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Abstract Juniperus excelsa subsp. polycarpos, (Persian

juniper), is found in northeast Iran. In this study, the rela-

tionship between ground cover and vegetation indices have

been investigated using remote sensing data for a Persian

juniper forest. Multispectral data were analyzed based on

the Advanced Visible and Near Infrared Radiometer type 2

and panchromatic data obtained by the Panchromatic

Remote-sensing Instrument for Stereo Mapping sensors,

both on board the advanced land observing satellite

(ALOS). The ground cover was calculated using field

survey data from 25 sub-sample plots and the vegetation

indices were derived with 5 9 5 maximum filtering algo-

rithm from ALOS data. R2 values were calculated for the

normalized difference vegetation index (NDVI) and vari-

ous soil-adjusted vegetation indices (SAVI) with soil-

brightness-dependent correction factors equal to 1 and 0.5,

a modified SAVI (MSAVI) and an optimized SAVI

(OSAVI). R2 values for the NDVI, MSAVI, OSAVI, SAVI

(1), and SAVI (0.5) were 0.566, 0.545, 0.619, 0.603, and

0.607, respectively. Total ratio vegetation index for arid

and semi-arid regions based on spectral wavelengths of

ALOS data with an R2 value 0.633 was considered. Results

of the current study will be useful for forest inventories in

arid and semi-arid regions in addition to assisting decision-

making for natural resource managers.

Keywords Ground cover � Juniperus excelsa subsp.

polycarpos � Vegetation indices � Advanced land observing

satellite (ALOS)

Introduction

The arid and semi-arid areas of northeast Iran consist of

about 3.4 million ha populated by two main tree species,

one is the broad-leaved Pistacia vera L. and the other is the

conifer, Juniperus excelsa M. Bieb. subsp. polycarpos (K.

Koch) Takht., which Iranians know as Persian juniper. The

subspecies has a green crown and dark grey, scaly and

peeling bark. In the juvenile stages, the branches are

brownish-red, rounded-tetragonal, slender, with leaves on

branchlets divergent at the tips, ovate, acuminate, with long

spiny points and oblongdorsal glands. Individual trees have

strict acicular or needle-shaped leaves and the leaves of

young branchlets are small, glaucous, imbricated, oblong

or ovate with ovate to suborbicular glands. The fruit are

solitary, globose, black, pruinose and 9–12 mm in diame-

ter. Some individuals may be several centuries old with

trunks in poor condition. The species has a more conti-

nental taxon in which the subspecies is found in the Irano-

Turanian region. Locally, the subspecies has holy indicator

for local people. It has high tolerance to dry climates and

grows at elevations[ 2000 m a.s.l in the mountainous

regions of Iran. In the last few decades, people have har-

vested the species for ceiling wood and fuelwood, causing

a severe decrease in the species. Further, with livestock

grazing in natural forests, the destruction of young shoots
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has undermined natural regeneration and is one of the

greatest threats to genetic diversity. The subspecies is more

tolerant of severe environmental conditions, which is

important as an ecological variable. Another important

feature of this subspecies is the aromatic properties that

protect it from wildlife grazing. According to the FAO,

deforestation in the 1990s was estimated at 14.6 million ha

per year; the loss of aboveground woody biomass globally

world was 422 thousand million tons per year. According

to the FAO (2014) estimate, the area of forest is about

10 million hectares (FAO 2014). Tavankar investigated the

distribution and habitat of Juniperus excelsa subsp. poly-

carpos in the northwest of Iran using Landsat ETM and

GIS techniques (Tavankar 2015). The relationship between

environmental factors (topography and soil type) and

density of the subspecies was significant. Fisher and

Gardner (1995) investigated the status and ecology of J.

excelsa subsp. polycarpos woodland in the northern

mountains of Oman (Fisher and Gardner 1995). The cli-

mate at this elevation (800–2500 m a.s.l) may be marginal

for the survival of the subspecies and even small increases

in climatic stress could affect the present status of these

woodlands (Gardner and Fisher 1996) In northeast Iran,

junipers form open woodlands with a maximum tree den-

sity of approximately 150 trees per ha (Fisher and Gardner

1995).

