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crown base height (CBH), crown length (CL), social posi-
tion (SP), stoniness (ST), position on the relief (PR), vitality 
(VT) and branch arrangement (BA) were measured. The 
trees were categorized into two groups: red bark or gray 
bark. Regression analysis and artificial neural networks 
(ANN) were used for modelling bark thickness. The results 
indicate that: (1) bark thickness showed good correlation 
to DBH, with 0.76 as coefficient of determination (R2), 
0.540 as Mean Absolute Error (MAE) and 22.4 root-mean-
square error in percentage (RMSE%); (2) the trend changed 
according to bark colour, with significant differences for 
the intersection ( �

0
 – Pr > F: p = 0.0124) and slope ( �

1
 

– Pr > F: p = 0.0126) of bark thickness curves between 
groups; (3) the highest correlation of bark thickness was 
found with: DBH (ρ = 0.88), H (ρ = 0.58), CBH (ρ = 0.46), 
SP (ρ = − 0.52), and BA (ρ = − 0.32); (4) modelling with 
ANN confirmed high adjustment (R2 = 0.99) and accuracy 
(RMSE% = 3.0) of the estimates. ANN is an efficient and 
robust technique for the modelling of various qualitative 
and quantitative attributes commonly used in forest men-
suration. The effective use of ANN to estimate araucaria 
bark in natural forests reinforces its potential, besides the 
possibility of application for other forest species.

Keywords  Dendrometry attributes · Crown 
characteristics · Prediction models · Bark factor · Parana-pine

Introduction

Forest inventory is used to obtain information about the 
quantity, quality and condition of the resource components 
of a forest, particularly tree species, and other land charac-
teristics (Kershaw et al. 2017). With the advancement of 
technology by industries that handle forest products and the 
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growing demand for alternative products and energy sources, 
tree bark volume estimates have become relevant (Kozak 
and Yang 1981).

To provide accurate and timely information on current 
and future growing stock, forest managers need to estimate 
both volume and tree taper. Since inner bark volume and 
taper—required for accurately estimating bark volume—are 
based on the diameter measured for bark, bark thickness 
needs to be determined or predicted. As such, bark thickness 
is an important variable in forest mensuration (Muhairwe 
2000), and in order to convert outside-bark diameters into 
inside-bark diameters, several equations for bark thickness 
and volume have been developed for many species world-
wide (Li and Weiskittel 2011).

The bark is a vital woody component close to the surface 
but its characteristics and thickness have been only recently 
considered in the context of communities and biomes (Pau-
sas 2015). The bark includes all tissues outside the cam-
bium—the inner living phloem and dead outer tissues or 
rhytidome. The phloem plays an essential role translocat-
ing carbohydrates, while the periderm or outer bark tissue 
reduces water loss and provides protection from both biotic 
and abiotic injuries (Kozlowski and Pallardy 1996). Trees 
with a thick bark have vital tissue protection against attack 
from pathogens, herbivores, frost and drought. Thick bark 
characteristics are vital in large trees subjected to surface 
fires (Pausas 2015). However, bark thickness and texture 
vary significantly from extremely rough to soft according to 
the species (West 2015) and the environment (Zeibig-Kichas 
et al. 2016).

Regression models are commonly used to model for-
est attributes. However, artificial neural networks (ANN) 
have been applied in various fields of science due to their 
learning ability from using a dataset, and the generali-
zation capability of this learning with unknown data has 
very accurate estimates (Haykin 2007). The use of ANN 

as an estimate method in forest science is promising for 
acquiring values for height (Binoti et al. 2013; Castaño-
Santamaría et al. 2013), volume (Gorgens et al. 2009; Silva 
et al. 2009; Castro et al. 2013a; Binoti et al. 2014a; Leal 
et al. 2015), diameter distribution (Binoti et al. 2014b), 
bark (Diamantopoulou 2005, 2006), and relative diameter, 
as well as studies on stem shape (Leite et al. 2011; Soares 
et al. 2011; Souza 2013; Schikowski et al. 2015; Sanquetta 
et al. 2017), growth and production models at individual 
tree level (Castro et al. 2013b), and allows for the mod-
elling of various qualitative and quantitative attributes 
simultaneously.

