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between species, with foliage carbon mostly found to be 
the highest, while root carbon contents were the lowest. 
Average carbon contents can be ranked as: Ulmus laciniata 
(43.4%) < Phellodendron amurense (43.5%) < Acer mono 
(43.8%) < Tilia amurensis (44.2%) < Populus davidiana 
(44.5%) < Fraxinus mandshurica (44.7%) < Juglans man-
dshurica (44.9%) < Quercus mongolica (45.3%) < Betulla 
davurica (45.8%) < Betulla platyphylla (46.7%) < Picea 
koreansis (46.9%) < Larix gmelinii (47.4%) < Pinus korean-
sis (48.3%) < Abies nephrolepis (48.3%). Carbon contents 
were higher in conifers (47.7%) compared to broadleaf spe-
cies (44.9%). In addition, both tree tissues and growing sites 
also had a significant effect on carbon content. At the sub-
tissue level, only stem’s sub-tissues (i.e., bark, heartwood, 
and sapwood) carbon contents showed significant variations. 
The results suggest that bark should be separated from other 
stem sub-tissues and considered separately when determin-
ing carbon stocks. This research contributes to improving 
estimates of terrestrial carbon quantifications, and in par-
ticular, the values obtained can be used in China’s National 
Forest Inventory.
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Introduction

Increasing atmospheric carbon dioxide (CO2) concentra-
tions has a relatively high contribution to global warming 
(IPCC 2014). Forest ecosystems have the ability to reduce 
atmospheric CO2 by sequestering carbon in biomass which 
plays a crucial role in stabilizing the global climate system 
(Dixon et al. 1994). The United Nations Food and Agricul-
tural Organization (FAO) has estimated that global forests 
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store approximately 296 Gt of carbon in aboveground and 
belowground biomass, comprising nearly half of a forest’s 
total carbon stock (FAO 2015). A forest’s capacity to seques-
ter carbon is greater compared with other biomes since the 
carbon stored within woody tissues is well protected from 
respiratory release and decomposition (Keenan and Wil-
liams 2018), while carbon stored in nonwoody tissues (i.e., 
root hairs and foliage) has a more rapid turnover. Thus, for-
ests have a significant role in the world’s terrestrial carbon 
sink (Keenan and Williams 2018), and their biomass has 
been identified by the Intergovernmental Panel on Climate 
Change (IPCC) as one of the most promising forms to lessen 
atmospheric CO2 (IPCC 2007).

Carbon is among the most plentiful elements in living 
organisms (Dietze et al. 2014) and is converted from its gas-
eous form into biological compounds through photosynthe-
sis, contributing to basic metabolic functions and structure 
of plants (Dietze et al. 2014; Martínez-Vilalta et al. 2016). 
The carbon stored from this process is determined by multi-
plying the plant’s dry weight with a carbon conversion fac-
tor, the most commonly used factor is 50% for almost all of 
carbon stock estimations, i.e., for local, regional and global 
carbon appraisals (Nizami 2012; Guerra-Santos et al. 2014; 
Tang et al. 2018). The 50% carbon conversion factor was 
originally determined from the average molecular formula, 
CH1.44O0.66, consisting of basic constituents such as 50% 
carbon, 44% oxygen, 6% hydrogen, and trace quantities of 
metal ions in live woody tissues (Pettersen 1984; Bert and 
Danjon 2006; Ma et al. 2018). This particular value has long 
been recommended as a generic carbon conversion factor by 
the IPCC to simplify the measurement process and to fos-
ter carbon stock quantifications worldwide (Houghton et al. 
1990). However, its accuracy is uncertain (Zhang et al. 2009; 
Jones and O’Hara 2012; Widagdo et al. 2020a).