In Iran, forest inventories of open woodlands follow a

transect sampling method using GPS (Fadaei and Kolahi

2008) in comparison with the Hessenmöller approach

based on ‘‘probability-proportional-to-size’’ (PPS). This

latter method assumes that the growing space of a tree is

proportional to its height (Hessenmöller et al. 2013). Stand

parameters are then derived by statistical extrapolation.

However, hot, dry weather can make forest inventory work

on the ground difficult (Fadaei and Kolahi 2008), and

ground surveys require time, labor, and money, even when

using GPS equipment. In contrast, the use of remote-

sensing data for forest inventories in arid and semi-arid

areas is cost-effective, less time-consuming, and less labor-

intensive (Fadaei et al. 2011).

Open forests have special features that provide excellent

opportunities for remote sensing-based inventories.

Detection of individual trees from high resolution satellite

data is normally easier in sparse forests where the distance

between trees exceeds the height of the trees. When a

strong relationship exists between forest attributes and

features extracted from remote sensing data, these attri-

butes can be estimated from remote sensing imagery using

regression and modeling techniques (Ozdemir 2008).

The individual tree can be delineated with unsupervised

and supervised classification algorithms on fine resolution

imagery. In the sparse juniper stand, analysis from remo-

tely sensing can be estimated inexspensively it by the

relationship between ground cover and trees (Gougeon and

Leckie 2006). The fractional vegetation cover (FVC) can

be extracted easily from almost any remotely sensed data,

either by linear normalization of the spectral vegetation

indices or by supervised or unsupervised classification of

the multi-spectral imagery (Veraverbeke et al. 2012). Stand

density expressed as an absolute term (number of trees per

unit area) showed significantly positive correlation to FVC

(R2 = 0.96) and to a relative density measure (crown

competition factor; R2 = 0.89) (Meyer et al. 2017).

Yecheng and Strahler inverted a canopy reflectance

model using multispectral satellite data to estimate

parameters for crown size, stand density, cover, foliage

biomass, and total standing biomass in nine coniferous

stands in Oregon, USA (Wu and Strahler 1994). In devel-

oped countries, inventories are still obtained by mapping

forest stands and their content. This is done by interpreting

medium-scale aerial photographs, along with field assess-

ments and plot measurements. However, as noted, con-

ducting such inventories is an expensive and time-

consuming endeavor (Gougeon and Leckie 2006). Remo-

tely sensed data processed with the object-based image

classification technique is an accurate and relatively precise

tool for estimating and mapping of tree cover at a land-

scape scale in a dry forest environment (Purevdorj et al.

1998).

Each of these approaches has been found to improve

results in their intended applications. It is therefore inter-

esting to evaluate the capability of the six vegetation

indices from reflectance factors based on ALOS satellite

data for estimating vegetation cover in arid and semi-arid

regions. The ALOS satellite capability introduces the

vegetation index as Total Ratio Vegetation Index (TRVI)

and is evaluated in comparison to conventional vegetation

indices. Vegetation indices are the most popular tool for

analyzing remote sensing data of various vegetation char-

acteristics and for estimating the percentage of green

vegetation cover in arid and semi-arid areas. Meyer et al.

(2017) investigated the relationship between the amount of

green vegetation cover and vegetation indices derived from

spectral reflectance measurements on the ground. They also

evaluated the performance of vegetation indices to estimate

ground cover (Meyer et al. 2017). In this study, it was

expected that the quality of ALOS satellite data in arid and

semi-arid regions compared to other satellite data may be

the best option to investigate. Therefore, the three major

objectives of this study are: (1) Investigating ground veg-

etation of juniper and measuring stem volumes by field

surveying; (2) Estimating vegetation indices based on an

adaptive maximum filtering algorithm for 5 9 5 pixel size

derived from remotely sensed ALOS data; and, (3) Esti-

mating simple regression coefficients between vegetation

indices and stem volume of juniper.
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Materials and methods

Study area

The study site is located in the arid and semi-arid region of

northeast Iran (Figs. 1, 2) and covers 15.21 km2

(3.9 9 3.9 km). The ordinates of the site are 37�200031.190–
37�180022.300 N, 58�490059.130–58�520034.400 E. Annual

precipitation is 156 mm and the elevation ranges from 700

to 1200 m a.s.l., with slopes of 21–27� (Fig. 1).
Twenty-five 300 m2 sample plots were randomly

selected (Fig. 2). Juniper trees were typically 3–4 m high

with crown diameters of 3–5 m (Fig. 3).