Araucaria (Araucaria angustifolia), also known as Bra-
zilian pine, is an important tree species in southern Brazil 
of considerable economic importance due to its exceptional 
wood quality (Carvalho 1994). This species originally cov-
ered 200,000 km2 in the south of the country in early 1900s 
(Hueck 1972). Due to intensive and often indiscriminate har-
vesting, its area has been reduced significantly. However, it 
still has potential to be used sustainably, combined with stra-
tegic conservation (IUNC 2006). A pioneer study by Reitz 
and Klein (1966) revealed the natural occurrence of some 
Araucaria varieties whose major characteristics are related 
to the maturation of edible seeds that are palatable to both 
fauna and humans. However, due to annual climatic varia-
tions that determine maturation time, this differentiation is 
a challenging task. As an alternative, it is easy to categorize 
bark colour into red or gray while in the field (Fig. 1).

To identify factors that influence changes associated with 
bark thickness and might serve as support tools for silvicul-
tural activities, this study was developed with the following 
hypotheses: H1—there are differences in bark thickness of 
Brazilian pines according to their colour (Fig. 1); H2—quali-
tative variables of the crown and site are important to bark 
thickness; and, H3– ANN can estimate accurately bark thick-
ness of Araucaria.

Fig. 1   Illustrative bark colour 
characteristics: (a) gray, (b) red
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Given this context, this study aimed to model bark thick-
ness for diameter at breast height (DBH) of araucaria growing 
in a natural forest in southern Brazil. The specific objectives 
were: (1) to characterize the in situ measured variables by 
qualitative and quantitative means; (2) to compare the bark 
thickness of gray- and red-coloured trees; (3) to develop a 
regression model of bark thickness in DBH function; (4) to 
verify the dendrometric, qualitative variables of crown, and 
local site variables associated with bark thickness; (5) to 
model the bark thickness using ANN; and, (6) to compare 
regression and ANN estimators.

Methods and materials

Characteristics of the species

Araucaria angustifolia (Bertol.) Kuntze belongs to the genus 
Araucaria, family Araucariaceae consisting of 16 species, 
exclusive to the southern hemisphere with two in South 
America. Other species are found in Oceania. It is an ever-
green species and a heliophyte pioneer, adapted to intensive 
solar isolation, typical of high altitude regions, with recti-
linear or cylindrical, rarely forked stems, containing four to 
eight verticils or whorls upon insertion of branches which 
stand out with age. As a dioecious plant—rarely monoeciou-
sonly by trauma or disease— it has reproductive structures 
in male and female strobiles (Carvalho 2003).

Araucaria can reach heights of 20 to 50 m and up to two m 
in diameter. The crowns have cylindrical primary branches 

curved upwards, with the lower ones curved more than the 
upper ones; both branch types with secondary branches 
(grimpas), alternating and grouped at the apex (Reitz and 
Klein 1966). The trunk has thick, gray, rough, and deeply 
cracked bark, peeling off in rectangular plates and blades at 
the top of the trunk (Marchiori 2005). The species has a bark 
thickness between 5–10 cm (Ceccatto 1943), accounting for 
an average 32.6% of the total tree volume (Silva et al. 1975).

Study area

The study was conducted in a natural forest on a rural prop-
erty in the municipality of Lages (27º48ʹS and 50º19ʹW), in 
the state of Santa Catarina (SC). The local climate is humid 
subtropical with no dry season and with a temperate summer 
(Cfb) (Alvares et al. 2013) according to the Köppen climate 
classification. The forest is predominantly Araucaria, with 
over 300 trees of this species per hectare, and with an aver-
age basal area of 21.9 m2 ha−1. Thus the local climate (Cfb) 
is favoured to this species in southern Brazil (Silveira et al. 
2018).

