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mined values of MAX of carotenoids revealed no signifi-
cant difference in the median MAX between higher plants 
(median = 133.0%) and algae-duckweeds (median = 138.1%). 
About 70 mined values of MAX were also concentrated for 
photosynthetic rate (median MAX = 129.2%) and stomatal 
conductance (median MAX = 124.7%) in higher plants. 
Within higher plants, there was no significant difference 
in the median MAX among chlorophylls, carotenoids, 
photosynthetic rate, and stomatal conductance. Similarly, 
there was no significant difference in the median MAX 
between chlorophylls and carotenoids of pooled algae and 
duckweeds. The results suggest that the MAX is typically 
below 160% and as a rule below 200% of control response, 
and does not differ among chlorophylls, carotenoids, pho-
tosynthetic rate, and stomatal conductance. New research 
programs with improved experimental designs, in terms of 
number and spacing of doses within the “low-dose zone” 
of the hormetic dose–response relationship, are needed to 
study the molecular/genetic mechanisms underpinning the 
low-dose stimulation of photosynthesis and its ecological 
implications.

Keywords  Dose–response relationship · Environmental 
stresses · Hormesis · Photosynthesis · Low-dose stimulation

Introduction

Photosynthesis converts sunlight into energy, thus driving 
plant growth and productivity, and contributes in sustain-
ing life on the planet as it uses water to release oxygen in 
the atmosphere. Because improving photosynthesis can also 
contribute to ensuring food security, photosynthesis has been 
a key target of bioengineering manipulations for a long time 
(Evans 2013; South et al. 2019; Simkin et al. 2019; Sinclair 
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et al. 2019). Such manipulations aiming at improving photo-
synthesis have targeted various physiological functions, such 
as photorespiration, ribulose-1,5-bisphosphate carboxylase/
oxygenase (Rubisco), the Calvin–Benson cycle, and elec-
tron transport (Evans 2013; South et al. 2019; Simkin et al. 
2019). However, a vast literature demonstrates that various 
abiotic stresses (including environmental pollutants) cause 
over-reduction of the electron transport chain and photo-
oxidation, and extensively discusses the underpinning mech-
anisms of these adverse effects on photosynthesis (Heath 
1994; Gururani et al. 2015; Li et al. 2017).

To understand how photosynthesis responds to environ-
mental stresses, predict the effects of specific levels of pol-
lutants, and derive critical levels of pollutants above which 
photosynthesis is adversely affected, dose–response rela-
tionships should be studied. Hormesis is a dose1–response 
phenomenon where low doses of stress stimulate and high 
doses of stress adversely affect plants, producing biphasic 
dose–response relationships (Cedergreen et al. 2007; Belz 
2008; Calabrese and Blain 2009). This dose–response rela-
tionship indicates that (1) biologically significant effects can 
occur at stress doses multi-fold smaller than the dose where 
the traditional toxicological threshold appears (i.e. no-
observed-adverse-effect-level, NOAEL), and (2) prediction 
of effects by extrapolating from considerably higher doses 
to lower doses based on a linear-no-threshold perspective 
can generate incorrect estimates of inhibition at doses where 
even stimulation might occur (Calabrese and Blain 2009; 
Agathokleous et al. 2020c). However, there is no integrated 
documentation of hormetic response of photosynthesis to 
various environmental stresses.

The recent years have witnessed the widespread occur-
rence of hormesis in numerous plant species exposed to 
an array of environmental stresses, including contempo-
rary emerging contaminants (Calabrese and Blain 2009; 
Hadacek et al. 2010; Erofeeva 2014; Morkunas et al. 2018; 
Agathokleous et al. 2020c; Macias-Bobadilla et al. 2020). 
Well-documented stresses inducing hormesis in plants are 
active pharmaceuticals (Agathokleous et al. 2018), air pol-
lutants (Agathokleous et al. 2019a; Erofeeva and Yakimov 
2020; Erofeeva 2020), hydrocarbons (Agathokleous et al. 
2020a), metals, toxic ions and trace elements (Poschenrieder 
et al. 2013; Carvalho et al. 2020; Shahid et al. 2020), nano-
materials (Iavicoli et al. 2014; Agathokleous et al. 2019b), 
and pesticides and other agrochemicals (Garzon and Flo-
res 2013; Brito et al. 2018; Agathokleous et al. 2019c, d; 
Jalal et al. 2021). These studies indicated that hormesis is a 
widely occurring phenomenon in plants exposed to single or 
combined stresses, with generalized quantitative character-
istics; the maximum low-dose stimulation is modest, and as 

a rule less than two-fold the control response (Agathokleous 
et al. 2020c).

