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values, allowing for the absorption of nitrogen at low con-
centrations due to the high affinity of the absorption sites of 
clone roots to NO3

− and NH4
+. Higher root lengths, area and 

volume helped the E. grandis clone in absorption efficiency 
and consequently, resulted in higher root and shoot biomass. 
The E. saligna clone had higher Km and Cmin for NO3

− and 
NH4

+, indicating adaptation to environments with higher N 
availability. The results of NO3

− and NH4
+ kinetic parame-

ters indicate that they can be used in Eucalyptus clone selec-
tion and breeding programs as they can predict the ability of 
clones to absorb NO3

− and NH4
+ at different concentrations.

Keywords  Ammonium and nitrate · Eucalyptus saligna · 
Eucalyptus grandis · Root system architecture · Nitrogen 
influx · Maximum absorption velocity (Vmax), Michaelis–
Menten constant (Km) and Minimum concentration (Cmin)

Introduction

The global area of plantations continues to increase rapidly 
to address consumption demands for forest products. How-
ever, plantations provided only 39% of the world’s wood 
requirements in 2015 (FAO 2016), therefore highlighting 
the opportunity for plantations to satisfy current and future 
wood demands (Paquette and Messier 2010). Forest plan-
tations occupy approximately 290.4 million ha worldwide 
(FAO 2016), of which 20 million ha are Eucalyptus (Booth 
2013). Among the eucalypt species used for reforestation, 
Eucalyptus grandis W. Hill and Eucalyptus saligna Sm. are 
economically important because they are tolerant to cold 
temperatures and mild frosts, as well as being fast growing 
and having high quality wood (Gonçalves et al. 2013).

Eucalyptus clone plantations are commonly established 
on sandy-textured soils (Iglesias and Wilstermann 2008) 
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with low organic matter and low levels of natural nitrogen 
(N). However, Eucalyptus clones used in commercial plan-
tations are selected for their productivity, desirable wood 
qualities, rooting ability, and resistance to drought, cold, 
frost and diseases (Gonçalves et al. 2013). However, kinetic 
parameters related to nutrient uptake efficiency such as nitro-
gen in the form of nitrate (NO3

−) and ammonium (NH4
+) 

are not generally considered, although N is a major nutri-
ent that affects the growth and development of Eucalyptus. 
Nitrogen is a primary constituent of important plant compo-
nents such as proteins, nucleic acids, adenosine 5-triphos-
phate (ATP), nicotinamide adenine dinucleotide (NADH), 
nicotinamide adenine dinucleotide phosphate (NADPH), 
chlorophyll, enzymatic cofactors, phytohormones, and sec-
ondary metabolites (Marschner 2012; Tomasi et al. 2015). 
Based on the importance of nitrogen, Eucalyptus clones with 
higher N uptake efficiencies will be important contributors 
to breeding programs and will impact positively on higher 
wood yields.

N uptake by plants is generally in the mineral forms 
NO3

− and NH4
+, mediated by transport proteins or trans-

porters in the plasma membranes of the epidermis and 
root cortex cells (Marschner 2012). The functioning of the 
transporters varies according to the affinity for NO3

− and 
NH4

+, and can be classified as high affinity (HATS), low 
affinity (LATS) or double affinity. In general, HATS pro-
teins are activated at low concentrations as ions in solution 
(< 0.5 mmol L− 1), while LATS act at higher concentrations 
(> 0.5 mmol L− 1). The molecular basis of these absorption 
systems has been described for Arabidopsis (Dechorgnat 
et al. 2010) and identified in forest species (Kronzucker 
et al. 1995) and fruit species (Pii et al. 2014; Tomasi et al. 
2015). Based on this, NO3

−-LATS and NO3
−-HATS were 

encoded in two gene families, NRT1 and NRT2, respec-
tively, except for NRT1.1, a dual affinity transporter (Pii 
et al. 2014; Tomasi et al. 2015), and for NH4

+-LATSs and 
NH4

+-HATS, belonging to the subfamily AMT2 and AMT1, 
respectively (Couturier et al. 2007). Therefore, it is expected 
that plants will adapt to conditions of low nutrient availabil-
ity in order to trigger high affinity systems, especially with 
nitrogen (Castro-Rodríguez et al. 2017; Xuan et al. 2017).

Kinetic parameters of nutrient absorption are the maxi-
mum absorption rate (Vmax), the minimum concentration 
(Cmin), the Michaelis–Menten constant (Km), and the influx 
(I) (Yang et al. 2007; Martinez et al. 2015). Vmax is the 
saturation point of root cell membrane transport sites by 
absorbed ions; Cmin is the minimum nutrient concentration 
in the solution for roots to initiate absorption; and, Km is a 
parameter that describes the affinity of the ions to the trans-
porter system. A smaller Km demonstrates greater ion affin-
ity with the transport sites. I is the inflow or velocity of ion 
absorption in a concentration solution (Martinez et al. 2015; 
Alves et al. 2016).