Data collection

The attributes measured were based on 104 sample trees 
within the natural forest as a representation of population 
characteristics (Table 1). A detailed description of the field 
measurements can be found in Costa (2011).

Crowns were categorized into geometric formats: 
cone, umbel, hemisphere or champagne glass; these 

Table 1   Description of the qualitative and quantitative attributes obtained from each individual tree

Parameter General description

Diameter at breast height (DBH) DBH was measured with a diameter tape (cm), 1.30 m above the soil surface
Bark thickness (BT) This is defined as the mean between two measurements; the first was taken from the North position and the 

other was perpendicular (90°) (E or W). With Pressler’s increment borer, cores were extracted with their 
respective bark, directly measured. Two groups of trees were distinguished, one with gray-coloured bark 
(Fig. 1a), the other with red-coloured bark (Fig. 1b)

Height (H) Measured with Vertex hypsometer, accurately in tenths of a meter
Crown base height (CBH) Measured with Vertex hypsometer, accurately in tenths of meters, from ground level up to the insertion point 

of the crown
Crown length (CL) Calculated by the difference between height and crown base height
Social position (SP) Classified according to the tree position at the vertical strata and its respective light exposure degree: SP1—

dominant trees: occupy the upper stratum with high light exposure; SP2—co-dominant trees: occupy the 
intermediate stratum with average light exposure; SP3—dominated trees: occupy the lower stratum with low 
light exposure

Stoniness (ST) Describes the presence of rocky outcrops on the site that are classified in: (0) no visual outcrop; (1) outcrop 
lower than 33.3%; (2) outcrop from 33.3% to 66.6%; (3) outcrop higher than 66.6%

Tree position on the relief (PR) Classified into four types: (1) lower hillside, (2) average hillside, (3) upper hillside and (4) plateau.
Vitality (VT) Amount of live leaves and their distribution in the crown were determined visually, as well as health class: (1) 

high vitality; (2) average vitality and (3) low vitality
Branch arrangement (BA) Assessed as: (1) well-spread branches over all four quadrants homogeneously; (2) distributed into three quad-

rants; (3) branches distributed into one or two quadrants.
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characteristics are caused by the ontogenetic alteration of 
the crowns, a characteristic of the species as described by 
Seitz (1986), and by competition with other trees (Costa 
and Finger 2017).

Statistical analysis

Descriptive statistics characterized the measured vari-
ables. A t test verified the existence of differences in 
mean between bark thickness measured in the north posi-
tion and in the perpendicular measurement. The same test 
verified differences between the gray- and red-coloured 
bark groups. The following logarithmic model (Silva et al. 
1975) was used to describe the relationship between bark 
thicknesses:

where BT = Bark thickness; D
BH

 = Diameter at breast height; 
�
0
 , �

1
 = estimated regression coefficients.

An analysis of covariance (ANCOVA) was used to ver-
ify differences between trends [intercept ( �

0
 ) and slope 

( �
1
 )] of the adjusted regression lines (Milliken and John-

son 2002) for bark thickness for the tree groups between 
gray- and red-coloured bark.

Spearman’s rank correlation assessed the association 
between bark thickness and dendrometry, crown qualitative 
attributes, and site variables in addition to diameter. The 
variables with the highest correlation were also examined 
for their contribution to improve estimates of bark thickness. 
In addition to other advantages of using ANN, it is possible 
to model with categorical variables (qualitative) aside from 
numeric variables (quantitative) (Vieira et al. 2018).

The perceptron-type neural network from multiple lay-
ers (Haykin 2007) was architecture: n–n-1. Linear nor-
malization of numeric variables was set between 0 and 
1. The input variables were: DBH, H, HCB, SP, BA, Gr and 
BTpred; the continuous output variable was bark thickness. 
The group (Gr) variable expressed the differentiation 
between gray- (1) and red-barked trees (2). BTpred was the 
bark thickness estimate: BT = − 6.3248 + 2.4908∙ln (DBH), 
considering both bark colour groups (Table 3—All). In the 
hidden layer and in the output layer, the logistic activation 
and identity activation functions were applied.