As the basis of photosynthesis is chlorophyll whose 
response to increasing doses of stress has been widely found 
to be biphasic (i.e. typical of hormesis), and because photo-
synthesis is regulated by other functions displaying biphasic 
dose responses (Poschenrieder et al. 2013; Agathokleous 
et al. 2019e, 2020b; Jalal et al. 2021), photosynthetic rate 
may also show biphasic dose–response relationships (Ced-
ergreen and Olesen 2010; Jia et al. 2015; Deng et al. 2017; 
Di Baccio et al. 2017; Wu et al. 2018; Hussain et al. 2019; 
Gohari et al. 2020a, b). To this end, this study aimed at 
collating evidence documenting biphasic dose-responses 
of photosynthetic rate and stomatal conductance to vari-
ous stresses (Fig. 1), and examining whether the maximum 
stimulatory response (MAX) to low doses of environmental 
stresses differs among groups of photosynthesizing organ-
isms, among photosynthetic pigments (chlorophylls and 
carotenoids) and gas exchange (photosynthetic rate and sto-
matal conductance) traits.

Analysis

Chlorophylls in higher plants

The methodology of data extraction, response calculation, 
and data analysis used in this section was same as described 
previously (Agathokleous et al. 2020b). Briefly, MAX was 
considered the greatest stimulation (% of control response) 
induced by stress in each dose–response evaluation. The raw 
data were extracted (with six decimals) from the original 
articles using Adobe Photoshop CS4 Extended v.11 (Adobe 
Systems Incorporated, CA, USA), and the maximum stimu-
latory responses were calculated as the percent difference 
from the response of control group.

To assess whether the dose–response samples of 2 
or more groups were from different distributions, the 
dose–response data were subjected to Kruskal–Wallis tests 
by ranks (Figs. 2–5); the level of significance was predefined 
at α = 0.05. The level of α was corrected against inflation of 
the rate of false positive with a Bonferroni correction for 
significant Kruskal–Wallis tests with independent variables 
including 3 or more groups, with at least a sample stochasti-
cally dominating another sample. Data were processed and 
analyzed using EXCEL 2010 and STATISTICA v.10 (Stat-
Soft Inc.).

A study conducted in late 2019 identified 177 dose 
responses of chlorophylls to over 20 stress-inducing 
agents, in 33 higher plant species and 43 experimental set-
ups (Agathokleous et al. 2020b). In the framework of this 
paper, the earlier database (Agathokleous et al. 2020b) was 
extended by adding 121 dose responses of chlorophylls to 1  Dose refers to both concentration and dose hereafter.
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22 stresses, mined from 25 published studies (of which 67% 
were published in 2020) with 24 species of higher plants, 
including tree and other perennial plants (Table S1). The 
22 stresses included herbicides (Liu et al. 2019; Meseldžija 
et al. 2020), human and veterinary antibiotics (Guo et al. 
2020; Liu et al. 2020a), metallic elements (Seth et al. 2008; 
Tang et al. 2009; Jia et al. 2015; Apodaca et al. 2017; Wu 
et al. 2018; Li et al. 2020a; Małkowski et al. 2020; Mo 
et al. 2020; Yang et al. 2020), micro/nano-plastics (Dong 
et al. 2020; Li et al. 2020c; Lian et al. 2020; Pignattelli 
et al. 2020), and various other types (Mostofa et al. 2015; 
Wang et al. 2016; Soliman et al. 2019; Kutty et al. 2020; 
He et al. 2020; Gohari et al. 2020b, a; Trejo-Téllez et al. 

