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Abstract To improve multi-environmental trial (MET)

analysis, a compound method—which combines factor

analytic (FA) model with additive main effect and multi-

plicative interaction (AMMI) and genotype main effect

plus genotype-by-environment interaction (GGE) biplot—

was conducted in this study. The diameter at breast height

of 36 open-pollinated (OP) families of Pinus taeda at six

sites in South China was used as a raw dataset. The best

linear unbiased prediction (BLUP) data of all individual

trees in each site was obtained by fitting the spatial effects

with the FA method from raw data. The raw data and

BLUP data were analyzed and compared by using the

AMMI and GGE biplot. BLUP results showed that the six

sites were heterogeneous and spatial variation could be

effectively fitted by spatial analysis with the FA method.

AMMI analysis identified that two datasets had highly

significant effects on the site, family, and their interactions,

while BLUP data had a smaller residual error, but higher

variation explaining ability and more credible stability than

raw data. GGE biplot results revealed that raw data and

BLUP data had different results in mega-environment

delineation, test-environment evaluation, and genotype

evaluation. In addition, BLUP data results were more

reasonable due to the stronger analytical ability of the first

two principal components. Our study suggests that the

compound method combing the FA method with the

AMMI and GGE biplot could improve the analysis result

of MET data in Pinus teada as it was more reliable than

direct AMMI and GGE biplot analysis on raw data.

Keywords Additive main effect and multiplicative

interaction � Best linear unbiased prediction � GGE biplot �
Genotype by environment interaction � Multi-environment

trial

Introduction

The multi-environment trial (MET) should be carried out in

forest genetic tests due to the geographical applicability of

forest species (Dutkowski 2005). One of the most impor-

tant phenomenon in MET is that genotype-by-environment

interaction (GEI) is often significant. How to accurately

assess GEI is critical for further breeding and subsequent

promotion of tree varieties. Thus far, most of the agricul-

tural MET analysis adopts the joint regression method

(Finlay and Wilkinson 1963); additive main effect and

multiplicative interaction (AMMI) (Gauch and Zobel

1997); and genotype main effect plus genotype-by-envi-

ronment interaction (GGE) biplot (Yan 2001). MET
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analysis generally includes genotype evaluation, test-en-

vironment evaluation, and mega-environment delineation.

Both AMMI and GGE biplot are equally capable of

delineating mega-environment delineation (Gauch et al.

2008). Furthermore, GGE biplot has a more complete and

visual advantage in representing genotype performance and

stability and identifying representative for test environ-

ments (Yan 2001). As far as we know, the application of

AMMI and GGE biplot in trees has been only reported on a

few species such as Pinus radiata (Ding and Wu 2008),

Populus (Sixto et al. 2011) and Michelia chapensis (Wang

et al. 2016).

Although AMMI and GGE biplot are widely applied in

crops using phenotypic data, these methods have some

limitations: (1) these methods are limited to the fixed effect

model; (2) tested environment should be homogenous, and

(3) trial data should be balanced. First, homogeneity of the

test environment is hardly achievable in forest trails, which

was confirmed by the present study that the forest test

environment had various spatial variations. Secondly, the

forest trials usually have missing data and are more often

highly imbalanced. Moreover, genetic parameters, such as

breeding value, require a random effect model to be esti-

mated. Therefore, these problems might greatly restrict the

application of AMMI and GGE biplot in forest trials.

In recent years, factor analytic (FA) method is used in

forest MET, since it could possess highly imbalanced

datasets (Costa e Silva et al. 2006; Costa e Silva and

Graudal 2008; Cullis et al. 2014; Ivkovic et al. 2015; Chen

et al. 2017). Moreover, FA model can capture complex

variance structures with a relatively small number of

variance parameters (Kelly et al. 2007). Unlike AMMI and

GGE biplots, the FA method does not have the intuitive

results, such as discrimination and representativeness of

test environments, yield performance, and stability of test

genotypes.

In this study, we presented one compound approach to

combine FA method with AMMI and GGE biplot in order

to fully demonstrate advantages of these methods in MET.

We first used spatial analysis combined with the FA

method to obtain the best linear unbiased prediction

(BLUP) of each individual tree at each test site, and then

the AMMI and GGE biplot were employed to evaluate

family, test environment, and mega-environment delin-

eation. This method enables us to avoid the limitations of a

fixed effect model and test environment homogeneity, to

improve the analysis result of AMMI and GGE biplot, and

to serve as a reference for future implication in tree

breeding programs.