To assess the performance of the adjusted models, the 
most appropriate being the one that presented the highest 
value of the coefficient of determination (R2) (Eq. 2), the 
lower mean absolute error (MAE) (Eq. 3) and root-mean-
square error in percentage (RMSE%) (Eq. 4), and a regular 
and good waste distribution graphic. Statistical analyses 
used the statistical program R, version 3.5.2 (http://cran.r-
proje​ct.org).

(1)BT = �
0
+ �

1
ln(D

BH
)

where R2 is coefficient of determination, MAE the mean abso-
lute error, RMSE% the root-mean-square error in percentage, 
y
i
 the observed values, ŷi the estimated values; ȳ the average 

of the observed values, and n is number of observations.

Results

Qualitative and quantitative characteristics

The sample trees had a wide range of DBH, (17.0–117.8 
for gray- and 14.7–79.3 for red-barked trees), and heights 
ranging from 11.8 to 32.9 for gray- and 9.1 to 24.9 for red-
barked trees, and covered a wide variability of dendrometric 
characteristics such as CBH, CL, ST, PR and bark thickness 
(Table 2).

Trees were located in different positions throughout the 
site (‘1’ had 30 trees; ‘2’, 41; ‘3’, 17; ‘4’, 16), with different 
levels of stoniness (‘0’ = 55 trees; ‘1’ = 27; ‘2’ = 17; ‘3’ = 5). 
A similar trend was observed for these variables within the 
gray- and red- barked groups. The three social positions 
analyzed were also representative (SP1 = 79 trees; SP2 = 10; 
SP3 = 15) and the tree frequency according to the classifica-
tion pertaining to the branch arrangement was: ‘1’ = 60 trees; 
‘2’ = 31; ‘3’ = 13. No red-barked tree was class 3 of branch 
arrangement. The irregularities in the branch arrangement 
of dominant Brazilian pines in these quadrants are the result 
of competition and wind intensity, confirmed by fallen 
branches. No trees with low vitality were identified but 19 
were classified as average vitality. This is especially related 
to the effect of intra-interspecific competition between indi-
viduals and the amount of light that reaches the understory.

Bark thickness variations between groups

After assessing the average bark thickness of the north posi-
tion (2.96 cm) and its perpendicular E or W measurement 
(2.99 cm), according to the t test, there were no significant 
differences (t = − 0.14; p < 0.8867). There were also no dif-
ferences between the gray- (2.94 cm) and red-coloured bark 

(2)R2 = 1 −

�∑n

i=1

�
yi − ŷi

�2

∑n

i=1

�
yi − ȳ

�2

�

(3)MAE =

∑n

i=1
�
�yi − ŷi

�
�

n

(4)
R
MSE

% =

�
∑n

i=1 (yi−ŷi)
2

n

ȳ
× 100

http://cran.r-project.org
http://cran.r-project.org
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trees (3.02 cm) (t = − 0.31; p < 0.7557). These results reflect 
only the central value comparison between groups.

Adjustments and comparison of the regression model

The three adjustments of the logarithmic model, according 
to bark characteristics, demonstrated all regression coeffi-
cients to be significant (p < 0.0001; Table 3). The largest 
value of R2 and smallest MAE and RMSE% were for trees with 
gray bark.

Covariance analysis (F = 115.02; Pr > F: < 0.0001) 
showed significant differences for the intersection ( �

0
 

– Pr > F: p = 0.0124) and slope ( �
1
 – Pr > F: p = 0.0126) of 

bark thickness curves between bark colour groups. Based 
on these results, it was necessary to use specific equations 
for each group. Graphic analysis of observed and estimated 
values showed that red bark trees smaller than 40.0 cm DBH 
have the thickest bark and, as such, they become the thinnest 
bark trees (Fig. 2). During data collection, we did not find 
red bark trees with DBH > 80.0 cm.