2020). More than half (57.0%) of the new dose responses 
were statistically significant compared with the control 
group (typically a zero dose of the same stressor), accord-
ing to the original analysis (many of them did not report sta-
tistics). Kruskal–Wallis Test was not significant (H = 0.11, 
P = 0.738) between the old and the new databases (Fig. S1), 
and the databases were merged for analysis. The median 
MAX was 139.2% (geometric mean = 150.7%), and as many 
as 68.8% and 83.9% of the 298 entries had a MAX smaller 
than 160% and 200% of the control response, respectively, 
estimates that are in agreement with the broad plant horme-
sis literature (Calabrese et al. 2019; Agathokleous et al. 
2020c; Shahid et al. 2020).

Chlorophylls in organisms other than higher plants

Making one step further, 20 studies with photosynthetic 
organisms other than higher plants were found to report 
dose–response data potentially suggestive of hormesis. 
An assessment of these studies revealed 71 dose responses 
(Table S2) of chlorophylls to herbicides (Wong and Chang 
1988; Rioboo et al. 2002; Zaltauskaite and Kaciene 2020), 
human and veterinary antibiotics (Hu et al. 2019; Jiang et al. 
2020; Tong et al. 2020), metallic elements (Zhou et al. 2018; 

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100 120R
es

po
ns

e 
(%

 o
f c

on
tr

ol
)

Cadmium (mg/Kg)

Photosynthetic rate
Stomatal conductance

day 30

Jia et al. 2015

Lonicera japonica Thunb.

*
* *

*

*

* *

* * *

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100 120R
es

po
ns

e 
(%

 o
f c

on
tr

ol
)

Cadmium (mg/Kg)

Photosynthetic rate
Stomatal conductance

day 60

Jia et al. 2015

Lonicera japonica Thunb.

*

* *

* *

**

*

0
25
50
75

100
125
150
175
200
225

0 2 4 6 8 10 12R
es

po
ns

e 
(%

 o
f c

on
tr

ol
)

Polystyrene nanoplastics  (mg/L)

Photosynthetic rate
Stomatal conductance

Lian et al. 2019

Triticum aestivum L.

*
*

Fig. 1   Examples of biphasic dose–response relationships, typical of 
hormesis in plants. Asterisk above or below a mean response indi-
cates statistical significance compared to the control group, accord-
ing to the statistical analyses in the original paper. The raw data were 
extracted from the original articles using Adobe Photoshop CS4 
Extended v.11 (Adobe Systems Incorporated, CA, USA)

Fig. 2   The maximum stimulatory response (MAX, % of control 
response) of chlorophylls for different groups of organisms. Different 
letters above the min–max bars indicate samples of organism groups 
were from different distributions, after Kruskal–Wallis tests by ranks. 
The alpha level was pre-set at a value of 0.05. Note: Kruskal–Wal-
lis tests by ranks was significant (H = 14.17, P < 0.001). As explained 
before (Agathokleous et  al. 2020b), two entries of the old database 
of higher plants were extreme, and not in accordance with hormesis 
understandings (e.g. 5938.7% and 1235.5%). Therefore, the analysis 
was repeated after excluding these two values to test how they might 
have affected the results (this figure does not include the two extreme 
values for presentation purposes). The result (H = 13.68, P < 0.01) 
was similar with the first analysis (and multiple comparisons same), 
suggesting that the two extreme values did not affect the analysis
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Li et al. 2020b), micro/nano-plastics (Tang et al. 2018; Chae 
et al. 2019; Zhao et al. 2019; Su et al. 2020; Song et al. 
2020; Zhang et al. 2020), and other types of stresses (Zhou 
et al. 2016; Deng et al. 2017; Zhang et al. 2018, 2020; Cai 
et al. 2020; Liu et al. 2020b; Xue et al. 2020). These dose 
responses come from 16 species (one non-identified), and 
31% were statistically significant compared with the con-
trol group, according to the original analysis (some papers 
did not report statistics). The median MAX was 120.5% 
(geometric mean = 137.4%), while 85.9% and 90.1% of the 
71 entries had a MAX smaller than 160% and 200% of the 
control response, respectively. These suggest that the MAX 
is restricted below 200% of control response, in agreement 
with the chlorophyll response of higher plants as well as the 
broad hormesis literature (Calabrese et al. 2019; Agathokle-
ous et al. 2020c; Shahid et al. 2020).