To-date, various international programs and mecha-
nisms, such as the Reducing Emissions from Deforestation 
and Forest Degradation (REDD) program under the United 
Nations Framework Convention on Climate Change (UNF-
CCC), have been established to financially reward projects 
and countries that contribute to preventing carbon loss from 
forests (Ebeling and Yasué 2008; Mukama et al. 2012). To 
support these types of activities, forest carbon stock has to 
be accurately estimated in order to quantify the carbon ben-
efits and compensation payments (Vieilledent et al. 2012). 
Moreover, a number of studies have reported that carbon 
concentrations vary within taxonomic groups (i.e., angio-
sperms and conifers; Thomas and Martin 2012; Martin et al. 
2015; Ma et al. 2018), species (Pompa-García et al. 2017; 
Gillerot et al. 2018; Rodríguez-Soalleiro et al. 2018), ori-
gins (Elias and Potvin 2003; Widagdo et al. 2020b), prov-
enances (Wang et al. 2015; Ying et al. 2019), growing sites 
(Ying et al. 2019; Widagdo et al. 2020a), tissues (Kim et al. 
2017; Zhou et al. 2019; Dong et al. 2020), and even stem’s 

sub-tissues such as bark, heartwood, and sapwood (Lam-
lom and Savidge 2006; Castaño-Santamaría and Bravo 2012; 
Gao et al. 2016). Thus, investigation of variability in carbon 
content needs to be continued in order to improve the preci-
sion of carbon stock appraisals.

At the global scale, temperate mixed forests are largely 
situated in eastern Asia, northern North America, and north-
eastern Europe. In China, they are located in the northeast 
and are crucial for the nation’s carbon budgeting and cli-
matic system (Wang 2006; State Forestry and Grassland 
Administration 2019). There are 14 major tree species 
which are mainly found in these temperate forests, namely: 
Manchurian Elm (Ulmus laciniata), Amur cork (Phello-
dendron amurense), Mongolian oak (Quercus mongolica), 
Manchurian walnut (Juglans mandshurica), Manchurian 
ash (Fraxinus mandshurica), Amur linden (Tilia amuren-
sis), Maple (Acer mono), Dahurian poplar (Populus davidi-
ana), Dahurian birch (Betula davurica), white birch (Betula 
platyphylla), Korean spruce (Picea koreansis), larch (Larix 
gmelinii), Korean pine (Pinus koreansis), and Khingan fir 
(Abies nephrolepis). This study aimed to: (1) accurately 
measure carbon contents of the 14 species to the sub-tissue 
level; and, (2) analyze both inter- and intra-specific carbon 
content variabilities, one of the key steps in forest carbon 
assessment.

Materials and methods

Study site

The data were collected from several natural secondary for-
ests within the three major mountainous regions in north-
east China (Fig. 1), the Changbai Mountains (CBM), the 
Daxing’an Mountains (DXM), and the Xiaoxing’an Moun-
tains (XXM). These areas have a continental monsoon cli-
mate, and based on the Chinese soil taxonomic system, the 
soil type is dark brown forest soil (Haplumbrepts or Eutrobo-
ralfs). According to the Köppen-Geiger climate classification 
system, these regions are Dwa, Dwb, and Dwc, indicating 
dry winters with hot, warm, or cold summers, respectively 
(Beck et al. 2018). The elevations of these three mountain-
ous regions are highly varied from 300 to 1500 ma.s.l., as 
well as mean annual temperatures (−4 to 6 °C) and mean 
annual rainfalls (500–800 mm). In this study, the natural 
secondary forests were the result of cutovers, and left to 
be naturally regenerated (Yu et al. 2011). To date, the area 
of secondary forests in China are managed by the Provin-
cial Forestry and Grassland Unit, which comes under the 
supervision of the National Forestry and Grassland Depart-
ment. The dominant species found within these forests are 
aspen (P. davidiana Dode.), Mongolian oak (Q. mongolica), 
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white birch (Betula platyphylla), and Dahurian birch (Betula 
davurica).

