ORIGINAL PAPER

A study of emissions and marker gases from smouldering combustion in *Larix gmelinii* **plantations of the Daxing'an Mountains**

Shuyuan Tang1 · Sainan Yin1 · Yanlong Shan1 · Bo Gao¹ · Long Sun² · Xiyue Han1 · Mingxia Wang1 · Mingyu Wang³ · Zongshi Chen1

Received: 24 November 2020 / Accepted: 18 January 2021 / Published online: 24 April 2021 © Northeast Forestry University 2021

Abstract Underground fres are characterized by smouldering combustion with a slow rate of spread rate and without flames. Although smouldering combustion releases large amounts of gaseous pollutants, it is difficult to discover by today's forest fre monitoring technologies. Carbon monoxide (CO), nitrogen oxides (NO_x) and sulfur dioxide $(SO₂)$ were identified as high concentration marker gases of smouldering combustion-easily-be monitored. According to a two-way ANOVA, combustion time had a signifcant impact on CO and NO_x emissions; smoldering -depth

Project funding: This study was supported fnancially by the National Key Research and Development Plan (2018YFD0600205), the National Natural Science Foundation of China(31971669).

The online version is available at [http://www.springerlink.com.](http://www.springerlink.com)

Corresponding editor: Yu Lei.

 \boxtimes Yanlong Shan shanyl@163.com

- \boxtimes Long Sun 13945016458@126.com
- \boxtimes Mingyu Wang 156561564@qq.com
- ¹ Wildland Fire Prevention and Fighting Innovation Center of Beihua University, Forestry College of Beihua University, 3999 Binjiang East Road, Jilin City 132013, Jilin Province, People's Republic of China
- ² College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, Heilongjiang Province, People's Republic of China
- ³ The Research Institute of Forest Ecology, Environment and Protection, State Forestry and Grassland Administration's Key Open Laboratory of Forest Protection, Chinese Academy of Forestry, Beijing 100091, People's Republic of China

also had a significant impact on NO_x emissions but not on CO emissions. Gas emission equations were established by multiple linear regression, $C_{co} = 156.989 - 16.626 t$ and *CNOx*=3.637−0.252 *t−*0.039 h.

Keywords Gas emissions · Marker gases · Infuence factors · Smouldering combustion

Introduction

Underground fres in forests are smouldering combustion in humus and peat layers, with frequency of occurrence lower than above-ground forest fres, the damage of which is considerable (Huang and Rein [2017\)](#page-6-0). Researchers have found that particulate emissions from smouldering combustion are much higher than from other forest combustions (Akagi et al. [2011\)](#page-6-1). Suspended in the air for a long time in small sizes, particulate emissions accumulate and lead to largescale haze (Rein [2013;](#page-6-2) Black et al. [2016\)](#page-6-3).

During 1997–1998, combustion from smouldering fres in Indonesia led to large-scale hazy conditions in Southeast Asia, with millions of people afected with respiratory diseases, millions of hectares of forests destroyed and billions of dollars lost (Tacconi [2003\)](#page-6-4). In 2010, forest fres in Russia resulted in approximately 50 smouldering combustions, and weeks-long air pollution (Cancellieri et al. [2012](#page-6-5)). In 2015, smouldering combustion caused economic losses of \$ 16 billion in South Sumatra, Indonesia, 1.9% of GDP. Air pollution in Indonesia and surrounding countries was critical, with $PM_{2.5}$, fine inhalable particles, up more than 1500, causing serious damage to biodiversity and ecosystems (Atwood et al. [2016\)](#page-6-6).

In addition to particulate emissions, smouldering combustion also leads to emission of various gases, with upwards of more than 100 types of gases and aerosols being released during the combustion process, such as carbon dioxide $(CO₂)$, carbon monoxide (CO) , methane $(CH₄)$, ammonia $(NH₃)$ and alkanes (Stockwell et al. 2014 ; Hatch et al. 2015), with $CO₂$ and CO being the highest emissions (Hu et al. [2018a](#page-6-9)). In addition, because the smouldering combustion is an incomplete process with an oxygen deficit, CO emissions are much higher than from ordinary forest combustion (Rein [2015\)](#page-6-10).