Comparing chlorophylls MAX among groups 
of photosynthesizing organisms

In order to understand whether chlorophyll MAX differs 
among groups of organisms, a further analysis was carried 
out. Three groups were created: (1) higher plants, (2) (micro) 
algae and duckweed, and (3) other organisms (cyanobacteria, 
dinoflagellates, and symbiotic zooxanthellae, i.e. scleractin-
ian corals). This analysis revealed that samples of groups 1 
and 2 were from different distributions (Fig. 2), which is in 
agreement with an analysis of nanomaterial-induced MAX, 
according to which the median MAX was 119.7% (n = 46) 
and significantly lower in algae than in plants (125.2%, 
n = 453) across all traits and plant species (Agathokleous 
et al. 2019b). While these may arise from differences in the 
stress biology between vascular plants and algae (Pinnola 
and Griffiths 2019) or a potentially more efficient light uti-
lization and gas exchange in terrestrial systems compared 
to aquatic systems (Sand-Jensen 1997), the sample size of 
algae/duckweeds was considerably small in both analyses, 
not permitting any concrete conclusions at this stage. How-
ever, these findings indicate a need for more studies in order 
to better understand the biological responses of vascular and 
non-vascular plants to low doses of environmental stresses.

Carotenoids in higher plants and algae/duckweeds.

Carotenoids are the second most abundant pigments occur-
ring naturally. They also serve as precursors of certain vola-
tiles, abscisic acid, various apocarotenoids, and strigolac-
tone, and play important roles as accessory light-harvesting 
photosynthetic pigments, antioxidants, and attractants for 
pollinators and seed dispersers (Havaux 2014; Nisar et al. 
2015; Alós et  al. 2016). Hence, not only chlorophylls 
(Agathokleous et al. 2020b) but also carotenoids have a mul-
titude of roles in plant-plant competition, plant interaction 

with other organisms (e.g. insects), and plants success in 
the environment. Therefore, potential enhancement of carot-
enoids by low doses of pollutants might have unpredicted 
ecological consequences. For these reasons, carotenoids are 
an important trait for studying the effects of low doses of 
pollutants.

In a number of studies reporting responses of leaf photo-
synthetic pigments to stresses, data of carotenoids response 
were also included (n = 16 studies with higher plants and 
n = 5 studies with algae and duckweeds). These data were 
collected and further analyzed; 45.5% of the mined dose 
responses with higher plants and 44.4% of the mined dose 
responses with algae and duckweeds were statistically signif-
icant according to the original analyses of authors (Supple-
mentary Information, Tables S3−S4). The median MAX was 
133.0% for higher plants (geometric mean = 140.8%) and 
138.1% for algae and duckweeds (geometric mean = 145.2%) 
exposed to human and veterinary antibiotics (Liu et al. 
2020a), herbicides (Rioboo et al. 2002; Liu et al. 2019; Zal-
tauskaite and Kaciene 2020), metallic elements (Jia et al. 
2015; Zhou et al. 2018; Wu et al. 2018; Hussain et al. 2019; 
Liu et al. 2019), micro/nano-plastics (Li et al., 2020c, d; 
Pignattelli et al. 2020; Song et al. 2020), and other stress-
inducing agents (Mostofa et al. 2015; Farzana and Tam 
2018; Dawood and Azooz 2019; Lassalle et al. 2019; Li et al. 
2019; Soliman et al. 2019; Tombuloglu et al. 2019; Gohari 
et al. 2020b, a). The median MAX did not differ significantly 
between the two groups of organisms, although the sample 
size was small (Fig. 3).

Fig. 3   The maximum stimulatory response (MAX, % of control 
response) of carotenoids for different groups of organisms. Carot-
enoids are involved in the light-harvesting complex during photosyn-
thesis as well as the protection against photo-oxidation. Kruskal–Wal-
lis test by ranks was non-significant (H = 0.20, P = 0.653)
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Photosynthetic rate and stomatal conductance in higher 
plants.

