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forest biomass and the associated influencing factors at a 
provincial scale can be applied to estimate biomass at a 
pixel scale by employing a downscaling method; (2) for-
est biomass had a distinct spatial pattern with the greatest 
biomass occurring in the major mountain ranges; (3) forest 
biomass changes had a notable spatial distribution pattern; 
increase (i.e., carbon sinks) occurred in east and southeast 
China, decreases (i.e., carbon sources) were observed in the 
northeast to southwest, with the largest biomass losses in the 
Hengduan Mountains, Southern Hainan and Northern Da 
Hinggan Mountains; and, (4) forest vegetation functioned 
as a carbon sink during 1999–2013 with a net increase in 
biomass of 3.71 Pg.

Keywords  Forest vegetation biomass · Spatial 
distribution · Spatio-temporal changes

Introduction

Climate change characterized by global warming has been 
an international concern for many years (Bonan 2008; 
Fang et al. 2011, 2018; Austin et al. 2020). It is commonly 
accepted that greenhouse gas emissions, especially carbon 
dioxide (CO2), are the major cause of global warming (Fang 
2000; Quere et al. 2016; Chen et al. 2018; Xu et al. 2018a). 
Atmospheric CO2 levels have been increasing significantly 
as a result of urbanization, the increasing use of fossil fuels, 
and land- use changes (Lal 2008; Fang et al. 2011). Terres-
trial ecosystems are significant carbon sinks, fixing atmos-
pheric CO2 in vegetation and soil through photosynthesis. 
Sequestering CO2 into terrestrial ecosystems is considered to 
be one of the most cost-effective and environment-friendly 
way to reduce atmospheric CO2 concentrations (Piao et al. 
2010; Tang et al. 2018). Forests are important for their 

Abstract  Forests play a central role in the global carbon 
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potential to sequester carbon and to reduce CO2 concen-
trations and mitigate climate change (Wan et al. 2018; Liu 
and Sun 2019; Tarun et al. 2019). The amount of carbon 
that forests sequester annually accounts for more than two 
thirds of the total sequestered by all terrestrial ecosystems 
(Woodwell and Whittaker 1978; Zhao et al. 2013). Therefore 
forests play an important role in mitigating global warming 
and regulating the carbon cycle. Forest biomass refers to 
the total amount of dry matter made up of living organisms 
in a forest community at a point in time. It is an important 
quantitative characteristic of a forest ecosystem, both as an 
indicator of forest structure and quality and as a parameter 
in carbon accounting (Fang and Chen 2001; Kale and Roy 
2012; Guo et al. 2013). A detailed assessment of the spatial 
and temporal variability of forest biomass is critical to cre-
ate and maintain national sustainability policies related to 
climate change and it provides credible data for scientists 
and policy makers.

In 1876, Ebermeyer’s calculation of branch, leaf, litter, 
and wood weight of several forest types in Germany was 
the earliest research on forest biomass (Ebermayer 1876). 
Since the 1950s, with increasing attention on the economic 
benefits of forests, the study of forest biomass has received 
more attention. Many developed countries have carried out 
comprehensive investigations on forest biomass (Remezon 
1999). During the 1960s and 1970s, international research 
projects such as the International Biology Program (IBP) 
and Man and the Biosphere Program (MAB) furthered work 
in this area. Numerous researchers have studied the biomass 
of the world’s major forest types and its spatial distribution 
characteristics, and have even estimated the total biomass 
of the Earth’s biosphere (Dixon et al. 1994; FAO 2006). 
Studies of forest biomass began in the late 1970s in China. 
Initially, biomass estimation was conducted in field measure-
ments for small-scale units such as plots (Li et al. 1981; Feng 
et al. 1982). The scale of studies has expanded from plots 
to a region and eventually globally, and research methods 
have been greatly diversified (Fang et al. 1996, 2001, 2007; 
Liu et al. 2020). Along with this advancement, numerous 
researchers have made significant contributions. Fang et al. 
(2001) established the continuous biomass expansion factor, 
BEF (the ratio of forest biomass to timber volume) using the 
data of biomass and China’s forest inventory data for the last 
50 years. They also structured the world’s first time series 
biomass database for China, which has been deemed as a 
landmark and has been widely cited. Fang et al. (2018) are 
currently leading the project “Ecosystem Carbon Sequestra-
tion” that aims to systematically explore the carbon stocks 
and its distribution in China’s terrestrial ecosystems. All 
this research has fully demonstrated the important role of 
China’s forests to the global carbon cycle.

Owing to the distinct spatial heterogeneity of biomass, 
and the discrepancies among methods of measuring that are 