Field sampling and sample preparation

Six hundred and three trees of the 14 most common broad-
leaf and conifer species were destructively sampled from 18 
widespread sites. All had diameters at breast height (DBH) 
and tree total height (H) of 3.4–47.0 cm and 3.6–27.0 m, 
respectively. Only healthy trees with a straight bole without 
visual damage (i.e., major branch loss, fungal infections, 
or stem abrasions) were selected. In addition, each of the 
four primary tissues were divided into three sub-tissues in 
order to thoroughly analyze carbon concentration variability. 
Belowground biomass (roots) was separated based on its 
diameter (d); namely, RS—small (d < 2 cm), RM—medium 
(2 < d < 5 cm), and RL—large (d > 5 cm). Branches and foli-
age were classified according to their position within the 
crown; namely, lower (BL and FL), middle (BM and FM), 
and upper (BU and FU). Stems were divided based on three 
distinct layers; namely, heartwood (SH), sapwood (SS), 
and bark (SB). Heartwood and sapwood were differentiated 
according to Lachenbruch et al. (2011) in which the former 
is related to samples extracted from the radial position close 

to the pith, while the latter represents samples taken from 
the radial position close to the bark.

Basic inventory data were collected before felling, e.g., 
DBH, H, and length and width of crowns. Once felled, the 
aboveground section was separated into stem and crown at 
the point of the first live branch. The stem was then parti-
tioned into one-meter sections and a 2-cm thick disc was 
taken from each portion. The crown section was divided 
equally into lower, middle, and upper layers, and 3–5 fresh 
branches and foliage samples were taken from each layer. 
All samples were carefully chosen, extracting only lignified 
green branches as samples. Roots were excavated within a 
3-m circle. Apart from fine roots (<2 mm), approximately 
100–200  g of each root class was sampled, weighed, 
recorded, and transferred to the laboratory. DBH, H and 
carbon concentrations for all samples are shown in Fig. 2.

Carbon concentration measurements

All samples were oven dried at 80 °C to constant weight. 
Each of the ±5 mg finely ground samples were put into a 
container for further weighing using an MS304S Mettler 
Toledo analytical balance (accuracy to 0.0001 g). Prior 
to measurements, all containers were washed with dis-
tilled water along with analytical grade acetone, vacuum 

Fig. 1   Distribution of sampling 
locations in northeast China. 
CBM Changbai Mountain, DXM 
Daxing’an Mountain, XXM 
Xiaoxing’an Mountain
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desiccated overnight until dry (Lamlom and Savidge 2003). 
For determining carbon concentrations, each sample was 
burned at 1200 °C in a vial containing pure oxygen. The 
carbon concentration was then determined via a non-disper-
sion infrared ray (NDIR) analyzer (Multi N/C 3000 analyzer 
with 1500 Solids Module; Analytik Jena AG, Germany). 
The analyzer was calibrated and stabilized between runs 
using a 12% standard concentration of CaCO3 (standard 
curve, r2 > 99.99%), in which standards were included after 
every 15–20 samples to ensure that the readings were reli-
able. Volatile carbon was not measured by this method; thus, 
there might be a possible loss in the volatile carbon fraction 
during the measurements (Thomas and Malczewski 2007).

Statistical analysis

To assess the carbon content’s inter- and intra-species vari-
ability, PROC GLM was used with the statistical analysis 
software SAS version 9.3. The effect of seven variables 
on carbon concentration were determined; namely, DBH, 
H, growing regions (CBM, DXM, and XXM), taxonomic 
group (conifers and broadleaves), species, tissues and sub-
tissues. Some variables are inherently nested within others, 
such as species within a taxonomic group and sub-tissues 
within a tissue. Thus, a partially nested analysis of variance 
(ANOVA) through a general linear model was used. The 

interaction of species and growing regions was intentionally 
excluded since not all species were present in all regions. To 
further analyze the effect of region and tree tissues on carbon 
contents within each species, a least significance difference 
(LSD) test was conducted.

