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Introduction

In the natural ecosystem, Liriodendron chinense (Magnoli-
aceae) is an endangered deciduous tree that grows naturally 
in small populations scattered among montane, broad-leaved 
forests of southern China and northern Vietnam (Li et al. 
2016; Yang et al. 2014; Yao et al. 2008). Due to its fast 
growth, large biomass and high wood quality, it is a high-
grade, valuable decorative wood (Zhang et al. 2011). It also 
contains a variety of biologically active ingredients that can 
be developed into value-added medicines and spices (Zhang 
et al. 2011). Because it can remove particulate matter and 
significantly improve air quality and is aesthetic pleasing, 
it is often used for urban greening (Wu et al. 2018b). Thus, 
its market demand is very large, and many forest farms in 
China have been planting L. chinense on a large scale since 
the 1980s.

Long-term plantation of a single tree species, however, 
may affect soil fertility and quality (Lemenih et al. 2004). 
The stability of soil aggregates, the basic units of soil struc-
ture, is a key property for many soil ecological processes and 
functions such as water-holding capacity, root penetration, 
organic carbon turnover and soil respiration (Wang et al. 
2019; Winstone et al. 2019; Yang et al. 2019). Moreover, as 
biogeochemical reactors, soil aggregates are the key factors 
in soil fertility and quality (Mueller et al. 2013; Wang et al. 
2018). Soil organic carbon (SOC) is also critical for regulat-
ing various physical, chemical, and biological processes in 
soils. Soil aggregation processes in turn play a crucial role 
in protecting SOC to sustain soil fertility and quality (Qian 
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et al. 2018). In addition, SOC is the major binding agent on 
aggregate hierarchy (Six et al. 2000). Therefore, understand-
ing the reaction between organic carbon and aggregates and 
their interrelationships is critical to defining soil fertility and 
quality. However, in previous studies, scientists have paid 
more attention to the relationship between aggregate stabil-
ity and unstable carbon components, such as fulvic acid and 
labile organic carbon and so on (Li et al. 2015; Pollakova 
et al. 2018). The stability of aggregates is more strongly 
correlated with labile carbon (Wang et al. 2018), and soil 
aggregation is mainly affected by labile organic carbon 
(Dai et al. 2019). Less attention was paid to the relationship 
between stable organic carbon components and aggregate 
stability. However, unstable carbon pools are more sensi-
tive to environmental changes and have larger fluctuations 
and variations than stable carbon pools do (Kuzyakov et al. 
2019; Mi et al. 2016), which may not be as good as stable 
organic carbon at showing the temporal variation of planta-
tions over a long period of time. Therefore, we predicted that 
the stable organic carbon components have a stronger corre-
lation with the aggregate stability than the unstable organic 
carbon components.

In addition, SOC is influenced by a range of biotic and 
abiotic factors including climate, topography, soil properties 
and vegetation management, and other anthropogenic condi-
tions (Tan et al. 2004), that often interact and regulate car-
bon inputs to and losses from the soil (Boca et al. 2014). The 
input of SOC mainly depends on the input of organic resi-
dues such as forest litter and roots, and the input of root exu-
dates. Root biomass and litter increase with the increase of 
forest age (Chen et al. 2013). Therefore, the organic carbon 
content is expected to increase with the increase of planta-
tion age. Due to the interdependence between organic carbon 
and aggregates, the aggregates will change correspondingly.

The aboveground litter and root system of a forest are 
distributed differently in different soil depths. The topsoil 
contains litter such as fallen leaves, which are more easily 
degraded. In general, the fine root biomass and root exuda-
tion decreases with increasing depth (Pei et al. 2018; Tuckm-
antel et al. 2017). In addition, as the soil depth increases, the 
oxygen content decreases, which is more conducive to the 
accumulation of stable organic carbon (less easily oxidized). 
Therefore, we predicted that as the soil depth increases, the 
organic carbon content will decline, the easily oxidized 
organic carbon may decrease, and the stable organic carbon 
may increase.