in use, considerable uncertainty exists in estimating forest 
biomass (Guo et al. 2010; Liu et al. 2012a). At present, there 
are four main methods for estimating biomass. One is to 
measure average biomass through field sampling of indi-
vidual trees and field measurement and weighing, and then 
apply to the entire forest area to obtain the biomass. Despite 
its long track record and theoretical foundations, field sam-
pling of trees is difficult to apply to a large area due to its 
logistical requirements and high cost (Li et al. 1981; Feng 
et al. 1982; Huang et al. 2016). Another method is to build 
relative growth models for biomass based on mathematical 
relationships between biomass and combination surrogate 
predictors such as stem diameter, height, age or vegetation 
types (Fang et al. 1996; Li et al. 2011a, b), and apply them 
to individual trees or to plots in a forest inventory context. 
This method is widely-used but is limited by dependence on 
models of varying quality as well as by the resolution of the 
inventory dataset to which the models are applied. Another 
method is to calculate a biomass expansion factor (BEF) to 
convert stem volume to biomass based on inventory data, 
which is the mainstream method for estimating regional for-
est biomass including the mean BEF method and the con-
tinuous BEF method. The former is to use the average value 
of BEF of forest types to extract the biomass and the BEF 
is a constant. However, with in-depth studies, researchers 
have found that BEF is not a constant but changes with site 
conditions, forest age and stand density. Therefore, forest 
biomass should be calculated using the variable BEF (Fang 
et al. 2001, 2007). Fang et al. (2001) found that the BEF 
can be expressed as a consistent function of stem volume 
no matter how the forest ages, or how site conditions and 
stand density change. Based on field measurements, they 
developed a simple reciprocal equation to represent the 
relationship between BEF and volume of a particular for-
est type, i.e., BEF = a + b/x, where x is the timber volume 
per unit area and a and b are constants for a forest type. 
This is the continuous BEF method. Therefore, biomass can 
be calculated according to the corresponding area and vol-
ume data in the forest inventory, and this method realizes 
the transformation of biomass from field measurement to 
regional-scale calculation. However, owing to the statistical 
units of forest inventory data that are mostly administrative 
regions (cities and provinces), the BEF method is mainly 
used to estimate forest biomass at the regional scale, which 
is difficult to carry out biomass estimations at a fine scale 
(pixels) and to explore spatial patterns. The fourth method is 
to construct models of biomass as a function of wall-to-wall 
geospatial data such as satellite imagery or attribute layers 
such as hydrology, climate and terrain. This method is often 
used to generate pixel-based estimates of biomass, and these 
can then be aggregated to generate summaries within user-
defined areas. However, this method is highly restricted by 
the quality and accuracy of the data and the effectiveness of 
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the key remote sensing parameters. Therefore, estimating 
forest biomass at the pixel scale cannot always fully effec-
tive by a simple remote sensing method (Li et al. 2011a, b; 
Wang et al. 2018).

Current estimation methods of forest biomass are cur-
rently based on inventory data suitable for biomass estima-
tion at a regional scale. Due to the limitations of methods 
and data, it is difficult to obtain biomass data at a fine scale 
and to reflect spatial distribution characteristics. Further-
more, accuracy of biomass estimation by a single remote 
sensing method cannot be guaranteed. As a consequence, 
this study attempts to effectively combine field survey data 
with remote sensing and to find a method that not only 
reflects the advantages of remote sensing in spatial distri-
bution, but also retains the reliability of field survey data so 
as to understand forest biomass estimation at a fine scale and 
reveal spatio-temporal changes.

In recent years, a downscaling method has been widely 
used in climatic and hydrological forecasting, the spatializa-
tion of populations and forest biomass (Liao and Li 2003; 
Wetterhall et al. 2005). It converts large-scale, coarse-res-
olution information (regional scale) into small-scale, fine-
resolution information (pixel scale) (Zhao and Xu 2007; Liu 
et al. 2012b). In addition, current research on forest biomass 
focuses more on estimation methods and spatial distribution, 
and less on spatio-temporal characteristics under a multi-
spatial scale. With this in mind, combining Chinese forest 
inventory data from 1999 to 2013, remote sensing data, and 
climate and terrain data, this study quantitatively explores 
the spatial distribution of forest biomass (with a resolution 
of 1 km) using a downscaling method, and further analyzed 
spatio-temporal biomass changes at different scales. This 
study provides a new perspective and method for forest bio-
mass estimation on a more precise scale.

Materials and methods

Study area

China is a vast territory with numerous rivers and lakes, 
staggered mountain ranges, complex and diverse landforms, 
and differences in hydrothermal conditions in latitudinal, 
longitudinal and vertical zones. The country forms an intri-
cate natural geographical environment with various forest 
communities with characteristics of numerous species and 
diverse forest types, providing a unique location to study 
forest biomass. In addition, China’s forests play key roles in 
the world. According to the 8th forest inventory, total forest 
area is 20.77 × 107 ha, covering 21.6% of the county, and 
forest carbon stock is 15.14 billion m3. China ranks the 5th 
in the world in forest area and the 6th in forest stock. Planta-
tions are 69 million ha, ranking first in the world. The spatial 

pattern of forest area in 2010 (with a resolution of 1 km) is 
shown in Fig. 1, and the data are from the database for land 
use remote sensing monitoring in China (http://​www.​resdc.​
cn/) based on Landsat 8 and generated by artificial visual 
interpretation.

Framework of the study

The framework of this study is illustrated in Fig. 2 and the 
procedures are as follows:

(1)	 Based on Chinese forest inventory data 1999–2013, for-
est biomass was estimated at a provincial scale;

(2)	 A regression model was employed to establish statisti-
cal relationships between forest biomass and factors 
influencing it at a provincial scale. The relationship was 
then applied to estimate biomass at a pixel scale by the 
downscaling method; and,

(3)	 Spatial distribution and spatio-temporal changes of bio-
mass were further analyzed at different spatial scales 
(national, provincial and pixel scales).

Methods

Estimation of forest biomass at a provincial scale

Forest inventories have been maintained and updated every 
five years by the State Forestry Administration. Individual 
provinces are treated as isolated investigation units (exclud-
ing Hong Kong, Taiwan and Macao). Through the perma-
nent sample plot review (41.5 × 104 ground sample plots 
and 28.4 × 106 remote sensing sample plots), the quantity, 
quality and structure of forest resources as well as related 
factors (tree age, area, timber volume) reflecting the ecologi-
cal status and functional benefits of forests were recorded. 
These records are systematic, considered reliable and used 
as the reference in China (Fang et al. 2001). In this study, 
three periods of forest inventory were included during 
1999–2013, i.e., the 6th forest inventory (1999–2003), the 
7th forest inventory (2004–2008) and the 8th forest inven-
tory (2009–2013).