Variables related to bark thickness

Correlation analysis of bark thickness with qualitative 
and quantitative variables are shown in Table 4. The more 
representative variables were DBH (ρ = 0.88; p < 0.0001); 
H (ρ = 0.58; p < 0.0001); and CBH (ρ = 0.46; p < 0.0001), 
all with well-distributed points, similar to a straight 
line, followed by the qualitative variables SP (ρ = − 0.52; 

Table 2   Statistical summary of measured variables for gray- and red-
barked trees

DBH Diameter at breast height,  H is Height, CBH Crown base height, 
CL Crown length, BT Bark thickness, SP Social position, ST Stoniness, 
PR Tree Position on the relief, VT Vitality, BA Branch arrangement

Variables Bark Units Mean Minimum–Maximum Standard 
deviation

DBH Gray cm 47.2 17.0–117.8 24.7
H m 18.8 11.8–32.9 4.5
CBH m 14.6 3.0–30.3 4.6
CL m 4.2 0.6–9.0 1.9
BT cm 2.9 0.4–7.1 1.5
SP – 1.6 1–3 0.8
ST – 0.7 0–3 0.9
PR – 2.2 1–4 1.0
VT – 1.3 1–2 0.5
BA – 1.8 1–3 0.8
DBH Red cm 46.0 14.7–79.3 17.8
H m 16.6 9.1–24.9 3.8
CBH m 10.7 4.3–17.6 4.1
CL m 5.9 2.9–9.9 1.7
BT cm 3.0 0.9–5.2 1.1
SP – 1.0 1–1 0.0
ST – 0.8 0–3 0.9
PR – 2.1 1–4 1.0
VT – 1.0 1–2 0.2
BA – 1.2 1–2 0.4

Table 3   Adjustment and precision statistics of the regression models

β0 and β1 are estimated regression coefficients; R2 is coefficient of 
determination; MAE is mean absolute error; RMSE (%) is root-mean-
square error in percentage

Characteristic 
of bark

β0 β1 R2 MAE RMSE(%)

Gray − 7.1905 2.7204 0.83 0.507 21.4
Red − 4.3795 1.9758 0.61 0.515 22.3
All − 6.3248 2.4908 0.76 0.540 22.4

Fig. 2   Observed and estimated values of bark thickness (BT) with 
diameter at breast height (DBH)

Table 4   Correlation analysis 
of bark thickness (BT) between 
qualitative and quantitative 
variables

DBH diameter at breast height, H 
height, CBH crown base height, 
CL crown length, SP social posi-
tion, ST stoniness, PR  tree posi-
tion on the relief, VTH vitality; 
BA branch arrangement

BT ρ p-value

DBH 0.88 < 0.0001
H 0.58 < 0.0001
CBH 0.46 < 0.0001
CL 0.16 0.1007
SP − 0.52 <0.0001
ST − 0.06 0.5505
PR − 0.24 0.0150
VT − 0.12 0.2391
BA − 0.32 0.0009
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p < 0.0001); and BA (ρ = − 0.32; p = 0.0009). PR, CL, ST and 
VT were not significantly correlated (p > 0.01).

Modelling using artificial neural networks

The architectures of 3500 trained artificial neural networks 
are shown in Table 5. A total of 500 networks of each type 
(1–7) were trained, according to the evaluated input vari-
ables and differing number of neurons in the hidden layer 
(2–12), to obtain single bark thickness estimation (BT) in 
the output layer.