Materials and methods

Experimental design

A total number of 36 open-pollinated (OP) families of

Pinus taeda were used in this study. The progeny trials

were carried out by randomized complete block design

(RCBD) with three replications and five trees in each plot.

The same design was implemented in the all six sites. The

detailed information of the test sites is summarized in

Table 1. Diameter at breast height (DBH) of all trees at age

15 was measured in 2010.

Statistical analysis

The model for MET BLUP by FA method (Lin 2016) is

expressed as

yij ¼ lþ Si þ SGij þ eij ð1Þ

where yij is the observation of individual tree in the ith site,

l is overall mean, Si is the fixed effect of ith site, SGij is the

random interaction effect of the individual tree with the ith

site, and eij is random residual.

The variance matrix (G) of SGij could be fitted by FA

method (Smith et al. 2001) as

G ¼ C� CT þW
� �

� A ð2Þ

where C is a matrix of site loadings, W is a diagonal matrix

with special variances for each site, and A is the numerator

relationship matrix of individual trees.

For spatial analysis (Dutkowski et al. 2002), the residual

(eijk;R) could be partitioned into spatial correlated error

(dn
2) and independent error (dg

2), and the variance matrix of

R could be written as

R ¼ d2
n

X

c

ðqcÞ �
X

r

ðqrÞ
 !

þ d2
gI ð3Þ

where dn
2 is spatial correlated error,

P

c

ðqcÞ,
P

r

ðqrÞ is

autoregression matrix for column and row, qc, qr is

autoregression parameters in column and row direction, dg
2

is independent error, and I is an identity matrix. The sig-

nificant levels of all parameters for spatial model were

tested using the Loglikehood ratio test (LRT).

After fitting the model in ASReml 4.0 (Gilmour et al.

2016), the estimated breeding values of individual trees in

each site can be obtained. Further, these values plus the

overall mean (l) were treated as BLUP data for the fol-

lowing analysis.
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The AMMI model equation (Crossa 1990) is written as

yijk ¼ lþ ai þ bj þ RepðbÞjk þ
XN

n¼1

kncindjn þ hij þ eijk

ð4Þ

where yijk is the raw observation or the estimated BLUP

data, l is the grand mean,ai is the main effect of ith family,

bj is the main effect of jth site, Rep(b)jk is the main effect

of kth replicate within jth site, kn is the singular value for

the interaction principal component (IPC) axis n, cin is

family i IPC scores for axis n, djn is site j IPC scores for

axis n, hij is the interaction residual not explained by IPC

axis n, and eijk is the residual error.

The GGE model equation for the first two principal

components (Yan 2001) is written as

yij � bj ¼ k1ni1gj1 þ k2ni2gj2 þ eij ð5Þ

where yij is the measured mean or the estimated breeding

value mean for ith family in jth site, bj is the measured

mean or the estimated breeding value mean for all families

in jth site, k1 and k2 are the singular values for the first two

principal components (PC1 and PC2), ni1 and ni2 are the

scores of family i for PC1 and PC2, gj1 and gj2 are the

scores of site j for PC1 and PC2, and eij is the residual

error.

AMMI stability value (ASV) is calculated by the fol-

lowing formula (Purchase 1997) as

ASV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSIPC1=SSIPC2ð Þ � IPC1ð Þ2þIPC22

q
ð6Þ

where SSIPC1and SSIPC2 are the sum of squares for IPC1

and IPC2, IPC1 and IPC2 are the family scores for IPC1

and IPC2.

MET BLUP procedure was implemented by the pro-

gram codes (Lin 2016) using software ASReml 4.0 (Gil-

mour et al. 2016), AMMI and GGEbiplot analysis were

employed by R package agricolae (De Mendiburu 2016)

and GGEBiplotGUI (Frutos et al. 2014), respectively. The

GGE biplot was based on singular value decomposition

with symmetrical scaling and focused on the environment

(Yan 2010).

Results and discussions

Test environment heterogeneity

Since trial experiment homogeneity is required in AMMI

and GGE biplot analysis, it was necessary to test whether

all the trial experiments were homogenous. As a result, the

environmental errors varied greatly among trial sites

(Table 2). For random independent errors, site 5 was the

biggest (5.04), while site 4 was not estimated and might be

zero. For spatial correlated errors, site 4 was the biggest

(6.96), followed by site 2 (4.58), while site 5 was not

estimated and might be zero. When the random indepen-

dent error was large and uncorrelated, then the spatial

correlated error might be zero, and vice versa (Dutkowski

2005). In addition, except for site 5, significant autocor-

relation existed in row or/and column direction at each site.