Based on the definition of forest inventory, forests were 
divided into three major types: forest stands (natural for-
ests and plantations), economic forests (fruit, medicinal and 
seasoning species), and bamboo forests (Guo et al. 2013). 
However, the forest inventory provides different details for 
these forest types. For forest stands, it documents areas and 
volumes by dominant species in each province but only the 
areas for economic and bamboo forests. Therefore, the esti-
mation of forest biomass in this study only focuses on the 
above mentioned three types of forest.

http://www.resdc.cn/
http://www.resdc.cn/
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Previous studies have shown that the continuous BEF 
method was the optimum to estimate regional forest bio-
mass, especially if there are sufficient forest inventory data 
(Fang and Wang 2001; Fang et al. 2002; Guo et al. 2010). 
Therefore, the biomass of forest stands for each inven-
tory period was estimated by applying the continuous BEF 
method shown in Eq. 1.

where BEF is the biomass expansion factor; x is the volume 
per unit area (m3 ha−1); a and b are constants for a forest 
type, and the values of a and b are drawn from Fang et al. 
(1996, 2001, 2007) (see appendix Table S1).

Because the inventory data only document areas of eco-
nomic and bamboo forests in each province, this study 
estimated the biomass of these areas by utilizing the mean 
biomass method (Eq. 2):

where B is the biomass of economic or bamboo forests (t); ρ 
is the mean biomass density (t ha−1) (Fang et al. 1996; Guo 
et al. 2013), the ρ of the economic forests are 23.7 t ha−1, 

(1)BEF = a + b∕x

(2)B = � × s

the moso bamboo forests 81.9 t/ha, and other bamboo forests 
53.1 t ha−1; s is the area of economic or bamboo forest (ha).

Downscaling method

Selection of influencing factors

Variations of temperature and precipitation directly affect 
the intensity of photosynthesis and respiration and the rate of 
accumulation of organic matter, thus affecting accumulation of 
biomass (Li et al. 2011a, b). Meanwhile, terrain factors (such 
as elevation, slope) have directly affect climatic factors such as 
temperature and precipitation in the region, which in turn leads 
to changes in forest types and the internal structure of forest 
vegetation, and indirectly affect accumulation of biomass (Xu 
et al. 2012). Furthermore, the normalized difference vegetation 
index (NDVI) can indicate vegetation cover conditions and 
reflect the dynamics of vegetation. It is widely applied in the 
study of land cover changes and quantitative inversion of bio-
mass. Moreover, the significant correlation between NDVI and 
biomass has been widely acknowledged by scholars (Li et al. 
2014; Xu et al. 2018b). Thus, climate factors (i.e., temperature 

Fig. 1   The study area



265Analysis of spatio‑temporal changes in forest biomass in China﻿	

1 3

and precipitation), terrain factors (elevation and slope) and a 
vegetation factor (NDVI) were the influencing factors used in 
this study.

Downscaling estimation

To eliminate the impact of differences across data units, a 
greatest-value standardized method was employed before the 
multiple regression analysis to process data of both provin-
cial impact factors and provincial forest vegetation biomass 
as shown in Eq. 3:

where, rj is the normalized value; xj is the actual value of the 
jth variable; xjmax is the maximum value of the jth variable.

A multiple linear regression analysis can be conducted with 
standardized provincial influencing factors and forest vegeta-
tion biomass as shown in Eq. 4:

(3)rj = xj∕xjmax

(4)Y = a
1
x
1
+ a

2
x
2
+ a

3
x
3
+ a

4
x
4
+ a

5
x
5
+ a

6

where, Y is the standardized value of provincial biomass; 
x1 − x5 are the provincial standardized values for NDVI, tem-
perature, precipitation, elevation and slope, respectively; and 
a1 − a5 are the coefficient estimates of the regression model, 
with a6 the constant.

Once all coefficient estimates are acquired, this regres-
sion model can be applied to pixels, as shown in Eq. 5, 
and all impact factors can be weighted along with their 
corresponding coefficients to obtain the weight of bio-
mass at the pixel scale.

where, Sij is the biomass weight for the jth pixel in the ith 
administrative region; x1ij − x5ij are standardized values of 
NDVI, temperature, precipitation, elevation and slope of the 
jth pixel in the ith administrative region, respectively; and 
a1 − a5 are the coefficient estimates of the regression model, 
with a6 the constant.

(5)Sij = a
1
x
1ij + a

2
x
2ij + a

3
x
3ij + a

4
x
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5
x
5ij + a
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Fig. 2   Framework of this study



266	 W. Xu et al.

1 3

Based on the weight of biomass and the combined estima-
tion of biomass at the provincial level by the forest inventory 
data, the biomass at pixel scale is obtained via Eq. 6:

where, Bij represents the biomass of the jth pixel in the ith 
administrative region (t); Sij is the weight of biomass of the 
jth pixel in the ith administrative region; n is the number of all 
pixels in ith administrative region; Pi is the estimated value 
of forest biomass in the ith province by the forest inventory 
data (t).

Verification of results

According to the comparison of similarity studies, this study 
adopted the relative error (RE) to verify the soundness of 
the provincial results of biomass estimation based on the 
continuous BEF method, and the biomass gridding results 
based on the downscaling method (Xu et al. 2018b). The 
calculation formula for RE is:

where M1 is the result obtained in this study; M2 is the result 
derived from other studies.