In addition, soil microbial activity differs at different soil 
depths and different forest ages, which thus the level of soil 
respiration differs, which in turn affects carbon output pro-
cesses in the soil (Yu et al. 2014), and thus the formation and 
stability of SOC and soil aggregates (Heimann and Reich-
stein 2008; Luo et al. 2017; Tamura et al. 2017). Therefore, 
soil microbial activity may be an important index to study 

the changes in SOC and soil aggregates in different soil 
depths of L. chinense cultivated for a long time.

The objectives of this study were (1) to examine whether 
SOC and aggregate stability increase with the increase of L. 
chinense ages; (2) to determine whether SOC and aggregate 
stability decrease with increasing soil depths; and (3) to con-
firm whether there is a strong positive correlation between 
stable organic carbon and aggregate stability.

Materials and methods

Study site and experimental design

This study was conducted at Yangkou forest farm in Nanping 
City, Fujian Province, China (26°49′04″ N, 117°54′21″ E). 
The area has a typical subtropical monsoon climate with a 
mean annual temperature of 18.5 °C and relative humid-
ity of 82%. The mean annual rainfall is 1669 mm (mainly 
occurred from March to August). The soil is classified as 
mountain red soil developed from weathering of the gran-
ite parent material according to the Chinese soil classifica-
tion and as a Ferralsol by the FAO (Food and Agriculture 
Organization) classification (IUSS Working Group WRB 
2015). The basic physical and chemical properties of the 
surface soil (0–20 cm) as tested using the methods of Lu 
(2000) were bulk density 1.16 g cm−3, soil organic matter 
26.12 g kg−1, total nitrogen 1.62 g kg−1, hydrolytic nitrogen 
65.15 mg kg−1, available phosphorus 1.03 mg kg−1, available 
potassium 109.23 mg kg−1, and pH 4.85.

Since the 1980s, natural forests have been continuously 
felled and planted with L. chinense, gradually forming an 
age gradient. In 2016, we selected a chronosequence of three 
stages of forest development: 5-year-old stands (young for-
est), 13-year-old stands (half-mature forest), and 31-year-
old stands (mature forest). Three 400 m2 plots (20 × 20 m) 
were established at each stand in December 2016, and thus 
nine sample areas were established for this study (Chen et al. 
2013; Wei et al. 2014). The stand characteristics of the dif-
ferent age groups of L. chinense plantations are shown in 
Table 1.

Soil sampling and analysis

The soil profile was excavated in a typical section of the 
sample area. At depths of 0–20 cm, 20–40 cm and 40–60 cm, 
about 1 kg of undisturbed soil blocks were taken for aggre-
gate analysis on December 28, 2016. In addition, about 
200 g fresh soil samples were taken and stored in ice bags 
for transport back to the laboratory for microbial biomass 
carbon (MBC) analysis. The aggregates samples were gently 
broken apart along natural break points and put it into a hard 
plastic lunch box to avoid extrusion deformation and brought 
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back to the laboratory. In the laboratory, the samples were 
properly air-dried and gently smashed into small pieces of 
1–2 cm along natural sections and passed through an 8-mm 
sieve. Stone, roots and other debris in the soil samples were 
carefully removed by hand. After thorough mixing, 100 g 
was taken for aggregate samples sieving, and the other part 
was used to analyze the soil properties (Wu et al. 2018a; Yu 
et al. 2012a).

Aggregate distribution and stability were determined 
using wet-sieving methods (Elliott 1986; Yu et al. 2012b; 
Zhang et al. 2017): 2 mm, 0.25 mm and 0.053 mm mesh 
sieves from top to bottom; 100 g of the soil sample was 
placed on the top sieve and immersed in deionized water 
for 5 min, then the sieves were mechanically moved up 
and down 50 times for 2 min, with a moving distance was 
3 cm. Thus, the soil samples were divided into four classes 
of aggregates: (1) large macroaggregates (> 2 mm), (2) 
small macroaggregates (2–0.25 mm). (3) microaggregates 
(0.25–0.053 mm), (4) silt + clay particles (< 0.053 mm). 
After separation, the fractions of the aggregates were dried 
at 50 °C and then weighed.