There was negative autocorrelation in row (site 1 and 3) or

column (site 5) direction despite the fact that they were not

statistically significant, showing that there might be no or

weak competition. These results indicated that forest trial

environments were usually heterogeneous and that spatial

analysis could effectively account for the environment

heterogeneity within each site. Our study was consistent

with studies in other trees species (Costa et al. 2001;

Dutkowski et al. 2002, 2006; Terrance and Jayawickrama

2008). Therefore, it should be cautious to use phenotypic

data directly for AMMI and GGE biplot analysis.

AMMI analysis of raw data and BLUP data

The AMMI combined analysis of variance for both raw

data and BLUP data revealed that the effects of site, family

and their interactions (GEI) were highly significant

(Table 3). For raw data, the site explained 41.05% of the

total sum of squares (TSS) while GEI captured 16.03% of

TSS, indicating that sites were quite diverse and could

affect the family performance. Replication accounted for

3.89% of TSS and was highly significant. In addition, the

first two interaction principal components (IPC1 and IPC2)

only accounted for 63.99% of GEI, and only IPC1 had a

significant effect. However, for BLUP data, site and GEI

had extremely significant effects, along with their higher F

Table 1 Details of six test sites

in South China
No. Location Latitude Longitude Elevation (m) Annual rainfall (mm)

1 Chongzuo, Guangxi N21o540 E106o420 370 1526

2 Fenyi, Jiangxi N27o480 E114o000 160 1610

3 Luzhou, Sichuan N29o120 E105o240 480 1116

4 Fuyan, Zhejiang N30o060 E119o000 180 1550

5 Nanjing, Jiangsu N32o060 E118o360 130 1000

6 Fuzhou, Fujian N26o060 E119o200 500 1370
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values than those of raw data, implying stronger site and

GEI effects than raw data. Although environment

explained a greater percent of TSS (69.31%), it was

obvious that the residual error of TSS was reduced to

16.69%, which was much smaller than the raw data

(28.17%). Furthermore, replication effect only accounted

for a small percent of TSS (0.23%) and was not significant,

compared to the raw data (3.89%). The result was identical

to the fact that ideal spatial analysis could effectively

reduce the residual error and greatly cut down design

effects (Dutkowski 2005, Dutkowski et al. 2006, Terrance

and Jayawickrama 2008). Moreover, both IPC1 and IPC2

had significant effects and accounted for 72.81% of total

GEI, which was higher than that in the raw data, even when

GEI captured less percent of TSS (11.42%). These results

implied that BLUP data was more reliable on the inter-

pretation of DBH variation than the raw data.

The overall mean of DBH for each family was similar

between raw data (15.62) and BLUP data (15.43), but their

ASV and rank of ASV (rASV) were greatly diverse

(Table 4). In addition, The Spearman correlation of rASV

between raw data and BLUP data was only 0.36

(p\ 0.05). According to index of rASV, family NO 30 of

raw data had the lowest ASV (0.10), indicating that it was

the most stable genotype, but it was rank 12 in BLUP data.

For BLUP data, family NO 32 had the lowest ASV (0.10)

and was the most stable genotype while it was only rank 7

in raw data. Only a few families had stable rASV in both

row data and BLUP data, such as family NO 7, 18, 20, and

34, only 11.11% of total families. Since the first two IPC of

BLUP data accounted for 72.81% of total GEI, higher than

raw data (63.99%), revealing that ASV results of BLUP

data were more credible.

Table 2 Spatial variation pattern of raw data

Site Independent error dg
2

Spatial correlated error d2
n

Row autoregression qr Column autoregression qc

1 2.50** 0.55 - 0.29 0.38

2 3.50*** 4.58 0.92*** 0.95***

3 2.15*** 3.81** - 0.18 0.93***

4 NE 6.96*** 0.14 0.50***

5 5.04*** NE 0.94 - 0.35

6 1.08** 1.15** 0.20 0.69***

Significant level, **: 0.01,***: 0.001. The significant level of each parameter was tested by Loglikehood ratio test (LRT). NE was not estimated

Table 3 AMMI combined

analysis of variance for raw data

and BLUP data

Type Source df SS MS F value TSS (%) GEI (%)