Nitrogen absorption by plants is important for many 
physiological processes, especially in the biosynthesis of 
essential proteins and enzymes involved in photosynthesis 
such as the enzyme Rubisco which results in higher CO2 
assimilation and contributes to the efficient use of water 
and nutrients (Tcherkez et  al. 2017; Nadal and Flexas 
2018). Under high light conditions, the enzyme respon-
sible for reducing NO3

− in the assimilation process is 
activated, stimulating absorption (Marschner 2012). This 
occurs by the acquisition of light signals through the leaf 
and their transmission to other organs to contribute to the 
development of the root system and increases the absorp-
tion of water and nutrients such as nitrogen (Lee et al. 
2016). Light signals received by the shoots also regulate 
root development through the transfer of signaling mol-
ecules from shoots to roots. Activation of phytochrome A 
(phyA) and phytochrome B (phyB) acts as photoreceptors 
and transduces light signals from shoots to roots, resulting 
in auxin biosynthesis or redistribution in the root system, 
thereby stimulating root development, especially the pro-
duction of lateral roots (Lee et al. 2016). PhyB induces the 
expression of ELONGATED HYPOCOTYL 5 (HY5) and 
promotes stabilization of the HY5 protein which moves 
from the shoots to the roots where it activates gene- encod-
ing NO3

− transporters, increasing its uptake (Lee et al. 
2016; Xuan et al. 2017).

Kinetic parameters may assist in the identification of 
plants that are well-adapted to different edaphoclimatic 
conditions. Rates of N absorption have been reported for 
annual crops such as rice (Araújo et al. 2015), corn (Horn 
et al. 2006), barley (Glass 2003) and Chinese cabbage (Song 
et al. 2016), and for fruit species such as grapevine (Tomasi 
et al. 2015) and peach (de Paula et al. 2018). However, for 
tree species, in particular Eucalyptus clones, little is known 
about NO3

− and NH4
+ absorption kinetic parameters. There-

fore, it is expected that Eucalyptus clones possess differ-
ent abilities to absorb NO3

− and NH4
+, and this will be 

reflected in the absorption efficiency and nutrient use and, 
consequently, in the physiological responses during growth 
and production. The selection of the most efficient Euca-
lyptus clones for NO3

− and NH4
+ uptake is recommended 

for low nitrogen soils, while the least efficient NO3
− and 

NH4
+ uptake clone but with important wood characteris-

tics for the consumer market is recommended for soils with 
higher N levels (Clough et al. 2013; Rocha et al. 2014). As 
a result, the ideal Eucalyptus clone for plantations in low N 
soils has low Cmin and Km values and high Vmax values, and 
consequently higher I (Martinez et al. 2015). The results 
from this study may contribute to the selection of Eucalyp-
tus clones with greater nutrient absorption capacities and 
zoning of clones best adapted to the soil conditions of each 
region, thereby contributing to increasing productivity. The 
objective is to select Eucalyptus clones according to their 



1601Morphological and kinetic parameters of the absorption of nitrogen forms for selection of…

1 3

efficiency of N absorption using kinetic, physiological and 
morphological parameters.

Material and methods

Plant material and treatments

The experiment was conducted from September to October 
2017 in the greenhouse at the Department of Soils of the 
Federal University of Santa Maria (UFSM), Santa Maria, 
Rio Grande do Sul, southern Brazil. Throughout the experi-
ment, average temperatures of 25 °C and average relative 
humidity of 60% were maintained. Seedlings of E. saligna 
(32,864) and E. grandis (GPC 23) clones were produced 
from shoots from cut matrices. Mini-cuttings of shoot 
branches were collected and rooted in the greenhouse. The 
mini-cuttings were 12-cm long with three superior buds; 
leaves were cut to the center of the leaf midrib, leaving 50% 
of the photosynthetic area and reducing the amount of tran-
spiration. Cultivation containers were nontoxic polypropyl-
ene plastic tubes with a volume of 180 cm3, containing sub-
strate (1:1:1 v:v:v) of carbonized rice husks, vermiculite and 
a commercial substrate of pine bark. In August 2017, 60-d 
clones approximately 20-cm high were transferred to poly-
ethylene bags and stored in a greenhouse at 10 cm × 15 cm 
spacing. At 90 days, five E. saligna (32,864) and E. grandis 
(GPC 23) plants approximately 40-cm in height and with 
10 to 15 leaves were removed from the plastic bags, their 
roots washed and transferred to 8-L pots with 5 L of 25% 
full strength Hoagland nutrient solution (Jones 1983) where 
they remained for seven days until the first acclimatiza-
tion step was accomplished. The 100% Hoagland nutrient 
solution contained (in mg L− 1) NO3

‒ = 196; NH4
+  = 14; 

P = 31; K = 234; Ca = 160; Mg = 48.6; S = 70; Fe-EDTA = 5; 
Cu = 0.02; Zn = 0.15; Mn = 0.5; B = 0.5; and Mo = 0.01.

The pots were placed in the greenhouse in a completely 
randomized design with five replications per treatment, each 
plant considered a repetition. A Styrofoam slice was fixed 
on the surface of each pot to fasten the plants, preventing 
the entry of solar radiation and reducing the evaporation of 
the solution. The Styrofoam blade had a central hole for the 
Eucalyptus clone stem pass through and a second hole for 
the entrance of a PVC (polyvinyl chloride) tube connected 
to an oil-free air compressor for aeration.

After 7-d acclimatization of the clones in Hoagland solu-
tion, the solution was exchanged and the plants remained for 
21 d in 50% full strength Hoagland nutrient solution, fin-
ishing the second acclimatization period. The solution was 
renewed every five days with the pH adjusted to 6.0 ± 0.2 
through the addition of 1 mol L− 1 HCl or 1 mol L− 1 NaOH 
every two days. After the periods of acclimatization, the 
clones were induced to exhaustion nutrient reserves in a 

0.1 mol L− 1 CaSO4 solution for 30 d. Where Ca and S were 
used to maintain the electrochemical potential of cell mem-
branes and preserve cell wall integrity (de Paula et al. 2018).