Smouldering combustion spreads slowly without fames, making difficult to discover by standard forest fire monitoring technologies (Huang and Rein [2017](#page-6-0)). However, the high concentrations of gas emissions might be used as fre monitoring indexes (Hu et al. [2018b\)](#page-6-11) to monitor the occurrence and spread of smouldering combustion.

However, research on gas emissions from smouldering combustion is still in preliminary stages, and there are only a few studies on gas varieties and their concentration that can be used for smouldering combustion monitoring (Hatch et al. [2015;](#page-6-8) Wilson et al. [2015\)](#page-6-12). The purpose of this study is to explore the marker gases in the smouldering combustion process and to analyze the infuence of concentrations.

Materials and method

Study area

The study area is the eastern slope of the Daxing'an Mountains, 15 km south of the Jiagedaqi region in the forest management technology extension station of Jiagedaqi (50°20′–50°23′ E, 123°57′–124°0′ N). Annual average temperatures range from -1 to 2 °C, with the annual effective accumulative temperature 1800–2000 °C, a frost-free period of 90–120 days, and annual rainfall 450–500 mm. The main tree species are *Quercus mongolica* (Fisch.) Turcz., *Larix gmelinii* (Rupr.) Rupr., *Betula platyphylla* Suks., *B. davurica* Pall. and *Populus davidiana* Dode*.*

Sample collection

Larix gmelinii plantations were the sample felds selected (Table [1](#page-1-0)), and 15 soil samples of 50 cm \times 50 cm were collected. According to the classifcation of smoldering (Usup et al. [2004](#page-6-13)), we divided the sample depth into two groups. The depth in the shallow smoldering furnace was less than 20 cm, and the depth in the deep smoldering furnace was between 20 and 50 cm.

Sample processing

The soil samples were placed into a smoldering furnace 1.5 m long \times 0.5 m wide \times 0.5 m deep (Fig. [1\)](#page-2-0). A far-infrared heating plate (700 °C) was used as the ignition device; a k-type thermocouple and data acquisition module were used to record the surface soil temperatures during the smouldering combustion process. The concentration of gas emissions was detected by an emission analytical instrument (ecom-J2KN) every two hours.

Statistical analysis

Statistical analysis was performed by SPSS 19.0, and twoway ANOVA used to assess the infuence factors of gas emissions. Least signifcant diference (LSD) was used in the multiple comparisons and correlation analysis and multiple linear regression used to establish the regression equations. Statistical significance was accepted at $* = P < 0.05$, $**=P<0.01$. Figures were furnished by OriginPro 9.1.

Results

Smouldering combustion process

The process was carried out in the combustion furnace and the soil surface temperature measured every two hours.

Table 1 Sample plot information

Fig. 1 Schematic diagram of the smouldering combustion experiment

Fig. 2 Surface temperature of the soil in the smouldering combustion process

The results showed that the variations in temperature and combustion kinetics at diferent times were inconsistent (Fig. [2](#page-2-1)) (Hu et al. [2018a](#page-6-9)) and the process was divided into four stages: (1) Ignition Stage (0–2 h): soil temperature rose rapidly to more than $100 °C$; (2) Combustion Stage (2–6 h): soil temperature rose gradually to about 400 $^{\circ}C$; (3) Steady Stage (6–12 h): soil temperatures stayed around 400 $^{\circ}$ C to 500 °C; (4) Extinguishing Stage (after 12 h): soil temperatures decreased slowly by degrees, and no CO , NO_x and $SO₂$ could be detected after 12 h.