Soil water stability was determined by the mean weight 
diameter of aggregates (MWD) which was calculated using 
the following equation (Karami et al. 2012; Zhang et al. 
2014):

where X̄
𝜄
 is the mean diameter of aggregates for each sieve 

size, Wi is the weight of the aggregates in that size range as 
a fraction of total wet sieve weight of the sample analyzed, 
and n is the number of sieves.

The SOC concentration was determined by chemical 
oxidation using  K2Cr2O7 solution (Lu 2000; Walkley and 
Black 1934; Wu et al. 2018a). MBC was measured using 
the fumigation-extraction method (Li et al. 2013; Mi et al. 
2018; Vance et al. 1987). The soil readily oxidizable organic 
carbon (ROC) was analyzed using 333 mmol L−1 potas-
sium permanganate  (KMnO4) oxidation (Chen et al. 2017). 
Chemically stable organic carbon (CSOC) refers to organic 
carbon that has not been removed by  Na2S2O8, based on 
methodology adapted and modified from Eusterhues et al. 
(2003). Briefly, after the soil passed the 0.25 mm sieve, 0.5 g 

(1)MWD =

n
∑

i=1

X̄
𝜄
W

i

soil samples and 20 g  Na2S2O8 were weighed and dissolved 
in 250 mL deionized water, buffered with 22 g  NaHCO3 
for 48 h at 80 °C. Using the suction filter to make the fil-
trate pass through a 0.45 µm membrane, repeatedly washing 
to remove excess  Na2S2O8, freeze-dried and analyzed for 
the remaining organic carbon content. Intermediate stable 
organic carbon (ISOC) is defined as the portion of organic 
carbon that is more stable than ROC and more active than 
CSOC. It was calculated as ISOC = SOC − ROC − CSOC. 
Note in this equation that we do not consider the influence 
of other relatively small carbon pools, such as MBC or dis-
solved organic carbon, but only focus on ROC and CSOC 
and the third carbon pool, which is neither of them. Moreo-
ver, the microbial quotient (MQ) was used as an indicator of 
soil microbial activity, which was calculated as the ratio of 
MBC to SOC (Haynes 1999; Kaschuk et al. 2010).

Statistical analysis

IBM SPSS Statistics 20 (IBM, Armonk, NY, USA) was used 
for all analyses except the redundancy analysis (RDA). One-
way analysis of variance (ANOVA) was used to analyze the 
effects of different forest ages on different soil depths, and a 
least significant difference test (LSD) was used to compare 
means at P < 0.05. RDA of SOC components and aggregate 
size classes was done using CANOCO software 5.0 (Biom-
etrics, Netherlands).

Results

The distribution of water‑stable aggregates

The composition of soil aggregates in the half-mature for-
est was significantly different from that in the young and 
the mature forests (Fig. 1). Small aggregates (2–0.25 mm) 
and microaggregates (0.25–0.053 mm) of half-mature forest 
accounted for the largest two proportions, accounting for 
47.33%–56.03% and 23.94%–34.53% of the total soil mass, 
respectively. However, small aggregates (2–0.25 mm) and 
large aggregates (> 2 mm) accounted for the two largest pro-
portions of young and mature forests. With increasing age 
of the trees (from 5 to 31 years), the content of large aggre-
gates (> 2 mm) in the soil decreased significantly and then 

Table 1  Stand characteristics 
of the different age groups 
of Liriodendron chinense 
plantations

Age group Age (years) Tree 
height 
(m)

Diameter at 
breast height 
(cm)

Treedensity 
(stem ha−1)

Canopy 
cover (%)

Slope (°)

Young forest 5 6 7 1111 70 27
Half-mature forest 13 12 15 278 85 28
Mature forest 31 27 38 123 85 26
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increased significantly. In young and half-mature forests, the 
content of large aggregates (> 2 mm) in the soil tended to 
decrease with increasing soil depth. In contrast, the content 
of large aggregates (> 2 mm) in the mature forest soil tended 
to increase with increasing soil depth.