Net absorption kinetics of NO3
− and NH4

+

After 30-d the exhaustion of nutrient reserves in a CaSO4 
solution (0.1 mol L‒1), the clones were returned to the 
Hoagland solution at 50% full strength and kept in this 
solution for 1 h for the system to reach steady absorption 
state conditions for the application of the kinetic model by 
Claassen and Barber (1974). Following this, the solution was 
replaced again, containing the same concentration of nutri-
ents of 50% Hoagland solution to collect the first aliquots 
of the solution itself. Every six hours a 10-mL solution was 
collected from each 5 L pot at time zero before adjusting 
the plants in the pots with an initial solution. Aliquots of 
10 mL were collected every six hours beginning at the first 
30 h, every three hours between 30 and 54 h, and every hour 
between 54 and 65 h. The solutions were frozen at − 10 °C 
and stored for further analysis of N compounds.

Photosynthetic parameters

The evaluation of these parameters was carried out on the 
third fully expanded leaf using an infra-red gas analyzer 
(IRGA) portable meter (Li-Cor, LI-6400 XT, United States) 
and 1,500 μmol m−2 s− 1 photosynthetic active radiation and 
a CO2 concentration of 400 μmol mol‒1. Measurements were 
taken between 8:00 and 10:00 am to obtain net photosyn-
thetic rate (A-µmol CO2 m− 2 s− 1), stomatal conductance of 
water vapor (Gs-µmol H2O m− 2 s− 1), intercellular concen-
tration of CO2 (Ci-μmol CO2 mol− 1), the transpiratory rate 
(E-mmol H2O m− 2 s− 1) and instantaneous water use effi-
ciency (WUE-µmol CO2 mol− 1 H2O). These were recorded 
as the ratio between the CO2 fixed by photosynthesis and 
the amount of transpired water and the efficiency of rubisco 
carboxylation (A/Ci-mol CO2 m− 2 s− 1). The ratio between 
the CO2 fixed by photosynthesis and the internal concentra-
tion of CO2.

Evaluation of chlorophyll a fluorescence

Chlorophyll a fluorescence was analyzed on the first fully 
expanded leaf of three plants per treatment on sunny morn-
ings between 8:00 and 9:30 am (Souza et al. 2013) using a 
portable fluorometer of modulated light (Junior-Pam Chloro-
phyll Fluorometer Walz Mess-und-Regeltechnik, Germany). 
Prior to measurements, the leaves were pre-adapted to dark-
ness for 30 min to measure initial fluorescence (Fo). Sub-
sequently the samples were subjected to a saturating light 
pulse (10,000 µmol m− 2 s− 1) for 0.6 s. The maximum quan-
tum yield of PSII (Fv/Fm) was obtained as the ratio between 
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variable fluorescence (Fv = Fm‒Fo) and maximum fluores-
cence. The photochemical quenching coefficient (qP) was 
calculated as (Fmʹ‒Fs)/(Fmʹ‒Foʹ) (Schreiber et al. 1995). The 
electron transport rate (ETRm) was evaluated using induction 
curve fluorescence (1,500 mmol m− 2 s− 1).

Photosynthetic pigment determination

Leaves used to evaluate chlorophyll a fluorescence were 
collected and frozen in liquid N2 for photosynthetic pig-
ment analysis. Chlorophyll a (Chl a), chlorophyll b (Chl 
b) and carotenoid contents were analyzed according Hiscox 
and Israeslstam (1979), and estimated with Lichtenthaler’s 
formula (Lichtenthaler 1987). Fresh 0.05 gm leaf samples 
were incubated in 7.0 mL of dimethyl sulfoxide (DMSO) 
at 65 °C for two hours until the tissues were completely 
bleached. Pigment concentrations were calculated after 
absorbance reading on a Celm E-205D spectrophotometer 
(Bel Engineering, Italy) at 645 and 663 nm for Chl a and 
Chl b, respectively, and 470 nm for carotenoids. Chlorophyll 
and carotenoid concentrations were expressed as mg g− 1 
fresh weight.

Plant collection and analysis of N concentration 
in tissues and solution

After 65-h kinetic gait evaluation, the plants were removed 
from the nutrient solution and fractionated into leaves, stem 
and roots. Height was measured and stem diameter deter-
mined using a manual caliper. Fresh root and shoot matter 
were weighed and the volume of nutrient solution remaining 
in each pot was measured. The materials were dried in an 
air-forced ventilation oven at 65 °C until constant mass, and 
then weighed to determine dry matter.

The plant tissues were ground in a 2-mm Willey mill, 
weighed and nitrogen concentrations determined using an 
elemental analyzer (FlashEA 1112, Thermo Electron Cor-
poration, Italy). NO3

− and NH4
+ of the 65-h solutions were 

determined colorimetrically using a Segmented Flow Ana-
lyzer System (SAN++ System, Skalar, Netherlands).

Root system morphology

The characterization of root morphology was obtained from 
digitized images using an EPSON Expression 11,000 scan-
ner equipped with additional light (TPU) with a 600 dpi 
resolution. The scanned images were used to determine 
root morphological traits using the WinRHIZO Pro soft-
ware (Regent Instrument Inc., Canada). Total root length 
(cm ind.− 1), surface area (cm2 ind.− 1), volume (cm3 ind.− 1), 
average diameter (mm) and percent distribution of fine 
root length (L) for each diameter class (%) of 0 < L ≤ 0.2; 

0.2 < L ≤ 0.45; 0.45 < L ≤ 0.75; 0.75 < L ≤ 1.5; L > 1.5, were 
obtained.