Sixteen studies with data suggestive of biphasic responses 
of higher plants photosynthesis were traced. These included 
responses to herbicides (Cedergreen and Olesen 2010; de 
Carvalho et al. 2012; Adams et al. 2017; Nascentes et al. 
2018; Khan et al. 2020), metallic elements (Jia et al. 2015; 
Chandra and Kang 2016; Wu et al. 2018; Gelioli Salgado 
et al. 2019; Małkowski et al. 2020; Mendonça et al. 2019; 
Yang et al. 2020), micro/nano-plastics (Dong et al. 2020; 
Lian et al. 2020), and other types of stresses (Sugai et al. 
2018; Soliman et al. 2019). Low-dose stimulation of photo-
synthetic rate by various stresses appeared in various taxa 
of trees, shrubs, and vines (de Carvalho et al. 2012; Jia et al. 
2015; Chandra and Kang 2016; Adams et al. 2017; Nas-
centes et al. 2018; Mendonça et al. 2019; Yang et al. 2020). 
Furthermore, biphasic dose-responses of photosynthetic rate 
to stresses were observed not only in C3 plants but also in 
C4 plants (Zea mays L.) (Małkowski et al. 2020). While 
some studies report data suggestive of hormetic responses 
of algae and duckweeds to stresses, in terms of biphasic 
responses of photosynthesis (Wong and Chang 1988; Di 
Baccio et al. 2017), their number is small and, thus, only the 
dose responses of higher plants were further analyzed. From 
the 16 traced studies with higher plants, 65 dose responses 
were mined, of which 38 concerned photosynthetic rate and 
27 concerned stomatal conductance (Supplementary Infor-
mation, Table S5). From the mined dose responses, 64.6% 
were statistically significant compared to the control group 
(as a rule a theoretically zero exposure), according to the 
original statistics (Table S5). The median MAX was 129.2% 
for photosynthesis (geometric mean = 134.1%) and 124.7% 
for stomatal conductance (geometric mean = 133.4%).

Comparing MAX among physiological traits

The present results raised the curiosity of this author to fur-
ther evaluate whether MAX differs among physiological 
traits. To this end, an analysis of the MAX among chloro-
phyll content/concentration, carotenoid content/concentra-
tion, photosynthetic rate, and stomatal conductance in higher 
plants was carried out. According to the statistical results, 
the four traits shared a similar median MAX (Fig. 4). A simi-
lar analysis was also conducted for the MAX of chlorophyll 
content/concentration and carotenoid content/concentration 
of algae and duckweeds. This analysis also suggests that the 
median MAX was similar between chlorophylls and carot-
enoids (Fig. 5). 

Different groups of organisms were subjected to dif-
ferent types of stresses, so comparison of MAX might be 
influenced in cases where the sample size (number of dose 

responses) is small, such as for carotenoids in algae and 
duckweeds (Fig. 5). This shortcoming suggests that such 
results should be interpreted with caution. However, exten-
sive databases including > 10 000 dose responses suggest 
that the median MAX does not differ significantly, or the 
difference (if any) is negligible, among types of pollut-
ants (Calabrese and Blain 2009; Agathokleous et al. 2018, 
2019a,b,c,d; Agathokleous et al. 2020a, b,c; Shahid et al. 
2020). This phenomenon holds true for specific traits as 
well, i.e. chlorophylls (Agathokleous et al. 2020b), per-
mitting the analyses of MAXs across different groups of 
organisms or photosynthesis-related traits with response data 
pooled together across stresses.

Fig. 4   The maximum stimulatory response (MAX, % of control 
response) of higher plants per physiological trait. Kruskal–Wallis test 
by ranks was non-significant (H = 5.23, P = 0.156)

Fig. 5   The maximum stimulatory response (MAX, % of control 
response) of algae and duckweeds per physiological trait. Kruskal–
Wallis test by ranks was non-significant (H = 2.60, P = 0.107)
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Discussion

Studies with multifactorial experimental designs including 
different levels of co-occurring stresses suggest that low-
dose stimulation of photosynthetic pigments and photosyn-
thesis is more likely to occur under “disease conditions” in 
the framework of conditioning hormesis, i.e. when plants 
are under adverse stress induced by other factors, but the 
stimulation also ceases as the dose of the concurrent stresses 
exceeds a specific threshold of adversity (Mostofa et al. 
2015; Gelioli Salgado et al. 2019; Liu et al. 2019; Soliman 
et al. 2019; Agathokleous et al. 2020b; Dong et al. 2020; 
Gohari et al. 2020b; Gohari et al. 2020a; Li et al. 2020c; 
Yang et al. 2020;). These suggest that the magnitude of the 
low-dose stimulation by an environmental stressor signifi-
cantly depends on the intensity of co-occurring environmen-
tal stresses.