Stability of water‑stable aggregates

The MWD is used to characterize the water stability of soil 
aggregates. The greater the value of MWD, the stronger the 
stability of the soil aggregates. Regardless of the soil depth, 
MWD always decreased significantly first and then increased 
significantly with increasing tree age (Fig. 2). In young for-
ests, there was no significant difference in MWD among 
the three soil depths. In half-mature forests, the MWD of 
0–20 cm was the largest and was significantly higher than in 
the 20–40 cm and 40–60 cm layers. In mature forests, MWD 
significantly increased with increasing soil depth.

SOC components and microbial quotient

The SOC content in soils of different tree ages decreased 
with increasing soil depth (Fig. 3) and first decreased sig-
nificantly and then increased significantly with increasing 
tree ages. Among the three different carbon components of 
SOC, ISOC accounted for the largest proportion of SOC, 
followed by ROC, and CSOC accounted for the smallest pro-
portion. At the 0–20 cm soil depth, there was no significant 

difference in CSOC among the three forest ages. ISOC of the 
half-mature forest was significantly lower (about 25.12%) 
than in the young forest at 0–20 cm. Moreover, ISOC of 
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the mature forest was significantly higher (124.29%) than 
in the half-mature forest at 0–20 cm. Compared with the 
ROC in the young and the half-mature forest, the ROC of 
the 0–20 cm soil layer increased by 68.11% and 101.42%, 
respectively. At 20–40 cm and 40–60 cm, the CSOC of the 
mature forest was significantly higher than in the other two 
forest groups. Moreover, the CSOC of the mature forest 
increased significantly with the increasing soil depths. At 
all soil depths, MQ was the highest in the half-mature for-
est, significantly higher than in the young forest and mature 
forest (Fig. 4).

Correlations between SOC components 
and water‑stable aggregates

The RDA plot shows the contribution of each SOC compo-
nent to the total variance among the distribution of aggre-
gates and the relationships among the SOC components, 
samples, and aggregate composition (Fig. 5). The eigen-
values of axis 1 and axis 2 in the RDA biplot were 0.73 
and 0.012, respectively, which jointly explained 74.70% of 
the total variation in the distribution of aggregates. More-
over, the two largest explanatory variables were MQ and 
CSOC, which explained 55.0% and 19.3%, respectively 
(P < 0.01). CSOC was positively correlated with the large 
macroaggregates (> 2 mm) and MWD along the negative 
axis of axis 1. In contrast, MQ was negatively correlated 
with the large macroaggregates (> 2 mm) and MWD along 
the positive axis of axis 1. In addition, the MWD and large 

macroaggregates (> 2 mm) were negatively correlated with 
the small macroaggregates (2–0.25 mm) and microaggre-
gates (0.25–0.053 mm) along the positive axis of axis 1. 
Remarkably, the MWD was positively correlated with the 
large macroaggregates (> 2 mm). CSOC had a positive 
impact on mature forest (0–20 cm, 20–40 cm and 40–60 cm) 
and had a negative impact on half-mature forest (0–20 cm, 
20–40 cm and 40–60 cm). MQ had a positive impact on 
half-mature forest (0–20 cm, 20–40 cm and 40–60 cm) and 
had a negative impact on mature forest (0–20 cm, 20–40 cm 
and 40–60 cm).