Results

Overall variations in carbon concentrations

Apart from DBH and H, all variables (i.e., taxonomic group, 
species, region, and tissues) had significant variations in 
carbon contents (p < 0.05, Table 1). This indicates that, at 
least in our dataset, the differences in DBH and H did not 
significantly affect carbon contents. Average (±SE) carbon 
concentration across all taxonomic groups, species, regions, 
tissues, and sub-tissues was 45.7 ± 0.04%. A mean scatter 
diagram of the multiple comparison test (using the Tukey-
Kramer adjustment method) was used to visualize the effect 
of the three growing regions (CBM, XXM, and DXM) and 
the four primary tissues—roots, stem, branches, and foliage, 
on carbon concentration values. The results show that both 
growing sites and tissue types significantly affect carbon 
concentrations (Fig. 3).
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Fig. 2   Species-specific carbon concentrations for the 14 species; 
abbreviations on the left refer to species and numbers on the right 
indicate the total number of samples for each species. D DBH, H total 
height, ULC Ulmus laciniata, PAR Phellodendron amurense, AMN 
Acer mono, TAS Tilia amurensis, PDV Populus davidiana, FMS Frax-

inus mandshurica, JMS Juglans mandshurica, QMC Quercus mon-
golica, BDV Betulla davurica, BPL Betulla platyphylla, PCK Picea 
koreansis, LGM Larix gmelinii, PKS Pinus koreansis, ANP Abies 
nephrolepis 
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Inter‑species variation in carbon concentration

In this research, carbon concentrations of the 14 species 
were measured to the sub-tissue level. Carbon concen-
tration values for each species over nine sub-tissues are 
shown in Table 2 and varied significantly across species 
and sub-tissues (Tables 1 and 2), ranging from 39.6% 
within the bark of U. laciniata to 50.9% within the upper 
foliage of A. nephrolepis. Among all species, U. lacin-
iata and A. nephrolepis consistently exhibited the lowest 
and highest average carbon concentration values over the 
nine sub-tissues at 43.4% and 48.3%, respectively. Mean 
carbon contents followed U. laciniata < P. amurense < A. 
mono < T. amurensis < P. davidiana < F. mandshurica < J. 
mandshurica < Q. mongolica < B. davurica < B. platy-
phylla < P. koreansis < L. gmelinii < P. koreansis < A. 
nephrolepis. This clearly shows that all conifer species 
had higher mean carbon contents than the 10 broadleaf 
species. Overall, carbon contents for all conifers was 

higher compared to those of broadleaf species across all 
sub-tissues (Table 2).

Carbon concentrations varied significantly among the 
nine sub-tissues (p < 0.05; Table 1). Table 3 presents the 
mean comparison (p value) of the nine sub-tissues across 
all species. The results show that most of variations were 
driven by the significant difference between the pairing 
comparisons of the sub-tissue across different tissues. The 
differences within the same tissue were insignificant for 
roots, branches, and foliage (Table 3). A significant differ-
ence within the same tissue was only found within the stem, 
in which the bark carbon content differed significantly from 
both sapwood and heartwood. Overall, carbon concentra-
tions of the nine sub-tissues across the 14 species can be 
ranked as RS < RM < RL < SS < SH < BL < BM < BU < SB 
< FL < FM < FU (Table 2). The abbreviations are defined 
in Table 3.

Intra‑species variation in carbon concentrations

Carbon concentrations differed significantly between the 
biomass tissues across all species (F-values = 129.16, 
p < 0.0001). Carbon concentrations of all species are as fol-
lows: foliage (46.7%) > branch (45.7%) > stem (45.6%) > root 
(44.7%). Both foliage and roots consistently showed the 
highest and lowest carbon concentrations for all four conifers 
(48.9% and 46.9%) and all ten broadleaf (45.9% and 43.9%) 
species, respectively. Average carbon content values for all 
species varied from 42.5% for roots of P. amurense to 50.7% 
for the foliage of A. nephrolepis. Apart from U. laciniata, 
the lowest carbon concentrations were always found in the 
roots, ranging from 42.5% to 47.6% (Fig. 4). The tissue with 
the highest carbon concentrations varied according to the 
species, in which foliage generally had the highest carbon 

Table 1   Effects on carbon contents across the 14 species

DF Degrees of freedom; SS Sum of squares; Taxonomic group: 
broadleaf and conifer

