann 2008; Petrie et al. 2016), may 
contribute to the factors that limit seedling establishment 
and growth in the future. Additionally, more rapid changes 
in forest ecosystems caused by drought, uncharacteristically 
severe wildfires, or insect outbreaks may lead to ecosystem 
changes to grass and shrub components, with reduced suc-
cess in pine regeneration (Savage et al. 2013; Williams et al. 
2013).

Long-term studies on natural pine regeneration rates in 
frequent-fire forests is needed. The episodic nature of mast-
ing, site productivity, soil moisture, drought, and seasonal 
precipitation can each control regeneration over time. In 
addition, successful seed germination and seedling survival 

are reliant on growing degree days, temperatures above 
freezing, canopy openings, low occurrence of surface fires, 
supply of seed trees, and soil type (Meagher 1950; Puhlick 
et al. 2012; Flathers et al. 2016; Petrie et al. 2017). Suc-
cessful regeneration may require several years of favorable 
temperature and precipitation conditions, which are vari-
able under a changing climate, leading to longer periods 
between successful seed years or even unsuitable conditions 
for regeneration on some sites (Flathers et al. 2016; Petrie 
et al. 2016, 2017; Dey 2019). Long-term studies that monitor 
regeneration response to treatments over long timeframes 
(e.g., Flathers et al. 2016) at a fine scale are needed to better 
understand regeneration dynamics and the long-term factors 
that influence rates of successful ingrowth into sapling and 
overstory lifeforms.

Conclusions

These studies suggest that frequent-fire forests with fuel 
reduction treatments, and/or restoration treatments, may 
need repeated maintenance to limit prolific regeneration, 
maintain resilient forest stands, and mitigate increased fire 
hazard over time. Fuel treatments in many ponderosa pine 
stands will lose their effectiveness within 10–20 years if 
regeneration densities are not controlled. Managers should 
consider maintaining the historical frequent-fire regime to 
limit overabundant pine regeneration and maintain tree den-
sities at levels similar to the historical range of variability.

This review found that sites can display either increas-
ing or decreasing amounts of regeneration in the short-term 
(< 10 years); therefore, it is recommended that management 
needs for regeneration be assessed minimally at 10 years 
post-treatment in frequent-fire pine dominated forests. Both 
increasing and decreasing trends in regeneration density 
were found in the short term (< 10 years), and increasing 
regeneration density trends 10–20 years following treat-
ment in frequent-fire pine forests in the western US. Mixed 
results were evident across multiple studies in the short-term 
(2 − 10 years) following treatments due to the wide vari-
ability of treatments interacting with abiotic and climatic 
conditions in the study areas. Increases in the amount of 
regeneration were evident 11 − 20 years post-treatment in 
thin-only, burn-only, and thin plus burn treatments, allowing 
a clearer picture of regeneration dynamics across treatments 
and time.

Overall, there was limited published data and empirical 
studies that specifically focused on regeneration responses 
to thinning and burning treatments in intact, frequent-fire 
forests. While the average ponderosa pine seedling density 
found in today’s forests is substantially higher than recom-
mended to maintain multi-aged, heterogeneous stands, there 
were few studies that documented the rates of mortality from 
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the time of seedling emergence and through multiple fire 
cycles. Future studies on pine seedling survival on differ-
ent soil types and with repeated fire are necessary to better 
quantify regeneration needs following treatments. In most 
cases, there is ample evidence that natural regeneration in 
ponderosa pine forests following mechanical thinning and/
or prescribed fire may be sufficient to initially meet manage-
ment objectives and sustainable forestry guidelines.
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