The number of trained networks in accordance with 
the input variables and neurons of the hidden layer ranged 
from a minimum of 41 to a maximum of 97 (Fig. 3a). Thus, 
mean values were calculated for statistics R2 (Fig. 3b), 
MAE (Fig. 3c) and RMSE% (Fig. 3d) according to each of 
the trained networks (1–7). With the inclusion of independ-
ent variables during network modelling (1–7), they showed, 
on average, increased adjustment and accuracy compared 
to the previous network architecture: DBH–H (ΔR2 ≈ 7.7% 
and ΔRMSE% ≈ − 5.2); DBH–H–CBH (ΔR2 ≈ 3.9% and 
ΔRMSE% ≈ − 3.4), DBH–H–CBH–SP (ΔR2 ≈ 1.3% and 
ΔRMSE% ≈ − 1.2), DBH–H–HBC–SP–BA (ΔR2 ≈ 3.2% and 
ΔRMSE% ≈ − 4.0), DBH–H–CBH–SP–BA–Gr (ΔR2 ≈ 0.8% 
and ΔRMSE% ≈ − 1.2), DBH–H–CBH–SP–BA–Gr–BTpred 
(ΔR2 ≈ 1.1% and ΔRMSE ≈ − 2.3), respectively, consid-
ering the largest number of neurons in the hidden layer 
(Fig. 3b–d).

Table 6 shows neural networks selected to describe bark 
thickness (BT) according to the variation of neurons in the 
hidden layer. In the input layer, the introduction of other 
independent variables increased network adjustment and 
accuracy criteria. Network type 7, which included the input 
variables: DBH–H–CBH–SP–BA–Gr–BTpred; showed better 
performance, with an increase in R2 from 0.924 to 0.997, 
whereas the RMSE% was reduced from 14.9 to 3.0 in accord-
ance with the number of neurons obtained in the hidden 
layer.

The networks with the best performance were those that 
included 8 to 12 neurons in the hidden layer, represented, 
respectively, by the networks 138, 501, 1432, 1813, 2286, 
2747 and 3157, for each variable inclusion. Figure 4 shows 
the predicted values versus the measured values for each of 
these networks.

Discussion

The purpose of this study was to develop models for predict-
ing bark thickness at arbitrary diameter levels of Araucaria 
growing in natural forests. The development of a logarithmic 
regression proved that there is a strong correlation between 
bark thickness and stem diameter (Table 3). The same rela-
tionship has been investigated for other species such as Pinus 
radiata D. Don (Johnson and Wood 1987), Picea abies (L.) 
H. Karst. (Laasasenaho et al. 2005), Pinus patula Schiede 
ex Schltdl. & Cham. (Laar 2007), tropical rain forest spe-
cies of French Guiana (Paine et al. 2010) and Quercus spp. 
(Schwilk et al. 2013). Different trends were found in bark 
thickness estimates between red bark and gray bark trees in 
our study (Fig. 2).

It is not yet known which factors influence each group 
that leads to such specific dendrological characteristics. 
Field observations show that gray- barked trees were older 
and had, on average, shorter crown lengths compared with 
red- barked trees (4.2 m and 5.9 m, respectively). It was ini-
tially hypothesized that the distinct bark colours were asso-
ciated with the light intensity inside the forest (Reitz and 
Klein 1966). However, this hypothesis was rejected during 
the forest inventory, as Brazilian pines from the two groups 
were subjected to low, medium and high light incidence.

Dendrological features such as bark colour, size of pine 
nuts and maturation time have been reported in the litera-
ture and used to differentiate Araucaria varieties (Reitz and 
Klein 1966). In addition, in popular knowledge, the crown 
architecture differentiates between male and female pines. 
The dendrometrical and morphological characteristics of the 

Table 5   Architecture of 
networks trained to estimate 
bark thickness (BT) of Brazilian 
pines

DBH diameter at breast height, H height, CBH crown base height, SP social position, BA branch arrangement, 
Gr group, BTpred bark-thickness-regression model prediction

Type Input Train Number of neurons Activation function

Hidden Output Hidden Output

1 DBH 500 2–8 1 Logistic Identity
2 DBH–H 500 3–9 1
3 DBH–H–CBH 500 3–10 1
4 DBH–H–CBH–SP 500 3–10 1
5 DBH–H–CBH–SP–BA 500 3–11 1
6 DBH–H–CBH–SP–BA–Gr 500 3–11 1
7 DBH–H–CBH–SP–BA–Gr–BTpred 500 4–12 1
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species are reflections of its relationship with its environ-
ment, and should be analyzed for a better understanding of 
the factors that operate throughout its life.