Discussion

Changes in SOC components and aggregate stability 
in L. chinense plantation of different ages

SOC was hypothesized to increase with forest age, but 
our results showed an initial downward trend followed by 
an upward trend. There were two potential reasons for the 
change in SOC pools with forest age. First of all, in the 
maturation from young forest to half-mature forest (from 
5 to 13 years), L. chinense grew rapidly and required more 
nutrients. The MQ, which characterizes soil microbial 
activity, increased significantly (Fig. 4), increasing soil 
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respiration, prompting the release of organic carbon pool 
nutrients and reducing the organic carbon content. Pre-
vious studies on Chinese fir [Cunninghamia lanceolata 
(Lamb.) Hook.] have shown similar results that soil car-
bon reserves are significantly lower in the medium-age 
forest than in the young (Chen et al. 2013). Second, dur-
ing growth from the half-mature forest to the mature for-
est (from 13 to 31 years), we found that MQ significantly 
decreased, indicating a decrease in microbial activity and 
a decrease in organic carbon output. At this time, the L. 
chinense continue to grow, and the organic matter of root 
exudates and litter increases the carbon input of the soil, 
so the carbon balance tends to be in the direction of carbon 
accumulation (Luo et al. 2017). During the transition from 
half-mature forest to mature forest, carbon input in soil 
was greater than the carbon output, thus SOC was cumula-
tive (Heimann and Reichstein 2008).

Our results showed that the stability of aggregates is con-
sistent with the direction of the change in organic carbon, 
as shown previously (Das et al. 2014), mainly because the 
aggregates can physically protect against loss of organic car-
bon, and the organic carbon in turn acts as a cementing sub-
stance that promotes the formation of large aggregates and 
improves the stability of aggregates (Mao et al. 2014; Six 
et al. 2004). Therefore, when SOC is affected by microbial 
activity and tends to accumulate carbon, the aggregates are 
relatively stable, while in the case of carbon loss, stability 
of the aggregates decreases.

Changes in SOC components and aggregate stability 
with different soil layers in L. chinense plantations

As expected, the total SOC and chemically unstable com-
ponents (ROC and ISOC) decreased as the depth of the soil 
increased in the three forest ages of L. chinense. During the 
maturity of L. chinense, CSOC increased with the increase 
of soil depth. We speculate that one reason may be that the 
test area has red soil. Due to the presence of leaching and 
sedimentation, deeper soil accumulates more iron-aluminum 
oxide than the topsoil (Ma and Xu 2010). In addition, Fe 
oxides and Al oxides have been suggested to be important 
stabilizing agents and have help stabilize aggregates (Deme-
nois et al. 2017; Liang and Balser 2008). The second reason 
may be that as the depth of the soil increased, the oxygen 
content of the soil decreased, resulting in anaerobic con-
ditions. The SOC that remained at deeper soil depths was 
slower in cycling and not easily decomposed; biochemical 
protection by recalcitrant alkyl C may be the primary mecha-
nisms for SOC preservation and aggregate stability (Li et al. 
2017). Therefore, more CSOC will be accumulated and the 
soil aggregates are more stable in the deeper soil of long-
term plantations of L. chinense.

Relationship between SOC components and aggregate 
stability in L. chinense plantations

As expected, there was a stronger positive correlation 
between CSOC and aggregate stability which was shown 
in our RDA results (Fig. 5). We speculate that, as a rela-
tively stable carbon component, CSOC may be the “car-
bon core” of the aggregate interior and protected by the 
aggregates. Some studies suggested that CSOC could be 
an aromatic carbon like charcoal or black carbon (Euster-
hues et al. 2003). Therefore, CSOC is difficult to oxidize 
and highly stable, and levels were strongly positively cor-
related with aggregate stability. The unstable carbon pools, 
however, are more sensitive to environmental changes and 
have greater fluctuations and variations (Mi et al. 2016). 
Therefore, CSOC should be receive more attention in the 
future and may be a better indicator to explain and charac-
terize changes in soil aggregate stability during long-term 
forest growth.

Conclusions

This study confirms that SOC and aggregate stability did 
not increase with increasing stand age, but declined signifi-
cantly until the half-mature age, then increased significantly 
as the plantations of L. chinense aged. MQ seems to have a 
negative impact on the formation of organic carbon and the 
stability of aggregates, leading to such results. The evidence 
presented here indicates that CSOC increased with soil 
depth of the mature L. chinense plantation and was highly 
correlated with the MWD. Future study should focus on the 
accumulation of CSOC in deep soil and the participation of 
microorganisms.
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