Data sources and preprocessing

The sources of data used in this study are shown in Table 1.
Considering differences across data sources in terms 

of the spatial resolution, types of characteristics and the 
format, these data have been preprocessed to facilitate the 

(6)
Bij =

Sij
n∑

j=1

Sij

× Pi

(7)RE =
||M1

−M
2
||

M
2

× 100%

subsequent analysis as follows: (1) project all spatial data 
into a unified Lambert projection coordinate system; resa-
mple all raster data to the resolution of 1 km via the nearest 
neighbor method, and extract the forest area from land use 
data. (2) employ the NDVI, temperature and precipitation 
data to generate five-year averaged data consistent with the 
forest inventory, and use DEM data to generate slope data; 
perform mask analysis between the influencing factor layers 
and forest area layers using ARCGIS 10.2 software’s spatial 
analysis tools, and perform zonal statistics to combine mask 
analysis results and provincial administrative divisions to 
obtain the provincial statistics of the influencing factor.

Results

Forest biomass at the provincial scale

There were considerable differences in forest biomass in 
China during the study period (Fig. 3). Provinces with large 
biomass values were concentrated in the northeast (Hei-
longjiang, Jilin, Inner Mongolia) and the southwest (Tibet, 
Yunnan and Sichuan). Specifically for the 6th forest inven-
tory 1999–2003, the national total forest biomass was 12.34 
Pg (1 Pg = 109 t and 1 Tg = 106 t). The largest biomass was in 
Heilongjiang (1.67 Pg) and accounted for 13.5% of the total 
biomass, followed by Tibet (1.66 Pg) at 13.4%. Biomass 
greater than 1 Pg was recorded in the Heilongjiang, Inner 
Mongolia, Tibet, Yunnan and Sichuan provinces. The total 
biomass in the northeast (4.1 Pg) and southwest China (4.2 
Pg) was 8.3 Pg and comprised 67% of the national total; for 
the 7th forest inventory 2004–2008, the national total was 
14.26 Pg and higher than in the 6th forest inventory. The 
largest biomass had switched to Tibet (1.77 Pg), accounting 
for 12.4% of the total, followed by Heilongjiang (1.71 Pg) 

Table 1   Data sources of this study

Types of data Data names Resolution/Scale Data sources

Forest statistical data Forest inventory data
(1999–2003; 2004–2008; 2009–2013)

- National forestry and 
grassland data center 
(http://​www.​fores​
tdata.​cn)

Remote sensing data SPOT vegetation NDVI
data set in China (1999–2013)

1 km

Land use data Land use data in China (2000;2005;2010) 1 km
Terrain data ASTER GDEM 30 m
Meteorological data Annual average temperature

(1999–2013)
500 m Resource and environ-

ment data cloud 
platform (http://​
www.​resdc.​cn/)

Annual average precipitation
(1999–2013)

500 m

Administrative division Chinese administrative division (2015) 1:400,0000

http://www.forestdata.cn
http://www.forestdata.cn
http://www.resdc.cn/
http://www.resdc.cn/
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accounting for 11.9%. Biomass greater than 1 Pg occurred in 
Heilongjiang, Inner Mongolia, Tibet, Yunnan and Sichuan. 
The total biomass in northeast (4.3 Pg) and southwest (4.6 
Pg) was 8.9 Pg, accounting for 62% of the national total; for 
the 8th forest inventory 2009–2013, the national total was 
16.05 Pg, the highest of the three inventories. The high-
est biomass occurred in Tibet (1.85 Pg) and accounted for 
11.5% of the national total while the biomass in Heilongji-
ang (1.77 Pg, 11%) was the second largest. Biomass in Hei-
longjiang, Inner Mongolia, Tibet, Yunnan, Sichuan and Jilin 
was greater than 1 Pg. The biomass in the northeast (4.6 Pg) 
and southwest (4.8 Pg) was 9.4 Pg, accounting for 59% of 
the national total.

Verification of forest biomass

The provincial forest biomass obtained by the continuous 
BEF method was the premise for biomass downscaling 
and also the guarantee of the precision of the downscal-
ing estimation. As a consequence, it was critical to verify 
the estimation results of the provincial biomass before the 
downscaling. Therefore, this study adopted the RE to com-
pare with previous studies at national and provincial levels 
for the similar periods of time.

Fig. 3   Forest biomass at the provincial scale for the periods 1999–2003, 2004–2008 and 2009–2013. Due to high urbanization rate in Shanghai, 
forest area and volume are relatively small. In order to facilitate statistical calculation, Jiangsu and Shanghai were merged into Suhu regions
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At the national scale

The results show that RE between this study and previ-
ous studies were generally less than 20% (Table 2) (Xu 
et al. 2018a). It should be noted that differences in research 
methods, resolutions and data sources across studies may 
lead to substantial differences in results. Therefore, RE 
between results in this study and previous studies were 
reasonable at the national scale. That is, the precision of 
the method and forest biomass estimation were reasonable.

At the provincial scale

Relative errors were less than 20% at the provincial scale, 
which supports the conclusion that the results for the pro-
vincial scale and the accuracy of biomass estimation were 
rational (Table 3).

Downscaling of forest biomass

Spatial distribution of forest biomass

This study took the 8th forest inventory as an example to 
implement the downscaling method and the 6th and 7th 
inventories in the same way. The provincial statistics of 
influencing factors and the provincial forest biomass were 
standardized to facilitate the multiple regression analysis. 
Provincial mean values of temperature, precipitation, eleva-
tion and slope were incorporated into the regression along 
with the provincial cumulative value of NDVI. NDVI is 
an indicator of vegetation productivity, and forest biomass 
refers to the total amount of dry matter made up of living 
organisms. Therefore, we selected the cumulative value of 
NDVI into regression analysis. The provincial regression 
model was:

where, the notation is the same as in Eq. 4. The model had 
a coefficient of determination (R2) of 0.85 and a p < 0.05.