As an attempt to improve bark thickness estimates, the 
contribution of other quantitative and qualitative variables 
as inputs beyond diameter are also investigated. In this con-
text, among other advantages of using artificial neural net-
works, is the possibility of modelling with categorical vari-
ables (qualitative) such as sociological position (SP), branch 
arrangement (BA), and group (Gr), beyond numeric variables 
(quantitative) (Vieira et al. 2018).

Overall, classifications of qualitative attributes in natu-
ral forests should be assessed carefully and with defined 

standards to allow other researchers to follow the same pro-
cedures. Standardization of criteria is one of the greatest 
challenges in forest surveys when using attributes of this 
character. Barbosa (2018) described the current state of tree 
competition in natural forests by crown classification attrib-
utes, and proposed new metrics with different classification 
levels to describe characteristics related to the vertical crown 
form, the distance between pseudo-whorls, percentage of 
green leaves and crown size. This permitted a good explana-
tion of Araucaria basal area growth.

Considering the data in Table 6, the Figs. 3a–d and 
the Fig. 4, it is clear that the use of ANN is a feasible 
technique to estimate bark thickness of Araucaria. There 

Fig. 3   Trained networks: a Amount of trained networks with dif-
ferent input variables and neurons in the hidden layers; Average of 
R2 values (b); Average MAE (c); and RMSE(%) (d) calculated for the 
trained networks with different input variables and number of neu-
rons in the hidden layer to estimate the bark thickness (BT) of Bra-
zilian pines. (Network types 1–7 considered the input variables 

DBH; DBH–H; DBH–H–CBH; DBH–H–CBH–SP; DBH–H–HBC–SP–BA; 
DBH–H–CBH–SP–BA–Gr; DBH–H–CBH–SP–BA–Gr–BTpred respectively. 
DBH Diameter at breast height, H Height, CBH Crown base height, SP 
Social position, BA Branch arrangement, Gr group, BTpred bark-thick-
ness-regression model prediction)
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Table 6   Networks selected to estimate the bark thickness (BT) of Brazilian pines

Network Type Input Number of neurons Activation function Statistics

Hidden Output Hidden Output R2 MAE RMSE (%)

– Regression DBH – – – – 0.761 0.540 22.6
89 1 DBH 2 1 Logistic Identity 0.790 0.075 24.7
371 1 3 1 0.800 0.072 24.1
132 1 4 1 0.802 0.072 24.0
24 1 5 1 0.814 0.070 23.3
311 1 6 1 0.817 0.069 23.1
22 1 7 1 0.817 0.068 23.0
138 1 8 1 0.821 0.067 22.8
676 2 DBH–H 3 1 Logistic Identity 0.851 0.065 20.8
589 2 4 1 0.869 0.058 19.5
862 2 5 1 0.876 0.057 19.0
912 2 6 1 0.881 0.056 18.6
985 2 7 1 0.885 0.054 18.2
522 2 8 1 0.887 0.052 18.1
501 2 9 1 0.895 0.051 17.5
1418 3 DBH–H–CBH 3 1 Logistic Identity 0.854 0.062 20.6
1475 3 4 1 0.884 0.052 18.3
1427 3 5 1 0.899 0.050 17.1
1328 3 6 1 0.911 0.049 16.1
1285 3 7 1 0.913 0.047 15.9
1283 3 8 1 0.924 0.044 14.8
1158 3 9 1 0.934 0.038 13.8
1432 3 10 1 0.941 0.038 13.1
1658 4 DBH–H–HBC–SP 3 1 Logistic Identity 0.876 0.054 19.0
1582 4 4 1 0.896 0.052 17.4
1909 4 5 1 0.906 0.046 16.5
1533 4 6 1 0.918 0.042 15.4
1523 4 7 1 0.935 0.037 13.7
1840 4 8 1 0.942 0.033 13.0
1711 4 9 1 0.946 0.031 12.5
1813 4 10 1 0.946 0.032 12.5
2398 5 DBH–H–CBH–SP–BA 3 1 Logistic Identity 0.880 0.053 18.7
2088 5 4 1 0.902 0.051 16.9
2194 5 5 1 0.923 0.040 14.9
2021 5 6 1 0.938 0.036 13.5
2306 5 7 1 0.950 0.032 12.1
2059 5 8 1 0.957 0.028 11.1
2302 5 9 1 0.966 0.024 10.0
2476 5 10 1 0.980 0.018 7.7
2286 5 11 1 0.980 0.017 7.6
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was more accuracy projecting bark thickness compared 
to the use of regression models. Moreover, an increase 
in predictive accuracy was also obtained using variables 
that consider both qualitative and quantitative informa-
tion of tree and site. Other researchers have reported the 
influence of environmental factors on bark thickness such 
as fire regime (Van Mantgem and Schwartz 2003; Lawes 
et al. 2011), climate conditions (Pellegrini et al. 2017), and 
frost events (Molina et al. 2016) which are evidence of the 
importance of site variables, in addition to those intrinsic 
to the tree itself.