Statistical analysis

Kinetic parameter (Vmax and Km) values were calculated 
according to the NO3

‒ and NH4
+ concentrations in the 

Hoagland solution, the initial and final solution volumes in 
the pots, and root fresh matter values using the software 
Influx. Cmin was determined according to the concentrations 
of NO3

−  and NH4
+ in the nutrient solution corresponding to 

the 65 h of evaluation time. Influx (I) was calculated using 
Eq. 1 by Michaelis–Menten and modified by Nielsen and 
Barber (1978).

where, Vmax is membrane transporters’ maximum absorption 
rate; C is the concentration in solution at collection time; 
Cmin is the minimum concentration at the 65-h period and 
Km is transporter affinity coefficient per solute.

The results from the morphological and physiological 
parameters were submitted to homogeneity and normality 
tests and subsequently, the data were processed and statisti-
cally analyzed using R statistical software (R Development 
Core Team 2019). When the effects of the treatments were 
considered significant, the results of Vmax, Km, Cmin and I for 
each Eucalyptus clone were compared by Student’s t-test 
(P < 0.05). The difference in NH4

+ and NO3
− concentrations 

over 65 h for each clone was compared by the Scott Knott 
test (P < 0.05), as this test is better suited to 25 times of 
solution collection.

Additionally, the data were also subjected to principal 
component analysis (PCA) using Canoco software version 
4.5 (Ter Braak and Smilauer 2002). PCA is generally used 
to find the weight of each variable to maximize the variance 
among sampling points (Ortega et al. 1999). Principal com-
ponsent analysis is performed according to a set of principal 
components (PC1 and PC2) which are composed of stand-
ardized orthogonal linear combinations that together explain 
the variance of the original data. This type of analysis allows 
for the identification of more complex interactions between 
the evaluated variables and those with greater contribution 
to the differences among treatments.

Results and discussion

Morphological parameters

The E. grandis clone had higher values for height, dry mat-
ter production of leaves, roots, and total dry matter and 

(1)I =

[

V
max

×

(

C − C
min

)

K
m
+

(

C − C
min

)

]
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the highest levels of N in leaves and roots compared with 
the E. saligna clone (Table 1), suggesting that the higher 
dry matter production of the E. grandis shoots may have 
increased transpiration, generating a higher water gradient 
between the solution and the plant, stimulating N uptake by 
roots (Zufferey et al. 2015; Lee et al. 2016). Lower values 
of accumulated N and dry matter in leaves and roots of E. 
saligna may be attributed to lower efficiency of the clone in 
absorbing N which reduces nitrogen translocation to grow-
ing organs, resulting in lower heights and biomass produc-
tion. Lower biomass production results from a reduction in 
light interception capacity, fixing less carbon which reduces 
the concentration of photoassimilates and absorbing less 
nutrients from the roots (Marschner 2012; Lee et al. 2016; 
Canarini et al. 2019).

The E. grandis clone had greater length, surface area, root 
volume and percentage distribution of fine roots (< 1.5 mm 
in diameter) than E. saligna (Fig. 1a, b, d, e), variables that 
determine the absorption rate of water and nutrients by the 
roots (Batista et al. 2016). The higher fine root production 
of the clone may have been the result of the greater recep-
tion of light signals by the shoots and transfer via signal-
ing molecules to the roots (Lee et al. 2016), since the clone 
showed greater shoot growth (Table 1). Reception of these 
light signals activates the production of fine roots, increasing 
contact with water (Skaggs and Shouse 2008) and nutrients 
(Lambers et al. 2006). The greater fine root production by 
the clone may be a strategy to increase the area of soil/solu-
tion with lower carbon investment. In addition, the accumu-
lation of N in the roots promotes the growth of Eucalyptus 
clones, since roots are sinks of carbohydrates and amino 

acids used to overcome nutrient deficiency conditions and 
thus be redistributed to growing organs (Centinari et al. 
2016; Klodd et al. 2016).

Kinetic parameters of NO3
− and NH4

+ absorption

The E. grandis clone had lower Km and Cmin values for 
NO3

− compared to the E. saligna clone (Fig. 2a). The Cmin 
results suggest that E. grandis has NO3

− transporter proteins 
that are activated at lower ion concentrations in solution, and 
the low Km values show high affinity for NO3

−. In addition, 
the E. grandis clone had the largest length, surface area and 
root volume compared to the E. saligna clone (Fig. 1a, b, 
d), which contributed to the higher number of transporter 
proteins of NO3

− and N absorption efficiency (Lambers et al. 
2006; Raven et al. 2018; Canarini et al. 2019). The smaller 
Cmin values suggest that the E. grandis clone has a higher 
absorption ability even in small concentrations of NO3

− in 
the environment (solution or soil), and can access NO3

− on 
a larger number of absorption sites per root unit in different 
environments relative to the E. saligna clone (Tomasi et al. 
2015; Batista et al. 2016). This suggests that the E. gran-
dis clone may be grown in solution or in soils with lower 
NO3

− availability, which may occur in soils with less history 
of fertilizer application or in soils with low organic matter 
(Clough et al. 2013). As a result, the risk of contamination 
of surface and subsurface waters by NO3

− adjacent to areas 
cultivated with Eucalyptus is also reduced (Bindraban et al. 
2015; Bednorz et al. 2016). On the other hand, E. grandis 
and E. saligna clones did not differ statistically between 
Vmax values for NO3

‒, indicating that these clones have simi-
lar nutrient absorption properties in solution when all loader 
sites in the root cell membranes are saturated (Yang et al. 
2007; Martinez et al. 2015).