Source DF Type III SS Mean square F p

Tree size (DBH) 1 0.0001 0.0001 0.08 0.7794
Tree height (H) 1 0.0001 0.0001 0.13 0.7223
Region 2 0.2297 0.1149 124.09 <0.0001
Taxonomic 

group
1 0.6477 0.6477 699.71 <0.0001

Species 12 0.4079 0.0340 36.72 <0.0001
Tissue 3 0.3587 0.1195 129.16 <0.0001
Sub-tissue 8 0.0392 0.0049 5.30 <0.0001

Fig. 3   Carbon concentration 
mean-mean scatter diagrams 
within the three growing sites 
and four primary tree tissues 
across the 14 species
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content (9 out of 14 species, Fig. 4). The highest carbon con-
centrations for U. laciniata, F. mandshurica, P. koreansis, 
and P. koreansis were in the branches, while for P. amurense, 
it was within the stem. However, for four of these five spe-
cies (excluding P. koraensis), most of the tissues with the 
highest carbon concentrations only had a significant differ-
ence with the roots (Fig. 4).

Between the stem’s sub-tissues across all species, the 
average carbon content of the bark is the highest (46.1%), 
sapwood the lowest (45.3%), and heartwood slightly higher 
(45.4%). The difference in carbon contents between the 
stem sub-tissues varied with species (Fig. 5). The differ-
ence between heartwood and sapwood carbon concentra-
tions was insignificant for all species. Carbon contents of the 
bark were significantly different from either heartwood or 

sapwood, or even both, for seven of the 14 species. Among 
these, bark had the lowest carbon concentrations for U. 
laciniata, A. mono, and Q. mongolica, whereas the highest 
was found in B. davurica, B. platyphylla, L. gmelinii, and 
P. koreansis (Fig. 5). There was no significant difference in 
carbon content of lower, middle, and upper canopy posi-
tions for both branches and foliage, as well as among small, 
medium, and large roots (Table 3).

The effects of the three sites on carbon concentrations 
were also analyzed for each species (Fig. 6). Four species 
were present on all three sites (CBM, DXM, and XXM), 
seven species on two sites (CBM and XXM), and the bal-
ance from one site (CBM). For eight of the 11 species 
sampled from either three or two sites, ANOVA revealed a 
significant difference between these regions (Fig. 6). Apart 

Table 3   Mean comparison (p value) among each sub-tissue, pooling all species; grey cells represent the sub-tissue mean comparisons within 
the same tissue

Sub-
tissue 

BL BM BU FL FM FU RL RM RS SB SH SS 

BL -            
BM 1.0000 -           
BU 0.9999 1.0000 -          
FL 0.0006 0.0010 0.0120 -         
FM <.0001 <.0001 <.0001 0.9113 -        
FU <.0001 <.0001 <.0001 0.1620 0.9849 -       
RL 0.0016 0.0010 <.0001 <.0001 <.0001 <.0001 -      
RM <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 1.0000 -     
RS <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.1300 0.4813 -    
SB 0.6155 0.6942 0.9671 0.4819 0.0060 <.0001 <.0001 <.0001 <.0001 -   
SH 0.6690 0.5922 0.1995 <.0001 <.0001 <.0001 0.6192 0.2106 <.0001 0.0024 - 1.0000
SS 0.4846 0.4086 0.1041 <.0001 <.0001 <.0001 0.7666 0.3265 0.0001 0.0007 1.0000 - 

Notes: BL, BM, and BU represent the lower, middle, and upper branch, respectively; FL, FM, and FU the lower, middle, and upper foliage, respectively; 
RL, RM, and RS are the large, medium, and small roots, respectively; SB, SH, and SS are the bark, heartwood, and sapwood of the stem, respectively. 
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from T. amurensis, all species sampled from the CBM range 
consistently had the lowest carbon concentrations, ranging 
from 43.8% for U. laciniata to 47.8% for A. nephrolepis. The 
highest carbon concentrations varied with species, in which 
eight of 11 species were from the XXM range (Fig. 6). B. 
platyphylla and P. koreansis carbon concentrations were 
highest in the DXM, while T. amurensis carbon was high-
est in the CBM. Average carbon content of all species from 
the XXM site is the highest (47.0%) along with the DXM 
(47.0%), and the lowest in the CBM site (44.7%).