With these influencing factor layers standardized, the 
weight of biomass allocation can be formed by Eq. 9:

where, the notation is the same as in Eq. 5. Based on Eq. 6, 
we obtained the result of forest biomass at the pixel scale.

Based on the downscaling method, we estimated the spa-
tial distribution of Chinese forest biomass from 1999 to 2013 
with a resolution of 1 km (Fig. 4).

There are a few observations to note in Fig. 4 concerning 
the spatial distribution pattern of biomass. Firstly, biomass 
was generally found from the northeast to the southwest, 
which is consistent with the spatial distribution of water and 
heat conditions in China. Secondly, high forest biomass is 

(8)
Y = 1.176x

1
+ 0.182x

2
−0.238x

3
+ 0.149x

4
+ 0.445x

5
−0.153

(9)
Sij = 1.176x

1ij + 0.182x
2ij−0.238x3ij + 0.149x

4ij + 0.445x
5ij−0.153

Table 2   Comparisons of forest biomass estimates in this study with 
previous studies at the national scale

−indicates not applicable

Total forest vegeta-
tion biomass (Pg)

RE Study period References

16.05 – 2009–2013 This study
17 5% 2009–2013 Xu (2014)
14.06 14% 2009–2013 Yu (2015)
14.26 – 2004–2008 This study
13.73 3.8% 2004–2008 Guo et al. (2013)
15 4.9% 2004–2008 Li et al. (2011a, b)
12.34 – 1999–2003 This study
12.58 1.9% 1999–2003 Liu et al. (2012a, b)
11 12% 1999–2003 Xu et al. (2007)

Table 3   Comparisons of forest biomass estimates in this study with previous studies at a provincial scale

Province Forest vegetation biomass (Tg) RE (%) Study period References

This study Previous studies

Inner Mongolia 1466 1473 0.4 2015 Huang et al. (2016)
Fujian 418.62 396.02 5.7 2003 Wang and Deng (2014)
Hunan 556 601.4 7.5 2013 Xia et al. (2017)
Tibet 1845 1960 5.8 2011 Yang et al. (2016)
Yunnan 1552 1640 5.3 2012 Yang et al. (2015)
Anhui 242 204 18 2009 Yu et al. (2015)
Henan 133.02 111.54 19 2003 Guang (2006)
Guangxi 379.68 394.36 3.7 2000 Han and Liang (2015)
Shaanxi 453.82 476 4.7 2014 Hao et al. (2017)
Beijing 14.68 15.8 7 2000 Zhang (2009)
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concentrated in the Da Hinggan Mountains, Xiao Hinggan 
Mountains and Changbai Mountains in the northeast, the 
Hengduan Mountains in the southwest, the Xinjiang Moun-
tains areas (Altai Mountains, Tianshan Mountains, Kunlun 
Mountains) in the northwest, the Qinling Mountains in cen-
tral China, and the Wuyi Mountains in the southeast. The 
major forest areas are in the northeast and southwest. Spe-
cifically, northeast China is high latitudes, with low annual 
average temperatures and with better water conditions so 
that forest cover is vast, organic matter decomposition rate 
is slow, and most forests are subalpine coniferous with large 
biomass. In addition, forests in northeast China are less 
likely to be affected by human activities. Southwest China 

is greatly affected by monsoons from the Indian Ocean, and 
northeast China is suitable for forest survival with abundant 
water and heat conditions. Natural forests are an important 
component of the total forest area in northeast China. Most 
of forests are coniferous with large biomass. Moreover, the 
region has complex terrain and therefore very little human 
disturbances.

Verification of biomass gridding results

Considering the scarcity of high-precision biomass data, it is 
difficult to verify the biomass gridding results from the pixel 
scale. Furthermore, taking the feasibility of the method and 

±

±±

2 2

2

Fig. 4   Spatial distribution of forest biomass in China for the periods 1999–2003, 2004–2008 and 2009–2013
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the availability of data into account, this study attempted to 
verify the biomass gridding results from the county scale 
(the county is the basic unit of the second type of forest 
inventory in China). This study synthesized pixel-based bio-
mass at the county scale and compared it with previous stud-
ies for similar period of times (Table 4). The relative errors 
(RE) were less than 20%. Therefore, the biomass gridding 
results were rational and the soundness of the downscaling 
method was acceptable.

Spatio‑temporal changes of forest biomass

At the national scale

This study estimated total forest biomass based on forest 
inventory data, the spatio-temporal changes are shown in 
Table 5.

Total forest biomass increased from 12.34 Pg dur-
ing 1999–2003 to 14.26 Pg during 2004–2008, i.e., a net 
accumulation of 1.92 Pg within five years with an annual 
increase of 0.38 Pg, and further increased to 16.05 Pg dur-
ing 2009–2013, i.e., a net increase of 1.79 Pg within five 
years with an annual increase of 0.36 Pg (Table 5). Overall, 
total forest biomass significantly increased from 1999 to 
2013, approximately a net increase of 3.71 Pg and an annual 
increase of 0.37 Pg. The results indicate that forest vegeta-
tion was a carbon sink during 1999 − 2013 in China. These 
findings are consistent with results of Fang et al. (2001; 
2018) and others (Guo et al. 2013).