NO3
− absorption kinetics shows the differentiation in 

absorption between the clones as illustrated by the clone 
influx curve (Fig. 2a). E. grandis clone initiates absorp-
tion of NO3

− in solution even at low concentrations and 
continues absorption even at higher levels compared to 
E. saligna, and therefore has lower Cmin values (Fig. 2a). 
This shows that different Eucalyptus clones absorb 
NO3

− through distinct transport systems. Thus, the E. 
grandis clone possibly activates a high affinity system 
(HATS), while the E. saligna clone may activate a low 
affinity system (LATS), each mediated by more than one 
membrane protein with different enzymatic kinetics. The 
molecular basis of these high and low affinity absorp-
tion systems has been identified (Dechorgnat et al. 2010), 
mainly in the Arabidopsis model plant (Doddema and Tel-
kamp 1979), demonstrating that a LATS belongs to the 
NRT1 transporter family and a HATS to the NRT2 family, 
except for dual affinity transporter NRT1.1 (Tomasi et al. 
2015). Studies indicate that a LATS linearly contributes to 

Table 1   Morphological parameters, accumulation and total N con-
tent in tissues of E. grandis and E. saligna clones after 30-d reduced 
internal nutrient reserves

(a)  Means ± SD followed by statistical significance [* = Significant 
by Student’s t-test (P < 0.05); ** = Significant by Student’s t-test 
(P < 0.01); ns = not significant (P < 0.05)]

Parameters E. grandis E. saligna

Height (cm) 51.3 ± 1.3 * (a) 47.3 ± 2.1
Stem diameter (cm) 0.3 ± 0.1 ns 0.4 ± 0.1
Leaves dry matter (g) 0.5 ± 0.1 ** 0.2 ± 0.0
Stem dry matter (g) 1.1 ± 0.2 ns 0.7 ± 0.2
Root dry matter (g) 0.7 ± 0.1 * 0.3 ± 0.1
Total dry matter (g) 2.3 ± 0.3 * 1.1 ± 0.2
Root/shoot ratio (g) 0.5 ± 0.1 ns 0.3 ± 0.2
Total N in leaves (%) 2.9 ± 0.5 ns 3.4 ± 0.3
Total N in stems (%) 0.9 ± 0.1 ns 0.8 ± 0.1
Total N in roots (%) 1.4 ± 0.1 ns 1.4 ± 0.2
N accumulated in leaves (g organ‒1) 1.5 ± 0.4 * 0.5 ± 0.1
N accumulated in stems (g organ−1) 0.9 ± 0.2 ns 0.6 ± 0.2
N accumulated in roots (g organ−1) 1.0 ± 0.3 * 0.4 ± 0.1
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the absorption of NO3
− at concentrations above 250 µmol 

L− 1 and thereafter, the absorption sites become saturated 
at concentrations close to 50  mmol L− 1 in Arabidop-
sis plants (Glass 2003). At low concentrations of NO3

− in 
solution, two high-affinity transport systems are activated, 
one of them constitutive (cHATS), with Km in a range of 
6‒20 µmol L− 1, while another induced system (iHATS) 
of lower affinity, occurs with Km between 20–100 µmol 
L− 1 (Tomasi et al. 2015). Responses similar to these were 
reported by de Paula et al. (2018) who observed that peach 
rootstocks have different NO3

− transport systems (HATS 
and LATS), showing that the same cultivar can act in dif-
ferent NO3

− transport systems.

The E. grandis clone had lower values for Km and Cmin of 
NH4

+ (Fig. 2b) and higher values for length, surface area and 
volume of roots compared to the E. saligna clone (Fig. 1). 
These results suggest that the E. grandis clone may possibly 
have a larger number of NH4

+ absorption sites per root unit 
(Pii et al. 2014; Tomasi et al. 2015). Therefore, root mor-
phological parameters are crucial when access to nutrients, 
including NO3

− and NH4
+, is a limiting factor, revealing 

the adaptability of Eucalyptus clone root architecture (Gon-
çalves et al. 2013).

Accordingly, root morphology contributed to the kinetic 
NH4

+ absorption parameters illustrated by the E. grandis 

Fig. 1   a surface area, b root 
volume, c average diameter, d 
length, e percent distribution 
of fine roots for each diameter 
classes of E. grandis and E. 
saligna clones; Means followed 
by the same letter did not differ 
by Student’s t-test (P < 0.05)
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clone and possibly provided higher NH4
+ uptake due 

solely to the greater affinity of NH4
+ transporters, reflected 

in lower Km values compared to the E. saligna clone 
(Fig. 2b). The E. grandis clone possibly operates in a high 
affinity transport system, allowing NH4

+ absorption even 
when the nutrient is in low concentrations (Couturier et al. 
2007; Li et al. 2012). This explains the greater efficiency 
of the E. grandis clone in absorbing NH4

+ being able to 
activate NH4

+ absorption sites, even though the ions are 
in very low concentrations in solution or the soil, allowing 
it to reach lower Cmin values (Fig. 2b). In contrast, higher 
Vmax values were observed in the E. saligna clone, suggest-
ing that this clone may activate a NH4