Image data

Image data from an ALOS satellite launched 24 January

2006 was used. Among the three remote sensing instru-

ments carried on the satellite, the Panchromatic Remote-

sensing Instrument for Stereo Mapping (PRISM) was used

for digital elevation mapping and the Advanced Visible

and Near Infrared Radiometer type 2 (AVNIR-2) for pre-

cise land coverage observation. PRISM is a panchromatic

radiometer with 2.5 m spatial resolution at nadir. It has one

band at 0.52–0.77 lm wavelength. The AVNIR-2 is a

visible and near infrared (NIR) radiometer for observing

land and coastal zones with 10 m spatial resolution at

nadir; it has four multispectral bands: blue (0.42–0.50 lm),

Fig. 1 Juniper distribution based on the crown cover percentage in the northeast of Iran
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green (0.52–0.60 lm), red (0.61–0.69 lm), and NIR

(0.76–0.89 lm). Combined images from PRISM and

AVNIR-2 were used for the analysis. These images were

acquired on 25 October 2007 by Avnir-2 and PRISM.

Atmospheric correction was analyzed by ENVI user guide

and ENVI software to remove the noise of reflectance on

AVNIR-2 based on SRTM digital elevation model with

flash (referred to user guide for atmospheric correction).

The FLAASH model includes a method for retrieving an

estimated aerosol/haze amount from selected dark land

pixels in the scene. The method is based on observations by

Kaufman et al. (1997). Gram–Schmidt pansharpening

images were extracted from AVNIR-2 and PRISM (com-

bined band). The final spatial resolution was 2.5 m on the

ground. Gram–Schmidt Spectral Sharpening is more

accurate and recommended for most applications such as

land-use planning. Moreover, it is typically more accurate

when the spectral response function of a given sensor is

used to estimate what the PAN data look like (Fadaei et al.

2011).

Calculation of vegetation indices

Vegetation indices were constructed from reflectance

measurements in four wavelengths. As noted above,

AVNIR-2 provides multispectral data which can be used to

analyze the specific characteristics of vegetation. It is dif-

ficult to estimate the spectral properties of juniper crowns if

an understory is present (Romero-Sanchez and Ponce-

Hernandez 2017).

In remote sensing applications, the most commonly used

index to detect vegetation or its vitality is the normalized

difference vegetation index (NDVI) developed by Rose

et al.:

NDVI ¼ NIR� RED

NIRþ RED
ð1Þ

where RED and NIR the spectral reflectance measurements

acquired in the red and near-infrared regions, respectively

(Rouse et al. 1974). A number of derivatives and alterna-

tives to NDVI have been proposed to overcome its limi-

tations. The soil-adjusted vegetation index (SAVI) was

proposed by Huete (1988) to account for and minimize the

effect of soil background conditions, and is calculated as:

Fig. 2 Position of sample plots

Fig. 3 Persian juniper in northeast Iran
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SAVI ¼ NIR� REDð Þ 1þ Lð Þ
NIRþ REDþ L

ð2Þ

where RED and NIR are the same as in the NDVI, and L

indicates the soil brightness-dependent correction factor

that compensates for differences in soil background con-

ditions (Huete 1988). Optimal L values differ with vege-

tation density. For low vegetation densities, L = 1, for

intermediate densities, L = 0.5, and for higher densities,

L = 0.25 (Huete 1988). A single adjustment factor

(L = 0.5) reduced soil noise considerably throughout a

range of vegetation densities (Huete 1988). Therefore, we

set L to 0.5 and 1.0 in this study. The optimized soil-

adjusted vegetation index (OSAVI) was created for agri-

cultural applications by Rondeaux et al. (1996) and cal-

culated as:

OSAVI ¼ NIR� REDð Þ
NIRþ RED þ 0:16

ð3Þ

where RED and NIR are the same as in the NDVI. The

value 0.16 reduced soil noise for both low and high veg-

etation cover (Rondeaux et al. 1996). The modified soil-

adjusted vegetation index (MSAVI) replaces the constant L

in the SAVI equation with a variable L function (Qi et al.