Discussion

Chemical traits of both foliage and roots have received 
considerable attention in comparative studies of ecosys-
tem function and ecology (Reich et al. 1997; Wright et al. 

2004; Tsunoda and van Dam 2017). However, many meas-
urements of carbon contents are only on stems or boles 
(Martin and Thomas 2011; Castaño-Santamaría and Bravo 
2012; Azeem et al. 2019). This is perhaps because woody 
stems account for the largest biomass component in a tree 
(Laiho and Laine 1997) and net primary production at the 
stand level (Gower et al. 2001; Zhang et al. 2009). Hence, 
tree stems are regarded as a major carbon sinks contribut-
ing to mitigating the effects of climate change. Our results 
show that the average stem carbon concentrations of the 14 
species (45.6%) was less than the 50% generic conversion 
factor. Even after calculating average stem carbon contents 
based on taxonomic group (47.0% for conifers and 45.0% 
for broadleaf species), the values are still below the widely 
used carbon conversion factor. It is worth noting that the 
oven-dried method adopted in this study might result in a 
loss in the volatile carbon fraction, possibly contributing to 
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underestimating carbon contents. Previous studies show that 
volatile losses vary among tree species and oven tempera-
tures. Lamlom and Savidge (2003), Thomas and Malczewski 
(2007), and Martin and Thomas (2011) demonstrated that 
volatile carbon loses were ~ 2.0%, ~2.2% and ~ 2.5% when 
samples were oven-dried at 93 °C, 105 °C, and 110 °C, 
respectively, for 14 temperate species in China, 41 temper-
ate species in Canada, and 59 tropical species in Panama. 
If the carbon losses occur linearly with oven temperature, 
the carbon contents obtained in this study would have been 
1 or 2% higher if the kiln- or freeze-dried method was used 
instead (oven temperature in this study was 80 °C). However, 
a direct cross-study comparison is difficult and unreliable 
due to discrepancies in species, methods, sample treatments, 
and laboratory equipment. All samples were oven-dried to 
the same 80 °C temperature, and thus volatile losses could 
be considered as systematic and common to all data.

Several studies have reported that the largest biomass 
(≈60%) within an individual tree are found in the stems (Zhu 
et al. 2013; Ozdemir et al. 2019; Widagdo et al. 2020b). 
However, to precisely measure the carbon stock of an indi-
vidual tree, a measure of each tree tissue’s carbon content 
is needed since type of tissue significantly affects carbon 
concentrations (Table 1, Figs. 3 and 4). This result also cor-
roborates the work of Rodríguez-Soalleiro et al. (2018), 
Zhou et al. (2019), and Dong et al. (2020). In this study, 
root carbon concentrations across all species (44.7%) was 
always the lowest compared to other tree tissues, while foli-
age had the highest carbon concentrations (46.7%), in line 
with previous studies (Zhang et al. 2009; Ma et al. 2018). 
Variations between sub-tissues were also analyzed. The 
stem’s sub-tissues (bark, heartwood, and sapwood) carbon 
contents varied significantly, while differences between 
root’s, branch’s, and foliage’s sub-tissues were insignificant 
(Table 3). Research by Bert and Danjon (2006) has shown 
that some changes in carbon concentration were related with 
the size of the tree tissue or its position within the tree. How-
ever, different results were obtained in this study; diameter 
and height did not have any significant effect on the carbon 
concentrations. Moreover, Table 3 shows that root size and 
both branch and foliage position within the crown did not 
have any significant effect on carbon contents. These dis-
crepancies might be related to environmental variations and 
experimental differences.