Raw data Rep 12 209.55 17.46 4.69*** 3.89

Site(E) 5 2211.38 442.28 25.33*** 41.05

Family(G) 35 584.45 16.70 4.49*** 10.85

Family 9 Site(GEI) 175 863.56 4.93 1.33* 16.03

IPCA1 39 373.31 9.57 2.57*** 43.23

IPCA2 37 179.31 4.84 1.30 20.76

GEI Residual 99 310.94 3.14 0.84 36.01

Residual 408 1517.64 3.72 28.17

BLUP data Rep 12 6.01 0.50 0.47 0.23

Site(E) 5 1811.26 362.25 723.70*** 69.31

Family(G) 35 61.51 1.76 1.64* 2.35

Family 9 Site(GEI) 175 298.35 1.70 1.60*** 11.42

IPCA1 39 154.22 3.95 3.70*** 51.69

IPCA2 37 63.02 1.70 1.59* 21.12

GEI Residual 99 81.11 0.82 0.77 27.19

Residual 408 436.07 1.07 16.69

Significant level, *: 0.05,***: 0.001. TSS (%) represents percent of total SS. GEI (%) represents percent of

GEI SS
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GGE analysis of raw data and BLUP data

Which-Win-Where

The ‘‘Which-Win-Where’’ function of GGE biplot lines the

outermost genotypes to a polygon and makes a vertical line

for each edge of the polygon through the origin. Then the

test environments are grouped and the superior genotypes

are marked within each environment group (Yan 2010).

The results showed that the six test sites of raw data were

divided into three groups, sites 1, 2 and 5 in one group,

sites 4 and 6 in another group, and site 3 in an independent

group (Fig. 1a). Family No 10 was the highest genotype in

sites 4 and 6, and family 20 was the highest genotype in

sites 1, 2 and 5. Compared with raw data, BLUP data

divided six sites into four groups, sites 1, 5, and 6 in one

group, sites 2, 4, and 6 in independent one group, respec-

tively (Fig. 1b). Family NO 19 was also the highest

genotype in sites 1, 5, and 6, but families 9, 22, and 11 was

the highest genotype in sites 2, 3 and 4, respectively.

Furthermore, the first two PC of raw data only accounted

for 66.21% of total GEI, less than BLUP data (78.46%).

Similar to the AMMI results, the Which-Win-Where

results of BLUP data were more reasonable.

Discrimination and representation of environments

The choice of test environment is directly related to the

reliability of variety breeding, and an ideal test environ-

ment should be strongly discriminative and representative.

The blue line with arrows represents the average environ-

ment axis, and the length of the dotted line between the test

environment and the origin represents discriminative abil-

ity of test environment (Fig. 2). The angle between the test

environment vector and the average environment axis

represents the representative of the test environment. The

smaller the angle, the stronger the representation of the test

environment. If the angle is obtuse, it is not suitable as a

test environment. The results showed that site 3, 4, and 6

were the best discriminative environments, and site 5 was

the best representative environment for raw data (Fig. 2a).

Therefore, site 5 was the ideal test environment for raw

data. For BLUP data, sites 1, 4, and 6 were the best dis-

criminative environments while site 2 was the worst one,

and site 1 was the best representative environment

(Fig. 2b).

Yield and stability analysis

The GGE biplot used average environment coordination

(AEC) to evaluate the yield and stability of genotypes (Yan

2001). AEC included the average environmental axis

(green solid line with arrow) and its solid vertical line

through the origin (Fig. 3). The solid green line with an

arrow was the average environmental axis, and the vertical

black dotted line represented the average yield and stability

of each genotype across all environments. The longer

dotted line represented that the yield was more unstable.