As the main component of a forest, most of the biomass 
was stored in standing timber. The biomass of forest stands 
was 11.48 Pg from 1999 to 2003, accounting for 93% of the 
total biomass in the same period, and it was 13.38 Pg from 
2004 to 2008, 15.11 Pg from 2009 to 2013, accounting for 
93% and 94% of the total biomass, respectively, (Table 5). 
Stand biomass increased 1.90 Pg from 1999 to 2008 with an 
annual increase of 0.38 Pg, and 1.73 Pg from 2004 to 2013 

with an annual increase of 0.35 Pg. Overall, stand biomass 
increased continuously during 1999–2013 with a net gain 
of 3.63 Pg, contributing 98% of the annual increase in total 
forest biomass. Economic and bamboo forests showed no 
significant changes. Biomass of economic forests decreased 
at the beginning of the period and then increased, with an 
overall decrease of 0.02 Pg. Compared to economic forests, 
biomass of bamboo forests steadily increased at an annual 
rate of 0.01 Pg per year with an overall net gain of 0.1 Pg.

At the provincial scale

Based on inventory data, forest biomass during 1999–2013 
in individual provinces can be estimated, and the spatio-tem-
poral changes of biomass can be illustrated (Fig. 5). Biomass 
varied greatly across provinces. From 1999 to 2008, biomass 
in all provinces increased except for Hainan. It increased 
most in Guangxi at 243.67 Tg and Jiangxi at 205.96 Tg, 
while it was only –0.45 Tg in Hainan. From 2004 to 2013, 
forest biomass in all provinces increased, specifically, most 
in Fujian at 156.08 Tg and Inner Mongolia at 146.07 Tg. 
For the period 1999 to 2013, forest biomass in all prov-
inces increased continuously. It increased most in Guangxi 
by 367.34 Tg and Fujian by 296.92 Tg. These observations 
also demonstrate that forest vegetation in all provinces func-
tioned as a carbon sink during the period 1999–2013.

At a pixel scale

Based on the spatial patterns of forest biomass mentioned 
above, the spatio-temporal changes of forest biomass at a 
pixel scale were estimated (Fig. 6). For 1999 to 2008, bio-
mass in most parts of the country (94%) was increasing; 
biomass loss (6%) was primarily in Hainan, the Hengduan 
Mountains region and Northern Da Hinggan Mountains in 
the southwest and northeast. From 2004 to 2013, 89% of 
forest biomass showed an increasing trend, and biomass 

Table 4   Comparisons of 
biomass gridding results in this 
study with previous studies at 
the county scale

City and county Forest vegetation biomass 
(Tg)

RE (%) Study period References

This study Previous studies

Anji, Zhejiang 5.03 5.4 6.8 2012 Zhao et al. (2017)
Shanghang, Fujian 0.10 0.11 9 2002 Zhang (2016)
Jiangle, Fujian 13.39 11.8 13.5 2011 Fang (2015)
Hulun Buir, Inner Mongolia 892.58 1078 17.2 2010 Wang et al. (2015)
Sishui, Shandong 7.31 6.6 10.8 2015 Cui et al. (2017)
Youyang, Hunan 12.32 10.8 14.1 2011 Zhao and Xie (2014)
Jianou, Fujian 11.73 10.54 11.3 2007 Li (2013)
Shaoguan, Guangdong 63.46 67.8 6.4 2009 Tan and Liang (2010)
Changdu,Tibet 172.45 211.6 18.5 2015 Ren et al. (2016)
Pingdingshan, Henan 8.47 8.4 0.8 2008 Peng et al. (2015)
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loss (11%) mainly occurred in the southwest, including the 
southern areas of Tibet and east of Sichuan and Yunnan. 
From 1999 to 2013, there was an increasing trend in 97% of 
forest biomass with biomass loss (3%) mainly in the Heng-
duan Mountains, in southern Hainan and in the northern Da 
Hinggan Mountains.

Statistics for forest biomass changes in individual prov-
inces can be obtained as shown in Table 6 and Fig. 7. Both 
indicate the great variation in biomass across provinces. 
During 1999–2008, the total increase in biomass was 
1967.89 Tg, total reduction was 51.6 Tg, and net increase 
was 1916.29 Tg. Greatest losses occurred in Tibet (10.8 Tg), 
Yunnan (10.19 Tg), Heilongjiang (7.66 Tg), Hainan (5.16 
Tg) and in Sichuan (3.87 Tg). During 2004–2013, the total 
increase in biomass was 1884.55 Tg, total reduction 96.27 
Tg, and net increase 1788.28 Tg. Considerable loss of forest 
biomass occurred in Tibet (39.26 Tg), Yunnan (22.25 Tg), 
Sichuan (13.94 Tg), Heilongjiang (5.72 Tg) and in Xinji-
ang (5.08 Tg). During 1999–2013, the total increase in bio-
mass was 3732.89 Tg, the reduction was 28.32 Tg, and a net 
increase of 3704.57 Tg. The greatest loss of forest biomass 
occurred in Tibet at 11.14Tg, Heilongjiang at 7.73 Tg, Jilin 
at 2.39 Tg, Yunnan at 1.71 Tg and in Sichuan at 1.7 Tg.

Thus the results indicate that decrease of forest biomass 
was more pronounced in the three southwest provinces 
(Tibet, Yunnan and Sichuan) and in Heilongjiang during the 
study period. The results of statistical analyses are consist-
ent with the spatial distribution of changes in forest biomass 
noted previously.