Gas emissions detection

According to the depth of the combustion, smouldering combustion could be classified as shallow $(< 20 \text{ cm})$ and deep ($>$ 20 cm) (Usup et al. [2004](#page-6-13)). In this study, the soil surface temperature ranged from 81.0 \degree C to 486.0 \degree C, and the average combustion temperature was 312.2 ± 19.6 °C. Carbon monoxide, NO_x and SO_2 were detected during the smouldering but surface temperatures had no signifcant influence on emissions $(P > 0.05)$.

High concentrations of CO were detected and declined gradually as the combustion time increased; the rate of decline in the steady stage was higher than that in the combustion stage. The release of NO_x was mainly concentrated in the ignition and combustion stages but could also be detected in the steady stage. Small quantities of SO_2 could be detected in the combustion and steady stages (Fig. [3\)](#page-3-0).

The highest emission of CO was 187.5 mg/m^3 after 2 h, gradually dropping and by 16 h could not be detected in some experiments. The average CO concentration was 66.2 ± 8.8 mg/m³.

The emission characteristics of NO_x in various smoldering furnaces were diferent. Concentrations in the deep smoldering furnace ranged from zero to 3.4 mg/m^3 , with an average concentration of 0.9 ± 1.1 mg/m³. Levels consistently decreased and could not be detected after 6 h.

 NO_x concentrations in the shallow smoldering furnace ranged from zero to 4.7 mg/m³, with an average of

Fig. 3 Gas emissions of the smouldering combustion process: **a** CO emissions; **b** SO₂ emission; **c** NO_x emission of the shallow smoldering furnace; \mathbf{d} NO_x emission of the deep smoldering furnace

 2.0 ± 1.1 mg/m³. Unlike the deep smoldering furnace, the concentration continued upward after 6 h until 12 h.

SO₂ concentrations ranged from zero to 8.6 mg/m³, with the average being 0.8 ± 1.8 mg/m³. A peak was detected at 6 h and then rapidly decreased. However, the data samples of $SO₂$ were not abundant in this study and further research is required.

Efect of combustion time and smoldering furnace depth on gas emissions

This study analyzed the effect of combustion time and smoldering furnace depth on CO and NO_x , with $SO₂$ not further studied for a lack of data.

The results of the analysis by two-way ANOVA showed that combustion time had a signifcant impact on the concentration of CO $(P<0.01)$, while the smoldering furnace depth had no signifcant impact (*P*>0.05) (Table [2](#page-3-1)). As the

Table 2 The effect of combustion time and smoldering furnace depth on CO emissions by two-way ANOVA

Influence factor	df	F	Sig
Combustion time	8	5.773	0.001
Smoldering furnace depth		0.415	0.527
Combustion time*Smoldering furnace depth	h	0.376	0.886

result of diference analysis, the concentration of CO had no signifcant diference between ignition stage (0–2 h), combustion stage (2–6 h), and the early time of the steady stage $(6-8 h)$ (Fig. [4\)](#page-4-0).

The combustion time and depth of the smoldering furnace had a signifcant impact on the concentration of NO_x ($P < 0.01$) based on the results of two-way ANOVA which was different from CO factors (Table [3\)](#page-4-1). This was

Fig. 4 Efect of combustion time on CO emissions by multiple comparison (no signifcant diference between values that have at least one identical letter; there is a signifcant diference between values that have no identical letter)

Table 3 Effect of combustion time and smoldering furnace depth on NO_x emissions by two-way ANOVA

Influence factor	dt		Sig
Combustion time	x	6.870	0.000
Smoldering furnace depth		34.771	0.000
Combustion time*Smoldering furnace depth	8	4.153	0.002

consistent with the smoldering experiments, i.e., the NO_x emissions in the deep smoldering furnace and shallow smoldering furnace was not the same (Fig. [3](#page-3-0)).