Table 4 Overall mean of DBH and AMMI stability value (ASV) of

raw data and BLUP data

Family Raw data BLUP data

Mean ASV rASV Mean ASV rASV

1 15.52 0.92 23 15.02 0.99 30

2 13.97 0.89 20 14.93 0.27 6

3 15.51 1.62 34 15.32 0.90 27

4 14.97 1.74 36 15.30 0.24 5

5 15.88 1.04 27 15.52 0.51 15

6 15.74 0.99 25 14.97 0.60 16

7 15.10 0.53 10 15.33 0.35 11

8 16.29 1.15 29 15.71 1.02 32

9 13.35 0.21 2 15.16 2.04 36

10 16.77 1.68 35 16.07 0.31 9

11 15.98 0.66 12 15.75 1.00 31

12 15.01 1.00 26 14.79 1.40 35

13 15.16 1.11 28 16.00 0.75 22

14 14.90 0.40 9 15.17 0.27 7

15 15.14 0.91 21 15.38 0.14 2

16 15.11 0.66 13 15.34 0.30 8

17 16.52 0.33 5 15.91 0.66 19

18 14.80 0.87 18 15.32 0.61 17

19 16.51 1.33 33 15.94 0.95 29

20 17.84 0.98 24 15.92 0.78 24

21 16.88 0.33 4 15.57 0.77 23

22 15.21 0.71 14 15.50 0.72 20

23 15.85 1.20 30 15.46 0.15 3

24 16.58 0.58 11 15.88 0.89 26

25 16.30 0.74 15 15.61 0.74 21

26 15.35 0.39 8 15.44 0.95 28

27 15.72 0.80 17 15.22 0.21 4

28 17.11 0.91 22 15.51 0.81 25

29 14.80 1.25 32 15.40 1.04 33

30 16.28 0.10 1 15.43 0.40 12

31 14.58 0.75 16 15.32 1.39 34

32 13.29 0.38 7 14.92 0.10 1

33 16.91 0.32 3 15.62 0.34 10

34 15.78 0.89 19 15.17 0.63 18

35 15.72 1.25 31 15.34 0.41 13

36 15.97 0.36 6 15.40 0.45 14

total 15.62 15.43

The [bold] shows the rank of the first two for Mean, ASV and rASV

ASV represents AMMI stability value, rASV represents rank of ASV

One compound approach combining factor-analytic model with AMMI and GGE biplot to improve… 127

123



The solid green line vertical line through the origin

stood for the grand (overall) mean. The genotype on the

left side of the green vertical line represented its yield

below the grand mean, while the genotype on the right side

of the genotype represented its yield above the grand mean.

Yield performance and stability were greatly differed

between raw data and BLUP data. For yield performance in

raw data (Fig. 3a), family NO 20 was the highest, and

family NO 23 was around the overall mean, while family 9

was the lowest. The most stable genotypes were families 14

and 24, and the most unstable were families 3, 4, 10, 28,

and 34.

An ideal genotype should take into account both high

yield and stability (Yan 2010) making family NO 21 the

best genotype in raw data. Compared with raw data, in

BLUP data, the highest yield genotypes were familes 19

and 10, and the most stable was family NO 10, while the

most unstable was families 11, 22, and 24 (Fig. 3b). The

ideal genotype was family NO 10 in BLUP data. Although

it seemed that yield performance and stability were greatly

different between raw data and BLUP data, some consis-

tency was found between these two datasets. For example,

families 9, 2, and 32 were the worst genotypes in both two

datasets. Similar to Which-Win-Where results, we thought

that BLUP data had better analysis results in yield per-

formance and genotype stability than raw data.

Fig. 1 Which-Win-Where views of GGE biplot based on symmet-

rical singular value decomposition (SVD) with Standard deviation

(SD) scaling for raw data (a) and BLUP data (b). AXISI 1 and

ASXIS2 stand for PC1 and PC2, respectively. The green numbers

stand for genotypes and the blue characters stand for sites

Fig. 2 Discrimination and representation of GGE biplot based on environment-focused scaling for raw data (a) and BLUP data (b). AXISI 1 and

ASXIS2 stand for PC1 and PC2, respectively. The green numbers stand for genotypes and the blue characters stand for sites
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Conclusions

When using AMMI and GGE biplot directly from pheno-

typic data, it is not possible to obtain genetic parameters

and calculate selection efficiency. Nevertheless, AMMI

and GGE biplot have obvious advantages in mega-envi-

ronment delineation, test-environment evaluation, and

genotype evaluation. Whether the AMMI and GGE biplot

is suitable for forest remains to be seen. We used a data set

of six progeny testing sites to test this combined spatial/FA

model with AMMI and GGE biplot for use in forest pro-

geny trials. Our results showed that if we first obtained

BLUP data from raw phenotypic data of forest MET by

spatial effects with FA method, it would significantly

improve the analysis result of AMMI and GGE biplot.

First, spatial analysis with the FA method could eliminate

effects of different spatial variation patterns from pheno-

typic data that resolved test-environment homogeneity.

Second, BLUP data greatly reduced the percent of residual

error on TSS and obviously increased variation explaining

ability from AMMI analysis. Finally, raw data and BLUP

data had substantially different results in the GGE biplot.

Furthermore, the Spearman correlation of rASV between

raw data and BLUP data was low (r = 0.36, p\ 0.05), and

the percent of the first two principal components on GEI in

BLUP data was higher than in raw data. Therefore, we

suggest that carrying out the BLUP procedure by spatial

analysis with FA method will yield more credible results. It

should be noted that the spatial model might be adjusted by

design effects (such as block or plot) for different measured

traits if their effects were significant. In addition, this

BLUP procedure might also have some advantages. For

example, if we have pedigree files or other relationships

(such as genomic relationships) for test genotypes, we

could get the missing value even if the dataset was highly

imbalanced. Another advantage is that since the FA method

belongs to the random effect model, it is realistic to esti-

mate genetic and residual variances for further analysis of

genetic parameters.
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