Discussion

The provincial forest biomass estimated by the continuous 
BEF method is the basis of the downscaling method, which 
is also an external control, and the accuracy of the estimates 
directly affect the precision of the biomass estimates at a 
pixel scale. Although the continuous BEF method has been 
widely used in the estimation of biomass at a regional scale, 
owing to a vast territory, climate differences and variety 
of vegetation types in China, the method provides insuffi-
cient samples for particular forest types at a national scale 
(Pan et al. 2004; Zhao and Zhou 2004; Fang et al. 2007). 
IPCC methodology and a biomass regression model were 
adopted to estimate the biomass, and compared with that 
estimated by the continuous BEF method. The IPCC method 
is detailed in 2006 IPCC Guidelines for National Green-
house Gas Inventory (https://​www.​ipcc.​ch/​report/​2006-​ipcc-​
guide​lines-​for-​natio​nal-​green​house-​gas-​inven​tories/), and 
the biomass regression model is based on Li and Lei (2010) 
and Li et al. (2012). The comparison results are shown in 
Table 7. It can be seen that the biomass estimates obtained 
by different methods are quite different, but all showed an Ta
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increasing trend. Furthermore, the biomass estimated by the 
continuous BEF method was the highest, followed by that 
of the biomass regression model and the IPCC method. The 
continuous BEF method might not adequately consider the 
effect of age on biomass, resulting in a higher biomass value. 
Thus, the current biomass estimation methods were insuffi-
cient in universality and robustness. Thereby, improving the 
scientific and rational of biomass estimations, as well as the 
robustness of the method, should be the focus of follow-up 
research. More forest information (tree age, canopy spectra, 
textural property, and vertical structure parameters) might 

be obtained quickly and accurately with the help of current 
remote sensing technology, and estimation models may be 
developed with higher accuracy and robustness by combin-
ing the field survey data.

Forest biomass is actually affected by several complex 
factors, such as natural changes (the rising density of CO2, 
forest fires, nitrogen deposition, extreme climates, plant 
diseases and insect pests) and human activities (forest man-
agement, reforestation and afforestation) (Liu et al. 2012a, 
b, 2020; Ali et al. 2020). Meanwhile, the effects of these 
factors on forest biomass are various. Among them, the 

Fig. 5   Changes of forest biomass in provinces for the periods 1999–
2008, 2004–2013 and 1999–2013; 1999–2008 indicates biomass 
changes from 6 to 7th forest inventory; 2004–2013 indicates biomass 

changes from 7 to 8th forest inventory; and 1999–2013 indicates bio-
mass changes from 6 to 8th forest inventory; + indicates increase in 
biomass, – indicates decrease in biomass
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natural environment is the basic control of biomass change 
(Zhang 2011). Furthermore, forest biomass will be affected 
by human factors, and owing to the complexity of the effects 
of human factors on biomass, it was not possible to reflect 
human factors at a pixel scale in this study. As a conse-
quence, considering the accessibility of the data, this study 
only selected the main natural factors without human factors, 
which needs to be further improved. In a follow-up study, 
we should attempt to extend and enrich data sources, and 
introduce human factors such as population density, plant-
ing practices, and artificial surface areas to build a more 

comprehensive and statistical relationship between external 
variables and forest biomass, and further improve the accu-
racy of the downscaling method.

Remote sensing data (NDVI) were used in this study 
for long term dynamic monitoring of vegetation change. 
NDVI are usually obtained from different data sets, includ-
ing SPOT vegetation, GIMMS, and MODIS. Some differ-
ences exist between sensors and the methods of interpreting 
data, whereby biomass estimations from different NDVI 
data sets might be different, which can lead to uncertainty 
at a pixel scale. Furthermore, forest areas used in this study 

Fig. 6   Spatial distribution of forest biomass changes from 1999 
to 2013; 1999–2008 indicates biomass changes from the 6th to 7th 
inventories, 2004–2013 from the 7th to 8th inventories, and 1999–

2013 indicates changes from the 6th to 8th inventories; positive val-
ues represent the increase in biomass, while negative ones represent 
a decrease
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were derived from land use data and are quite different from 
the areas covered in the forest surveys. This certainly is of 
some influence on the estimation accuracy. In addition, the 
minimum canopy coverage in China’s forest inventories is 
20% and therefore forests with less than 20% canopy have 
been excluded. Considering that these low-canopy forests 
also play important roles in fixing CO2, such exclusion is 
unfortunate and needs to be assessed specifically in future. 
All these deficiencies are areas to be further promoted in 
subsequent research.

Ultimately the downscaling method based on the multi-
ple regression relationship used in this study is commonly 
used, and is simple in form and adaptable (Maeaun et al. 

2010). However, there are also some uncertainties. Firstly, 
the scale effect is sufficiently taken into account. The statisti-
cal relationships and coefficients estimated at a provincial 
scale were directly applied to the pixel scale, but the rela-
tionships among different scales and their effectiveness and 
stability remain to be settled. Secondly, the specific form of 
statistical relationship might vary with time and space, and 
may not be universal in all regions. Therefore, establishing 
targeted statistical relationships for specific study areas and 
periods should be considered. Generally, the scale effect and 
instability will influence the effectiveness of the downscal-
ing method to a certain extent. Meanwhile, the uncertainty 
of the downscaling method is the focus of current research 

Table 6   Statistics of forest 
biomass changes in each 
province for the periods 
1999–2008, 2004–2013 and 
1999–2013

1999–2008 indicates biomass changes from 6 to 7th forest inventory; 2004–2013 indicates biomass 
changes from 7 to 8th forest inventory; 1999–2013 indicates biomass changes from 6 to 8th forest inven-
tory; + indicates increase in biomass; – indicates decrease in biomass

Province Biomass changes from 1999 
to 2008 (Tg)

Biomass changes from 2004 
to 2013 (Tg)