Through further analysis, this study examined the efect of combustion time on NO_x emissions when the smoldering furnace depth was the same. Combustion time had no effect on NO_x emissions in the shallow smoldering furnace $(P > 0.05)$, but did affect emissions in the deep smoldering furnace ($P < 0.05$); high concentrations of NO_x occurred at 2 h, 4 h and 6 h, with a signifcant diference between 2 and 6 h and the other combustion times $(P < 0.05$, Fig. [5](#page-4-2)). The main reason for the signifcant diference was the sharply decreased concentration of NO_x after 6 h which could not be detected after 8 h.

This study evaluated the effect of smoldering furnace depth on NO_x emissions when combustion times were the same. As the results show (Table [4](#page-5-0)), depth had no significant effect on the NO_x emissions at 2 h, 4 h, 6 h, 8 h and 18 h $(P > 0.05)$; depth had a significant effect on NOx emissions at 10 h, 12 h, 14 h, 16 h (*P* < 0.05). This was because NO_x could still be detected after 10 h of the shallow smoldering furnace but the concentration tended

Fig. 5 Effect of combustion time on NO_x emissions in the deep smoldering furnace by multiple comparison; (no signifcant diference between values that have at least one identical letter; there is a signifcant diference between values that have no identical letter)

to zero and could not be detected after 10 h of the deep smoldering furnace.

Regression analysis of the CO and NO_x emissions

Concentrations of CO had high negative correlation with combustion time as shown by multivariate linear regression, and with the increase of combustion time, concentration of CO gradually decreased. However, there was no correlation between the concentration of CO and the smoldering furnace depth (Table [5\)](#page-5-1). The regression equation for the concentration of CO was $C_{co} = 156.989 - 16.626 t (R^2 = 0.606)$, where *t* is the combustion time.

The concentration of NO_x was highly negatively correlated with both combustion time and smoldering furnace depth (Table [5](#page-5-1)) and the regression equation for the concentration of NO_x was C_{NOx} =3.637 – 0.252 *t* – 0.039 h $(R^2=0.458)$, where *t* is the combustion time; *h* is the smoldering furnace depth.

Discussion

Combustion times and smoldering temperatures

This study divided the smouldering combustion process into the ignition stage, combustion stage, steady stage, and extinguishing stage, according to temperature variations. This is consistent with the conclusion of Hu et al. ([2018a](#page-6-9)). In the ignition stage, oxygen in the soil taking part in the reaction was an important factor for accelerated combustion **Table 4** ANOVA for the efect of smoldering furnace depth on NO_y emissions

 $* = P < 0.05$, there is a significant difference; $* = P < 0.01$, there is a highly significant difference

Table 5 Signifcance test of regression equations (*P* value)

Gas emission	Combustion time	Smoldering furnace depth	Constant
CO.	0.000	0.491	0.000
NO_{Y}	0.000	0.000	0.000

(Ohlemiller [1985\)](#page-6-14) so temperatures rose rapidly in a short time. In the combustion stage, heat energy difused into the surrounding areas and sustained the combustion without the ignition source (Hu et al. [2018a\)](#page-6-9). In the steady stage, the burning areas extended to the maximum, combustion heat accumulated continually, and the smouldering combustion process reached the peak temperature (Rein et al. [2009](#page-6-15)). In the extinguishing stage, the smouldering combustion did not continue because of loss of heat energy, reduced combustibles, and shortage of oxygen, and the combustion temperatures fell until the smouldering was extinguished.

Marker gases of the smoldering combustion

There are considerable $CO₂$ and CO gases in the combustion for the oxidation of carbon particles and shortage of oxygen (Rein et al. [2009\)](#page-6-15). High concentrations of CO were continuously detected during the process, above the ambient air quality standards of China and the background value of CO in the general forest environment (Table 6) (Su et al. [2013](#page-6-16)). CO emissions were also the predominant emissions in this study, consistent with the results of Hu et al. [\(2018a\)](#page-6-9). Nitrogen and sulfur in the semi-decomposed and humus layers were also released as NO_x and $SO₂$ and the concentrations were much higher than the ambient air quality standards of China and the background value of NO_x and $SO₂$ in the general forest environment (Su et al. [2013\)](#page-6-16).