The low-dose enhancement of chlorophylls and gas 
exchange (Seth et al. 2008; de Carvalho et al. 2012; Tang 
et al. 2018; Zhou et al. 2018; Zhao et al. 2019; Hu et al. 
2019; Liu et al. 2020a) in higher plants and other photo-
synthetic organisms may be transient. However, this may 
indicate that the doses applied may become higher or smaller 
than those needed to induce MAX (as they accumulate or 
decline over time) because considerable research designed to 
study hormesis shows that the low-dose stimulation of chlo-
rophylls and photosynthesis can persist throughout the plant 
growing season (Jia et al. 2015; Nascentes et al. 2018; Yang 
et al. 2020), yet it is known that the maximum stimulation 
occurs over a defined time window, after which it declines 
(Agathokleous et al. 2020b, c). Ceasing of the exposure is 
also expected to lead to returning to the control/background 
levels of chlorophylls to allow for recovery and maintenance 
of a homeostatic state (Zaltauskaite and Kaciene 2020). 
These suggest that research programs designed to study 
hormetic interventions directed to enhance plant photosyn-
thesis should consider the temporal component to identify 
optimum intervention intervals.

The modest and generalized degree of MAX, typically 
130−160% (as a rule < 200%) of control response, indicates 
that the low-dose stimulation is restricted by the limits of 
biological plasticity (Calabrese and Blain 2009; Calabrese 
et al. 2019; Agathokleous et al. 2020c; Shahid et al. 2020). 
Interestingly, the degree of enhancement of photosynthesis 
(e.g. ≈130%−150%) and other traits by elevated concentra-
tions of atmospheric CO2 (Fajer and Bazzaz 1992; Kirsch-
baum 2011) presents an excellent agreement with the degree 
of enhancement by various environmental pollutants as ana-
lyzed here for photosynthetic pigments and photosynthesis 
as well as across traits and species (Calabrese and Blain 
2009; Calabrese et al. 2019; Agathokleous et al. 2020c; 
Shahid et al. 2020). The enhancement of plants by CO2 
may be seen as a fertilizing effect of CO2 where the rate of 

photosynthesis increases with increasing concentrations of 
CO2 in the atmosphere (so called carbon fertilization), while 
the enhancement of plants by other environmental stresses 
causing oxidative stress (discussed in Sect. 2) appears to 
occur in the framework of an ecological strategy of plants to 
prepare for forthcoming ‘life-threatening’ stress. The under-
lining molecular mechanisms of hormesis induced in plants 
by environmental pollutants remain poorly understood, but 
it may be hypothesized that plants may increase their pho-
tosynthetic rate so to increase carbon availability and poten-
tially enhance the carbon-based defense system, including 
enhanced secondary metabolites as well as other defensive 
molecules. However, while some evidence of these specula-
tions exists (explained later in the text), further studies are 
needed to examine these from the perspective of hormesis.

An inverted U-shaped dose–response relationship of 
chlorophylls and photosynthesis response to stresses was 
found to be consistent with biomass response pattern of 
higher terrestrial plants (Tang et al. 2009; Jia et al. 2015; 
Nascentes et al. 2018; Li et al. 2019; Lassalle et al. 2019; 
Gohari et al. 2020b; Khan et al. 2020; Lian et al. 2020) and 
aquatic duckweed (Zaltauskaite and Kaciene 2020) micro-
algae (Zhou et al. 2016). However, it should be highlighted 
that increased photosynthetic rate may not necessarily trans-
late to increased photosynthetic efficiency or growth; e.g. a 
30% average enhancement of photosynthesis over the course 
of the day under elevated CO2 may increase relative growth 
rate by only ≈10% (Kirschbaum 2011).