Biomass changes from 
1999 to 2013 (Tg)

Increase Decrease Increase Decrease Increase Decrease

Heilongjiang  + 56.27 –7.66  + 65.14 –5.72  + 115.76 –7.73
Xinjiang  + 17.27 –0.45  + 30.03 –5.08  + 41.91 –0.14
Shanxi  + 8.85 –0.39  + 23.88 –0.04  + 32.31 –0.01
Ningxia  + 0.96 –0.14  + 1.41 –0.03  + 2.26 –0.06
Tibet  + 125.15 –10.8  + 115.14 –39.26  + 201.37 –11.14
Shandong  + 35.11 0  + 16.63 –0.51  + 51.30 –0.07
Henan  + 41.99 –0.32  + 53.50 –0.05  + 95.18 –0.06
Anhui  + 57.56 0  + 53.76 –0.23  + 111.19 –0.1
Hubei  + 90.10 –0.01  + 120.14 –0.06  + 210.18 –0.01
Zhejiang  + 98.98 –2.27  + 77.15 –2.73  + 171.14 –0.01
Jiangxi  + 205.97 –0.01  + 74.05 –0.03  + 280.03 –0.05
Hunan  + 126.49 –0.01  + 97.58 –0.42  + 223.66 –0.02
Yunnan  + 148.19 –10.19  + 78.65 –22.25  + 196.11 –1.71
Guizhou  + 87.70 –3.36  + 100.82 –0.04  + 185.13 –0.01
Fujian  + 140.84 0  + 156.53 –0.45  + 296.96 –0.04
Guangxi  + 243.67 0  + 124.02 –0.35  + 367.35 –0.01
Guangdong  + 55.18 –1.17  + 141.87 –0.34  + 195.64 –0.1
Hainan  + 4.71 –5.16  + 13.14 –0.86  + 12.94 –1.11
Jilin  + 55.24 –3.74  + 92.30 –0.12  + 146.07 –2.39
Liaoning  + 23.10 –0.04  + 61.02 –0.1  + 84.04 –0.06
Tianjin  + 0.45 0  + 1.44 0  + 1.89 0
Qinghai  + 2.58 –0.14  + 4.45 –0.5  + 6.88 –0.49
Gansu  + 23.04 –0.32  + 27.16 –0.31  + 49.74 –0.17
Shaanxi  + 39.52 –0.29  + 51.54 –0.45  + 90.40 –0.08
Inner Mongolia  + 80.89 –1.24  + 147.84 –1.77  + 226.29 –0.57
Chongqing  + 27.79 0  + 24.45 –0.07  + 52.17 0
Hebei  + 15.93 –0.01  + 16.99 –0.51  + 32.87 –0.47
Beijing  + 5.16 0  + 4.02 –0.01  + 9.17 0
Sichuan  + 130.88 –3.87  + 71.35 –13.94  + 186.12 –1.7
Suhu  + 18.33 –0.01  + 38.55 –0.04  + 56.84 –0.01
Sum  + 1967.89 –51.6  + 1884.55 –96.27  + 3732.89 –28.32
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Fig. 7   Forest vegetation 
biomass changes by individual 
provinces in China during 
1999–2013. 1999–2008 indi-
cates biomass changes from 6 to 
7th forest inventory; 2004–2013 
indicates biomass changes from 
7 to 8th forest inventory; and 
1999–2013 indicates biomass 
changes from 6 to 8th forest 
inventory
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(Wetterhall et  al. 2006; Zhang et  al. 2010). This study 
attempted to verify the external control of the downscaling 
method, i.e., provincial forest biomass, and the downscaling 
results, i.e., biomass gridding to certify the rationality of the 
method and the stability of the statistical relationship but this 
is insufficient. Therefore, it needs to be further improved in 
future studies such as trying to introduce more abundant 
variables (tree age, soil quality, human factors) to establish 
different statistical relationships, and to compare their reli-
ability and applicability to determine the best method and 
reduce uncertainty.

Conclusions

With Chinese forest inventory data, this study explored the 
spatial distribution of forest biomass with a spatial resolu-
tion of 1 km, and further analyzed spatio-temporal biomass 
changes by applying a downscaling method. The results 
show that it is feasible to estimate forest biomass at the pixel 
scale by employing forest inventory data, a regression model 
integrating multiple influencing factors, forest biomass at the 
provincial scale, and then a downscaling method. Moreover, 
forest biomass in China was in an obvious spatial distribu-
tion pattern from 1999 to 2013. Specifically, it was roughly 
divided by a line connecting northeast and southwest China. 
The highest forest biomass was concentrated in the Da Hing-
gan Mountains, Xiao Hinggan Mountains and Changbai 
Mountains in the northeast; in the Hengduan Mountains 
in the southwest; the Xinjiang Mountains areas (i.e., Altai 
Mountains, Tianshan Mountains and Kunlun Mountains) in 
the northwest; the Qinling Mountains areas in central China; 
and the Wuyi Mountains in southeast China. Forest biomass 
changes were also in a clear spatial distribution pattern. 
Increases (i.e., carbon sinks) mainly occurred in the east 
and southeast; decreases (i.e., carbon sources) mainly in the 
northeast to southwest. The greatest biomass losses occurred 
in the Hengduan Mountains, southern Hainan and in the 
northern Da Hinggan Mountains. Ultimately, forest vegeta-
tion in China functioned as a carbon sink over the period 
1999–2013 and contributed a net increase in biomass of 3.71 
Pg. China’s efforts addressing ecological and environmental 

problems are not in vain and may be further supplemented 
and refined for better outcomes.
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