+ low affinity trans-
port system, resulting in higher Km and Cmin values. Some 
studies have reported that ion uptake may be mediated 
by high and low affinity transporters of the AMT/MEP/
Rh (AMT) protein subfamily. The subfamily AMT1 is 
responsible for the transport of high affinity NH4

+ and the 
subfamily AMT2 for the transport of low affinity NH4

+. 
AMTs are proteins that activate the transport of NH4

+ 
through the plasma membranes, providing the principal 
path for NH4

+ influx into the roots (Castro-Rodríguez et al. 
2017; Xuan et al. 2017). Another factor that contributed 
to the absorption of NH4

+ from the E. grandis clone was 
the higher production of leaf dry matter. This increased 
the transpiration rate of the plants and the water gradient 
between the solution and the plants, allowing the nearness 
of NH4

+ to the external surface of the roots. This favors its 
absorption and transport, can accumulate of N in leaves 
and roots (Table 1) (El-Jendoubi et al. 2013; Jordan et al. 
2014; Rivera et al. 2016).

Evaluation of NO3
− and NH4

+ absorption 
over the kinetic gait period

The NO3
− absorption kinetic gait demonstrated that, ini-

tially, the two clones absorbed NO3
− intensely (Fig. 3), 

possibly due to low N reserves and high nutrient demand 
(Tomasi et al. 2015). This NO3

− decay behavior in solution 
occurred in a circuitous pattern up to 24-h evaluation, and 
thereafter the decay occurred smoothly. Similar responses 
have been reported in NO3

− absorption studies (Yang et al. 
2007; Pii et al. 2014). The sinuous decay of NO3

− in solution 
for the clones occurred within 24-h evaluation. This shows 
that the initial uptake by the Eucalyptus clones was similar, 
and that uptake occurred through a low affinity transport 
system (LATS). However, the differentiation of root mor-
phological characteristics between clones provided different 
mechanisms of NO3

− absorption. After 24 h, the clones pos-
sibly initiated the absorption of NO3

− through another trans-
port system (HATS) until the absorption of NO3

− decreases, 
reaching Cmin, showing the highest absorption efficiency of 
the E. grandis clone. This allowed for the absorption of 
NO3

− in low concentrations in solution. As a result, lower 
values of Km and Cmin were achieved. The E. saligna clone 
absorbed NO3

‒ less intensely, reaching Cmin only after 65-h 
appraisal (Fig. 3). However, the E. grandis clone absorbed 
NO3

− more continuously than the other clone, reaching Cmin 
at 64-h evaluation. The results show that Eucalyptus clones 
differ in NO3

− absorption intensity, and this correlates with 
the genetic characteristics of each clone (Tomasi et al. 2015; 
Kiba and Krapp 2016).

The NH4
+ absorption kinetic gait showed that initially 

absorption occurs similarly in both clones. Initial uptake 

Fig. 2   Influx rates and kinetic parameters of a NO3
− and b NH4

+ uptake of E. grandis and E. saligna clones; Means followed by the same letter 
did not differ by Student’s t-test (P < 0.05)
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of NH4
+ is intense by the roots, with a more winding NH4

+ 
decay behavior in solution up to 12-h evaluation, and then 
the decay occurs less intensely until 42-h evaluation (Fig. 4). 
This possibly was caused by the low induction of proteins 
that act on the transport of NH4

+ in the root plasma mem-
branes where the main route of NH4

+ influx is mediated 
by NH4

+ transporter proteins (AMTs). This may occur due 
to NH4

+ saturation at these absorption sites, differentiating 
an initial NH4

+ depletion stage in the solution between two 
absorption mechanisms. A low affinity NH4

+ uptake mecha-
nism possibly occurs up to 12 h in the two clones, which 
are saturated until near 42-h evaluation. Low affinity NH4

+ 
transport is mediated by AMT2 proteins and then another 
high affinity NH4

+ uptake mechanism activates, thus activat-
ing NH4

+ transporter proteins (AMT1) (Castro-Rodríguez 
et al. 2017). As a result, the absorption of NH4

+ by the 
transporters decreases until reaching Cmin at 48-h evaluation 
(Fig. 4) but with a difference in the NH4

+ concentration in 
solution which shows the differentiation between the clones 
regarding ion extraction capacity. This justifies lower values 
of Km for E. grandis when compared to E. saligna.

It should be noted that the clones continued to absorb 
NO3

− and NH4
+ over the 65-h evaluation period and only 

after 65 h reached Cmin for NO3
− and 48 h for NH4

+. This 
shows the importance of the collecting solutions at more 
spaced out periods in the initial hours of absorption, com-
pared with the more 5 h of evaluation as used for cabbage 
(Song et al., 2016), 8 h for rice (Araújo et al. 2015), 24 h 
for corn (Horn et al. 2006), and grapes (Tomasi et al. 2015). 
In addition, at the end of the evaluation period, sampling 
should be performed in shorter periods so that it is possible 
to note with more accuracy the actual moment plants reach 
Cmin.