CO, NO_x and $SO₂$ can be detected by a handheld device or online monitoring instrument, and therefore easier monitored in the feld. Compared to other gas emissions during the smouldering combustion such as methane (CH_4) ,

Table 6 Concentration of marker gases in diferent combustion stages $(mg/m³)$

Combustion stage CO		NO_{v}	SO ₂
Ignition stage	$134.4 + 54.2$ $2.3 + 0.8$		0.0
Combustion stage	97.1 ± 26.2	$2.5 + 1.1$	$2.3 + 1.3$
Steady stage		56.8 ± 17.7 1.0 ± 0.6 (< 20 cm)	$0.9 + 1.6$
Background value 0.4		5.1×10^{-3}	3.9×10^{-3}
Standard concen- tration of China	10.0	0.3	0.5

Standard concentration of China as the \lt ambient air quality standards of China>(GB3095-2012)

particulate matter (PM), and other organic gases (VOCs), the detection of CO, NO_x and SO_2 is relatively simple. These gases can therefore be used as marker gases to detect the occurrence of smouldering combustion. As noted earlier, smouldering combustion is difficult to monitor because it is fameless (Huang and Rein [2017\)](#page-6-0), and thus marker gases could help to solve the difficulty in locating and monitoring smouldering combustion.

Carbon monoxide may be regarded as the key marker gas for large emissions, NO_x as the periodical marker gas for diferent emission trends in diferent smoldering depths. Although there was only a little $SO₂$ released during the smouldering combustion process, $SO₂$ emissions were much higher than general forest emissions. Therefore, SO_2 could be regarded as a secondary marker gas.

Infuence factors of gas emissions

Heat energy spreads continuously into the deeper soil layer as the combustion time increases, so this layer also burns (Svensen et al. [2003](#page-6-17)). Soil carbon is continuously converted into CO gas and released due to a lack of oxygen. Nitrogen in the semi-decomposed and humus layers is also be transformed into NO_x and released.

The concentration of CO in the ignition stage was the highest in this study. Because smouldering combustion mainly

focused on the soil surface layer which is rich in humus and is soft and high in organic carbon, the rate of combustion increases rapidly (Hu et al. [2018a](#page-6-9)). Although combustion spreads downward with the increase in temperature, the concentration of CO in the combustion and steady stages was lower than in the ignition stage because of the reduced carbon and oxygen contents.

As noted previously, both combustion time and smoldering furnace depth had a significant effect on NO_x emissions. NO_x could only be continuously detected in the shallow smoldering furnace and was undetected after 6 h in the deep smoldering furnace. The main reason for this is that, as the smouldering combustion spreads downward, humus and total nitrogen (TN) contents decline (Knops and Bradley [2009](#page-6-18); Yao et al. [2020\)](#page-6-19), so the concentration of NO_x is extremely low after 6 h in the deep smoldering furnace. In addition, as the smouldering combustion proceeds, a large mass of combustion particles are released and leads to plugging of soil pores (Hu et al. [2018b](#page-6-11)). Gas emissions of the deep smoldering furnace are unable to spread to the surface smoothly, and NO_x was not detected after 10 h.

Conclusions

Gas emissions from smouldering combustion were investigated in a smoldering furnace. The main conclusions are as follows:

High concentrations of CO were continuously released during the smouldering combustion process. Combustion time had a signifcant impact on CO emissions with a peak detected in the early stage of the process. In order to improve the efficiency of monitoring smouldering combustion, CO may be considered as a key marker gas as it was highly concentrated and easily monitored.

Both combustion time and furnace depth had a signifcant impact on NO_x emissions. NO_x were continuously detected during the entire combustion process in the shallow smoldering furnace, and only detected during the ignition and combustion stages in the deep smoldering furnace.

The concentration of SO_2 was higher than the ambient air quality standards of China and the background value of SO_2 in forest. But SO_2 emissions were difficult to analyse in depth in this study because the sample was inadequate. Further research will be carried out in the future.