The underlying mechanisms of the stimulation of photo-
synthesis by environmental pollutants in the framework of 
hormesis remain underexplored (de Carvalho et al. 2012). 
The stimulation of chlorophylls by low-dose stress was 
found to co-occur with inhibition of chlorophyllase and 
Mg-dechelatase (Yang et al. 2020). Hormetic-like (inverted 
U-shaped) dose–response relationship was also found for 
defensive compounds such as α-tocopherol, ascorbic acid, 
phenolic compounds, flavonoids, and phytochelatins; it was 
similar to chlorophylls dose–response relationship (Dawood 
and Azooz 2019; Gohari et al. 2020b). Nitric oxide appeared 
to have a similar dose response (Dawood and Azooz 2019). 
Other molecules related to anti-oxidant properties with 
similar hormetic-like responses were reduced glutathione, 
superoxide dismutase, catalase, ascorbate peroxidase, and 
glutathione peroxidase (Dawood and Azooz 2019; Gohari 
et al. 2020b, a). It is noteworthy that hormetic-like (inverted 
U-shaped) dose–response relationship similar to chloro-
phylls was also found for xanthophylls (Hu et al. 2019). A 
major knowledge gap, however, exists with regard to the 
production and fate of unproductive by-products (Simkin 
et al. 2019) of increased photosynthesis due to low doses of 
environmental pollutants.

An increase in the rates of carbon fixation and/or their 
efficiency can result from increasing light harvesting and/
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or stomatal and mesophyll conductance (de Carvalho et al. 
2012). Coupled stimulation of photosynthesis and stomatal 
conductance under low-dose stress and coupled inverted 
U-shaped dose–response relationships were revealed (de 
Carvalho et al. 2012; Jia et al. 2015; Nascentes et al. 2018; 
Mendonça et al. 2019; Soliman et al. 2019; Lian et al. 2020; 
Małkowski et al. 2020; Yang et al. 2020). In some other 
cases, however, the stimulation of photosynthesis and sto-
matal conductance was uncoupled as to the magnitude and 
inducing dose, with shifts in the dose–response relationship 
(Nascentes et al. 2018; Wu et al. 2018; Małkowski et al. 
2020). These suggest that the increase in photosynthesis 
due to low doses of environmental pollutants is not exclu-
sively or primarily driven by increased stomatal conduct-
ance, a phenomenon indicating that other biochemical 
mechanisms (e.g. Rubisco, Ribulose 1,5-bisphosphate, tri-
ose phosphate utilization) may primarily drive the low-dose 
stimulation of photosynthesis. Within the low-dose zone, 
photosynthesis response was also found to correlate with 
respiration response (Cedergreen and Olesen 2010) (Fig. 
S2). It was also observed that in several of the examined 
cases of gas exchange response to stresses transpiration was 
also enhanced by low doses, a phenomenon that may indi-
cate increased nutrient absorption efficiency with a potential 
for greater nutrient supply to aboveground tissues.

Conclusion

The herein analysis represents the first integrated docu-
mentation of plant hormesis as reflected to biphasic 
dose–response of gas exchange to various stresses. Pre-
liminary but significant evidence suggests the widespread 
stimulation of photosynthesis by low doses of environmental 
pollutants. However, stimulation of photosynthesis by low 
doses of stress is also known to occur in response to non-
essential elements that are not environmental pollutants, 
such as silicon that may also induce U-shaped dose–response 
relationships (Cooke and Leishman 2016; Li et al. 2018; Xu 
et al. 2020), signifying the importance of low-dose effects 
on photosynthesis.

While this may be seen as a preliminary analysis, it sub-
stantiates that enhanced awareness of researchers about these 
hormetic responses of plants would help in identifying such 
responses and facilitating cumulative science for a more 
complete and enhanced understanding of low-dose effects 
on plant photosynthesis, as well as improved toxicological 
estimates and risk assessment.

New studies directed to study hormetic responses of 
plants to environmental pollutants should consider to iden-
tify a ‘true’ MAX by studying dose–response relationships 
incorporating increased number of doses (> 6 doses), with 
narrower spacing, below the NOAEL (Calabrese et al. 2019).
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