Gas exchange parameters

Significantly higher levels of intercellular CO2 concentration 
were observed in E. grandis (Fig. 5c). This was because the 
clone had the highest values of accumulated N in leaves and 
shoot dry matter production. Therefore, the availability of 
CO2 was maximized and the assimilation of C from pho-
tosynthesis was assisted. This contributed to greater CO2 

Fig. 3   Concentration of NO3
− 

in nutrient solution with E. 
grandis and E. saligna clones 
after 30-d internal nutrient 
depletion; Average NO3

− con-
centrations in blue and green 
differ significantly from aver-
ages of concentrations in red 
α = 0.05 (Scott Knot’s test). 
aTime reaching lowest concen-
tration P < 0.05

Fig. 4   Concentration of NH4
+ 

in nutrient solution with E. 
grandis and E. saligna clones 
after 30-d reduced internal 
nutrient reserves; Average NH4

+ 
concentrations in blue and 
green differ significantly from 
averages in red α = 0.05 (Scott 
Knot´s test). aTime reaching 
lowest concentration P < 0.05
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fixation in leaf tissues (Martim et al. 2009; Tcherkez et al. 
2017). These results corroborate studies with perennial crops 
which show that the increase in leaf N content correlates 
with an increase in the CO2 absorption rate (Jennings et al. 
2016; Greer 2018). The results suggest that the E. grandis 
clone converted greater amounts of CO2 per leaf tissue area, 
highlighting the importance of clone genotype on photo-
synthetic parameters (Nadal and Flexas 2018). However, 
no significant difference was observed between the two 
clones for net photosynthetic rate (Fig. 5a). However, this 
higher intercellular CO2 concentration may be the result of 
greater respiration (Tcherkez et al. 2017). This confirms the 
greater efficiency of the E. grandis clone in the absorption of 
NO3

− and NH4
+ and, consequently, greater accumulation of 

N in the leaves and assisting in photosynthesis by contribut-
ing important chloroplast proteins (Blank et al. 2018; Hu 
et al. 2019; Moriwaki et al. 2019).

The E. grandis clone showed significantly higher water 
use efficiency (WUE) than the E. saligna clone (Fig. 5e). 
Although there was no statistical difference in rate of 

transpiration (Fig. 5d), the E. grandis clone lost less H2O per 
unit area because transpiration is expressed as mmol H2O 
m− 2 s− 1. This may be related to internal CO2 concentration, 
resulting in greater leaf vigor which may result in greater 
WUE (Fig. 5e). In addition, water use efficiency is an impor-
tant metric for indicating plant stress and demonstrating crop 
suitability under different edaphoclimatic conditions (Wu 
et al. 2018). However, the Eucalyptus clones did not differ 
statistically in net photosynthetic rate, stomatal conduct-
ance of water vapor, rate of transpiration and instantaneous 
rubisco carboxylation efficiency (Fig. 5a, b, d, f).

The E. grandis clone had the lowest photochemical 
quenching coefficient (qP) compared to the E. saligna 
clone (Fig. 6a), and consequently had the highest maxi-
mum quantum yield of photosystem II (Fv/Fm) and effec-
tive quantum efficiency of PSII (Y(II)) (Fig. 6b, d). These 
results indicate that the E. grandis clone transfers more 
excitation energy from the light collecting system to the 
reaction center, and more energy directed to the photo-
chemical reaction (Wang et  al. 2019). This illustrates 

Fig. 5   a net photosynthetic 
rate, b stomatal conductance, c 
intercellular CO2 concentration, 
d transpiration rate, e water 
use efficiency and f instantane-
ous carboxylation efficiency 
in leaves of E. grandis and E. 
saligna clones; Means followed 
by the same letter did not differ 
by Student’s t-test (P < 0.05)
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that plants with less energy loss reflect higher shoot dry 
matter production (Table 1). The E. grandis clone uses 
more energy directed to the photochemical stage of pho-
tosynthesis, converting more light energy into chemical 
energy. Therefore, the lower the dissipation of energy in 
the form of fluorescence, the greater the formation of ATP 
and NADPH and, consequently, the greater the photosyn-
thetic C assimilation.

The E. grandis clone had the highest carotenoid content 
(Fig. 7), indicating higher levels per leaf area, allowing 
greater energy absorption and transfer in photosynthesis 
as carotenoids are responsible for light absorption in dif-
ferent regions of the spectrum in early stages of photo-
synthesis. In addition, the photochemical phase is only 
accomplished if there are sufficient pigments to interact 
with photosynthetic radiation. The higher carotenoid lev-
els in the E. grandis may also protect against excess light, 
as carotenoids, besides acting as accessory pigments, are 
also photoprotective agents (Marschner 2012). Levels of 
chlorophyll a, b and total chlorophyll did not differ statisti-
cally between clones (Fig. 7). However, the concentration 
of photosynthetic pigment contents in the E. saligna leaves 
may be attributed to lower dry matter production (Table 1). 
Thus, larger amounts of pigments are visualized per unit of 
mass, resulting in a concentration of photosynthetic pig-
ments, allowing close values between the clones.

Principal component analysis (PCA)

PCA was carried out by extracting only the first two compo-
nents, PC1 and PC2, in which their sum explained 72.95% 
of the original data variability (Fig. 8). Of this, 53.72% were 
explained by PC1 and 19.23% by PC2. The PCA results 
show two clusters of data, highlighting the differentiation 
of E. saligna and E. grandis clones. The variables with the 

Fig. 6   a photochemical 
quenching coefficient (qP), 
b maximum quantum yield 
of PSII (Fv/Fm), c electron 
transport rate (ETRm) and d 
effective quantum efficiency of 
PSII (Y(II) in E. grandis and 
E. saligna clone leaves; Means 
followed by the same letter did 
not differ by Student’s t-test 
(P < 0.05)

Fv
/F

m

qP

Y
(II

)

E. grandis 
E. saligna 

a

ET
R

m
 (m

m
ol

 m
-2

 s
-1

)

0

20

40

60

80

100

120

(a)
b

a (b)