References

Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072

- Atwood EC, Sandra E, Eckehard L, Halle W, Siegert F (2016) Detection and characterization of low temperature peat fres during the 2015 fre catastrophe in Indonesia using a new high-sensitivity fre monitoring satellite sensor (FireBird). PLoS ONE 11:e0159410
- Black RR, Aurell J, Holder A, George IJ, Gullett BK, Hays MD, Geron CD, Tabor D (2016) Characterization of gas and particle emissions from laboratory burns of peat. Atmos Environ 132:49–57
- Cancellieri D, Leroy-cancellieri V, Leoni E, Simeoni A, Kuzin AY, Filkov AI, Rein G (2012) Kinetic investigation on the smouldering combustion of boreal peat. Fuel 93:479–485
- Hatch LE, Luo W, Pankow JF, Yokelson RJ, Stockwell CE, Barsanti KC (2015) Identifcation and quantifcation of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-fight mass spectrometry. Atmos Chem Phys 15:1865–1899
- Hu YQ, Christensen E, Restuccia F, Rein G (2018a) Transient gas and particle emissions from smouldering combustion of peat. Proc Combust Inst 37:1–8
- Hu YQ, Fernandez-Anez N, Smith TEL, Rein G (2018b) Review of emissions from smouldering peat fres and their contribution to regional haze episodes. Int J Wildland Fire 27:293–313
- Huang X, Rein G (2017) Downward spread of smouldering peat fre: the role of moisture, density and oxygen supply. Int J Wildland Fire 26:907–918
- Knops JMH, Bradley KL (2009) Soil carbon and nitrogen accumulation and vertical distribution across a 74-year chronosequence. Soil Sci Soc Am J 73:2096–2104
- Ohlemiller T (1985) Modeling of smoldering combustion propagation. Prog Energy Combust Sci 11:277–310
- Rein G (2013) Smouldering fres and natural fuels. Fire phenomena and the Earth system: an interdisciplinary guide to fre science. John Wiley & Sons, Oxford, UK, pp 15–34
- Rein G (2015) Smouldering combustion. The SFPE handbook of fre protection engineering. Springer, New York, pp 581–603
- Rein G, Cohen S, Simeoni A (2009) Carbon emissions from smouldering peat in shallow and strong fronts. Proc Combust Inst 32:2489–2496
- Stockwell CE, Yokelson RJ, Kreidenweis SM, Robinson AL, De Mott PJ, Sullivan RC, Reardon J, Ryan KC, Grifth DW, Stevens L (2014) Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: confguration and Fouriertransform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmos Chem Phys 14:9727–9754
- Su BB, Liu XD, T J, (2013) Pollution characteristics of SO_2 , N_Ox and CO in forest and mountain background region of east China. Environ Monit China 29:15–21
- Svensen H, Karlsen DA, Backer-owe K, Banks DA, Planke S (2003) Processes controlling water and hydrocarbon composition in seeps from the Salton Sea geothermal system, California, USA. Geology 31:581–584
- Tacconi L (2003) Kebakaran hutan di Indonesia: penyebab, biaya dan implikasi kebijakan. Bogor CIFOR, Indonesia, p. 28
- Usup A, Hashimoto Y, Takahshi H, Hayasaka H (2004) Combustion and thermal characteristics of peat fre in tropical peatland in Central Kalimantan, Indonesia. Tropics 14:1–19
- Wilson D, Dixon SD, Artz RR, Smith TE, Evans CD, Owen HJ, Archer E, Renou-Wilson F (2015) Deviation of greenhouse gas emission factors for peatlands managed for extraction in the Republic of Ireland and the United Kingdom. Biogeosciences 12:5291–5308
- Yao X, Yu KY, Deng YB, Liu J, Lai ZJ (2020) Spatial variability of soil organic carbon and total nitrogen in the hilly red soil region of southern China. J For Res 31:2385–2394

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.