1994) and is calculated as:

MSAVI ¼ 1

2
2� NIRþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� NIR þ 1ð Þ2�8� NIR � REDð Þ
q

� �

ð4Þ

where RED and NIR are the same as in the NDVI. The

dynamic range of the inductive MSAVI was slightly lower

than that of the empirical L function due to the difference

in L boundary conditions. Small leaves reduce the leaf area

in arid vegetation, and open canopies mean that much soil

is visible (Qi et al. 1994). The total ratio vegetation index

(TRVI) was introduced and calculated as:

TRVI ¼ 4
NIR� RED

NIRþ REDþ Gþ Bð Þ

� �

ð5Þ

For this equation, the normalized difference of the NIR

and RED wavelengths was divided by the total visible and

NIR wavelengths. The 4 is the number of total measured

reflectance means if the forest is maximum density. The

value of TRVI will be a high level equal to 1, for low

density it is equal to - 1 (Fadaei et al. 2012). This equation

shows the ratio of the normalized difference of visible,

NIR, and total reflectance (Fig. 4).

In this study, NDVI, SAVI (L = 0.5 and 1), OSAVI,

MSAVI and TRVI, were used as vegetation indices to

estimate the density of ground vegetation and stem volume

of junipers.

Ground truth

Field measurements provide the most accurate biomass

data but they are time- consuming and labor intensive, and

it is not viable to use them for large areas (Santoro et al.

2006). The coordinates of each corner and center of sub-

sample plots from image pan-sharpening were inputed to

the GPS device. The corner position for each sub-sample

plot was determined and the ground cover estimated by

measuring stem volumes of juniper. Crown diameters have

been classified in three classes per ha (Fig. 5). Measuring

stem volumes were carried out with the assistance of

members of a natural resource organization in the region.

Field surveys took place at the end of October, 2009.

Determination the juniper spectral value based

on normalized different vegetation index (NDVI)

After image pre-processing and atmospheric correction,

spectral signatures from the vegetation index image was

derived by overlapping two images (pan-sharpening and

vegetation index). In these forests, vegetation could include

three categories, each with different spectral signatures

(Peng et al. 2013). The first category, which had a high

value, were grasslands and sand, the second, had a value

close to grasslands and sand, were juniper trees. The third

category which showed a low value was shadow. These

Fig. 4 The properties of AVNIR-2 wavelengths

Fig. 5 The general properties of juniper crown diameters per ha
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categories were defined based on two overlapping images

(vegetation index image and pan-sharpening). The high

values (0.29–0.49) indicate grasslands and sand reflectance

(ground vegetation), the medium values (0.11–0.29) the

juniper spectral value, and the low values (- 0.02 to 0.11)

shadow. Based on this algorithm, the representative value

of junipers was NDVI values from the plot that extracted as

ASCII file from the vegetation index image (Fig. 6). The

ASCII file was imported to Microsoft Excel and using

Visual Basic editor the best threshold combination was

determined. The best threshold from the training data was

based on sampling ground data (Fig. 6). Subsequently, the

optimum threshold from maximum filtering 5 9 5 vege-

tation indices was applied. Finally, the simple linear

coefficient regression between the number of juniper trees

determined by field surveys and the vegetation indices in

the all plots were calculated.

Data analysis

Pan-sharpening images from AVNIR-2 and high-resolution

panchromatic images (PRISM) with 2.5 m resolution were

made (Fadaei et al. 2011). The vegetation indices were

calculated from each sample plot using ALOS satellite

data. The maximum filtering (5 9 5) on vegetation index

values was applied to determine the optimum value of

juniper. Stem volumes (tree numbers) from each sub-

sample plot were calculated. Subsequently, maximum fil-

tering was applied to obtain the high value vegetation index

on 5 9 5 pixel size. Finally, the simple linear regression

between tree number (ground vegetation cover) and vege-

tation indices was calculated for the total sub-sample plots.

All analyses were performed using the Environment for

Visualizing Images (ENVI) software and Microsoft Excel

2007 using Visual Basic Editor (VBE).

Results and discussion

Relationship between vegetation indices and ground

cover

The linear regression between the NDVI, MSAVI, OSAVI,

SAVI (1), SAVI (0.5) and TRVI and the ground cover was

calculated for all sub-sample plots (Fig. 8). The relation-

ship between vegetation indices and ground cover was

negative. This is similar to the result of Anderson et al.

(1993), indicating no significant NDVI results compared to

the juniper canopy (Anderson et al. 1993).

The sub-plots were generally divided into two cate-

gories: (1) those with few juniper trees and good ground

cover, and (2) those with numerous junipers and little

ground cover.