Tree bark has long been recognized to have chemical 
divergences from other tree tissues (Srivastava 1964; Vid-
ensek et al. 1990). In spite of several general chemical 
constituents (polyphenols, fats, sterols, hemicellulose, cel-
lulose), bark has also developed unique polymeric materi-
als (Bert and Danjon 2006) and contains half of the cel-
lulose of the trunk (Labosky 1979; Vázquez et al. 1987). In 
this study, bark carbon concentrations were always higher 
than that of the heartwood and sapwood for all conifers. 

Among the 10 broadleaf species, bark carbon concentra-
tions of six species (U. laciniata, Q. monglica, J. mand-
shurica, F. mandshurica, T. amurensis, and A. mono) were 
the lowest compared to the other two sub-tissues. This is 
consistent with the literature which showed that greater 
carbon contents in the bark might be caused by higher 
levels of tannins, suberin, lignin, and extractives (Hergert 
1960; Porter 1974; Bert and Danjon 2006), particularly 
for conifer species (Srivastava 1964; Vidensek et al. 1990; 
Nemli et al. 2006). From an ecological perspective, this 
pattern is related with bark functions in controlling water 
deficiency and protecting the tree from fire (Hengst and 
Dawson 1994) and insects (Franceschi et al. 2005). The 
current study also noted that the difference between carbon 
contents of the heartwood and sapwood were insignificant 
for all species (Fig. 5).

In the present research, average carbon concentrations 
of the four conifers were higher than those of the 10 broad-
leaf species, both on average (47.7% cf. 44.9%) and sepa-
rately across the roots (46.9% cf. 43.8%), stems (47.0% cf. 
45.0%), branches (47.8% cf. 44.9%), and foliage (48.9% 
cf. 45.8%). The reasons for this is because conifers have 
approximately 10% higher lignin content than broadleaf 
species (Savidge 2000). Of all the macromolecules within 
a tree’s woody tissues, lignin has the highest carbon per-
cent (Savidge 2000; Lamlom and Savidge 2003). We also 
found that the carbon concentrations varied across the spe-
cies and the growing regions, as confirmed by a number of 
studies (Elias and Potvin 2003; Azeem et al. 2019; Ying 
et al. 2019). Kozlowski (1992) reported that individual 
trees with different growth and metabolism characteris-
tics had various differences in carbon compounds; hence, 
intra- and inter-specific variations in carbon concentra-
tions would be influenced by silvicultural practices, stand 
characteristics (i.e., age of tree and position within the 
crown), and growing conditions. Using species-, tissue-, 
and site-specific carbon content instead of the common 
50% conversion factor will provide more accurate results 
on terrestrial carbon stock estimations, as has been demon-
strated by previous studies (Zhang et al. 2009; Martin and 
Thomas 2011; Dong et al. 2016; Widagdo et al. 2020a). 
Thus, the continuity of research on carbon contents of spe-
cies, tissues of species (stem, branches, roots, foliage), 
and regional-specific carbon contents needs to continue 
in order to increase the accuracy of carbon stock estima-
tions. The data obtained in this research are useful for 
accurate carbon stock estimates of the following species, 
particularly for those in northeastern China: U. laciniata, 
P. amurense, Q. mongolica, J. mandshurica, F. mandshu-
rica, T. amurensis, A. mono, P. davidiana, B. davurica, B. 
platyphylla, P. koreansis, L. gmelinii, P. koreansis, and A. 
nephrolepis.
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Conclusions

This research highlights the importance of consider-
ing intra- and inter-species variation in carbon contents, 
which has broad impacts for increasing the accuracy of 
global carbon quantifications. Carbon contents varied sig-
nificantly across the growing regions, taxonomic groups, 
species, and tissues. Both DBH and tree total height did 
not have any effect on carbon contents. Among the nine 
sub-tissues analyzed, carbon contents of the stem’s sub-
tissues (bark, heartwood, and sapwood) differed signifi-
cantly, while carbon contents of the root’s, branch’s, and 
foliage’s sub-tissues were insignificant. Based on these 
results, it is recommended that bark should be separated 
from heartwood and sapwood and considered separately 
when measuring carbon stock of an individual tree. More 
attention is required to improve the estimates of forest car-
bon inventories.
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