The last variable tested for inclusion in the artificial 
neural network was the regression model prediction itself 
(Type 7). The concept is to attribute applicability to previ-
ous regression models, for instance, under certain condi-
tions, to allow the readjustment to current variations and 
to provide greater flexibility to the models. Finally, the 
possibility of variation in the number of neurons with the 
artificial neural networks has also resulted in prediction 
improvements to some extent, where it seems to stabilize 
(Fig. 3b, 3c and 3d). Approximately eight neurons, regard-
less of network type, were shown to be sufficient with a 
tendency to maintain both R2 and RMSE% constant. The 

continuous addition of neurons may result in overfitting 
and consequently, lower generalization power (Theodor-
idis and Koutroumbas 1999; Goodfellow et al. 2016).

Conclusions

There is evidence of statistically significant differences 
between the regression of gray- and red- barked trees in 
accordance with Araucaria DBH. This variable can be esti-
mated for a wide range of diameter distributions using 
adjusted regression equations for both bark colour groups.

Qualitative variables are important in the modelling of 
several artificial intelligence techniques. Such variables can 
distinguish characteristics inherent to the data that would 
be difficult to distinguish with conventional regression 
modelling.

Artificial neural networks are an efficient and robust tech-
nique for various qualitative and quantitative attribute mod-
els commonly used in forest mensuration. For this reason, its 
accuracy, applicability and usability were confirmed in this 
study for modelling biometric variables in natural forests of 
high complexity and variability.

Table 6   (continued)

Network Type Input Number of neurons Activation function Statistics

Hidden Output Hidden Output R2 MAE RMSE (%)

2575 6 DBH–H–CBH–SP–BA–Gr 3 1 Logistic Identity 0.901 0.044 17.0
2871 6 4 1 0.913 0.044 15.9
2914 6 5 1 0.932 0.036 14.1
2883 6 6 1 0.947 0.033 12.4
2552 6 7 1 0.951 0.030 11.9
2923 6 8 1 0.969 0.024 9.5
2829 6 9 1 0.978 0.017 7.9
2857 6 10 1 0.983 0.017 7.0
2747 6 11 1 0.990 0.013 5.5
3216 7 DBH–H–CBH–SP–BA–Gr–BTpred 4 1 Logistic Identity 0.924 0.040 14.9
3251 7 5 1 0.938 0.036 13.4
3446 7 6 1 0.954 0.031 11.6
3244 7 7 1 0.969 0.026 9.5
3350 7 8 1 0.980 0.016 7.6
3499 7 9 1 0.984 0.013 6.8
3323 7 10 1 0.989 0.013 5.7
3089 7 11 1 0.995 0.007 3.9
3157 7 12 1 0.997 0.006 3.0

R2 is coefficient of determination; MAE  mean absolute error, RMSE (%) is root-mean-square error in percentage, DBH diameter at breast height, H 
height, CBH crown base height, SP social position, BA branch arrangement, Gr group, BTpred bark-thickness-regression model prediction
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