(c) (d)
ns

a

b

0.8

0.6

0.4

0.2

0.0

b

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

E. grandis E. saligna

Pi
gm

en
ts

 c
on

ce
nt

ra
tio

n 
(m

g 
g-1

)

Chl a
Chl b
Chl total 
Carotenoids

ns

a b
ns

ns

2.0

1.5

1.0

0.5

0.0

Fig. 7   Pigments concentration of chlorophyll a (Chl a), chlorophyll 
b (Chl b), total chlorophyll (Chl total) and carotenoids in leaves of E. 
grandis and E. saligna clones; Means followed by the same letter did 
not differ by Student’s t-test (P < 0.05)



1609Morphological and kinetic parameters of the absorption of nitrogen forms for selection of…

1 3

greatest influence on the group formed by the E. grandis 
repetitions were height (h); leaf accumulated N (LAN), stem 
accumulated nitrogen (SAN) and root accumulated nitrogen 
(RAN); leaf dry matter (LDM), stem dry matter (SDM), 
root dry matter (RDM) and total dry matter (TDM); root 
surface area (RSA), root length (RL), root volume (RV) and 
root diameter (RD); photosystem II quantum yield (Fv/Fm), 
maximum fluorescence (Fm), water use efficiency (WUE), 
CO2 intercellular concentration (Ci) and carotenoids (carot). 
In contrast, the E. saligna clone was influenced by the vari-
ables Cmin of NO3

− and NH4
+, Km of NH4

+, Vmax of NH4
+, 

minimum fluorescence (Fo), electron transport rate (ETRm), 
net photosynthetic rate (E), stomatal conductance (Gs) and 
instantaneous carboxylation efficiency (A/Ci).

Kinetic parameters Cmin of NO3
− and NH4

+, Km of NH4
+, 

Vmax of NH4
+, were negatively correlated with root mor-

phology, length, diameter, area and volume, and correlated 
positively with the E. grandis clone. This suggests that the 
higher the development of the Eucalyptus clone root sys-
tem, the lower the Cmin and Vmax of NO3

− and NH4
+, and 

Km of NH4
+. This is important because the lower their val-

ues, the greater the absorption efficiency of NO3
− and NH4

+ 
and the lower the concentration at which roots will be able 

to extract the nutrient from the solution. In addition, these 
results demonstrate that as the plant invests photoassimilates 
in the roots, the likelihood of water and nutrient absorption 
increases and this results in lower Cmin values, as plants will 
be able to access more restricted areas and lower concentra-
tions of elements. Combined with this, in this grouping there 
is a positive correlation with the increase of nitrogen in the 
leaves, stem and roots. This confirms the positive correla-
tion carotenoid pigment levels per leaf area which helps the 
assimilation of intercellular CO2 provided by quantum yield 
of photosystem II, thereby assisting the development of the 
E. grandis clone. Thus, higher heights, stem diameters, and 
leaf, stem and root dry matter production were observed.

Another grouping differentiates the E. saligna clone and 
shows the strong influence of kinetic parameters on the 
absorption efficiency of different forms of nitrogen and, con-
sequently, the accumulation of N in organs. The E. saligna 
clone was positively correlated with the Cmin variables of 
NO3

− and NH4
+, Km of NH4

+, which is not desirable as 
it shows a lower affinity for NO3

− and NH4
+ absorption. 

This confirms the positive correlations with physiological 
parameters such as photosynthetic stress. This suggest that 
the clone may have suffered damage to the PSII reactive 

Fig. 8   Scatter plot of principal component analysis (PCA) of kinetic 
parameters of NO3

− and NH4
+ (Vmax; Km; Cmin), morphological 

(height (h); stem diameter (sd); dry matter in leaves (LDM), in stem 
(SDM), in roots (RDM), in total (TDM); root/shoot ratio (R/S); total 
N in leaves (LNC), in stems (SNC), in roots (RNC); N accumulated 
in leaves (NLA), in stem (NSA), in roots (NRA)), root morphological 
parameters (surface area (rsa); volume (rv); diameter (rd); length (rl)) 
and physiological parameters (photochemical quenching coefficient 

(qP); effective quantum efficiency of PSII (Y(II)); electron transport 
rate (ETRm); maximum quantum yield of PSII (Fv/Fm); net photo-
synthetic rate (E); stomatal conductance (Gs); intercellular CO2 con-
centration (Ci); transpiration rate (A); water use efficiency (WUE); 
instantaneous carboxylation efficiency (A/Ci); concentration of chlo-
rophyll a (Chl a), b (Chl b), total (Chl total); carotenoids in leaves) in 
E. grandis and E. saligna clones
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center, decreasing the efficiency of excitation energy transfer 
from the light collecting system to the reaction center. This 
result in lower development of leaves, justifying the inverse 
correlation with dry matter production (LDM).

Conclusions

The E. grandis clone was more efficient in the absorption of 
NO3

− and NH4
+ and had kinetic parameters with lower val-

ues of Cmin and Km compared to the E. saligna clone. Root 
morphological parameters such as area, volume and length 
are positively related with kinetic absorption parameters 
such as lower Km and Cmin and can be used in selection and 
breeding programs of Eucalyptus. However, the minimum 
time for kinetic gait assessment to reach Cmin for Eucalyptus 
clones should be 65 h for NO3

− and 48 h for NH4
+. Kinetic 

gait studies help in understanding nutrient absorption, and 
the results of this study may contribute to the selection of 
more efficient Eucalyptus clones in absorbing forms of nitro-
gen and assist in nitrogen fertilization strategies.
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