In the field survey, plots with few individual junipers

had more ground cover compared with plots with more

junipers and low vegetation indices (Fig. 7a–f). The NDVI

versus other vegetation cover indices was insignificant and

similar to the results of Purevdorj et al. (1998) for the linear

correlation coefficient between tree density as the SPOT

data was negative (Purevdorj et al. 1998). The normalized

difference vegetation index, which shows the difference

between red and near infrared reflectances, is normally

high with high density vegetation where there is typically a

large difference between red and NIR wavelengths. The

NDVI, as an index of photosynthetic activity, is one of the

most commonly used vegetation indices. Vegetation indi-

ces are based on the phenomenon by which different sur-

faces reflect light differently for a given wavelength.

Photosynthetically active vegetation, in particular, absorbs

most of the red wavelength that hits it while reflecting

much of the NIR wavelength. Dead or stressed vegetation

reflects more red light and less NIR light. Likewise, non-

vegetated surfaces have more even reflectance across the

light spectrum. In arid and semi-arid regions, the NDVI is

low, particularly in forests where vegetation cover is sparse

as it is sensitive to the optical properties of the soil back-

ground (Veraverbeke et al. 2012; Meyer et al. 2017). Soil

and plant spectral signatures tend to mix non-linearly, and

ground cover in arid and semi-arid areas, due to their

adaptation to harsh desert conditions, lack the strong red

edge of plants in humid regions. The soil background effect

is particularly important when the vegetation cover is

sparse. Plot 1 had more ground cover that produced a low

vegetation index. This result is related to the work of

(Meyer et al. 2017) who observed dead and dying trees on

open slopes below 2400 m, suggesting that the climate at

these altitudes is close to the tolerance limits for juniper.

Plot 2 had fewer juniper trees than other plots and a high

NDVI value. In addition, plots 11 and 3 had numerous

Fig. 6 Distribution of NDVI values
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junipers and low NDVI values. Figure 7d shows that the R2

of the optimized soil-adjusted vegetation index (OSAVI)

was larger than those of the NDVI, the modified SAVI,

SAVI (1), and SAVI (0.5). This is explained by the SAVI

equation in which the soil optimum background for arid

and semi-arid areas is high. The OSAVI index is recom-

mended for arid and semi-arid areas (Rondeaux et al.

1996). As shown in Fig. 7b, c, d, the R2 of SAVI (1) and

SAVI (0.5) were smaller than OSAVI because the former is

used for high density forests (Rondeaux et al. 1996). The

R2 values for NDVI, SAVI (0.5), SAVI (1) and the mod-

ified SAVI were lower than for the OSAVI, but the dif-

ferences were not remarkable. Plot 22 had little ground

vegetation but a good MSAVI value. The best vegetation

index used in this study was the TRVI, the total ratio

vegetation index. Figure 7f shows that the R2 of the TRVI

was larger than those of the NDVI, MSAVI, OSAVI, SAVI

(1), SAVI (0.5). The TRVI is an index used for arid and

semi-arid regions where forests are generally sparse with

small trees, and these regions generally have poor reflec-

tance in NIR and red wavelengths, and hence the difference

between them is low. Conventional vegetation indices are

based on NIR and red wavelengths. Therefore, the TRVI

was applied for arid and semi-arid regions on the basis of

the total wavelength (visible and NIR). This index had a

higher value than the other vegetation indices. However,

the soil background effect is particularly important when

the vegetation cover is sparse (Huete 1988).

Conclusions

The estimation of vegetation cover is very important in

monitoring arid and semi-arid lands (Veraverbeke et al.

2012). The potential evaluation of ALOS (advanced land

observing satellite) data to delineate ground cover, in this

case, the dominant Juniperus excelsa subsp. polycarpos, is

shown in Fig. 8.

To correct the best value of vegetation reflectance, the

Internal Average Relative Reflectance (IARR) was per-

formed to correct atmospheric effects (Fig. 9).

The simple coefficient regressions has been evaluated

between vegetation indices and the ground vegetation. In

the first section, we found the range of optimum spectra to

identify the subspecies from ground vegetation, sand, and

shadow. With the vegetation index value (5 9 5) pixel

size, maximum filtering was applied. The subspecies was

growing in arid and semi-arid areas with sparse and low

ground cover. Vegetation indices were low for sparse for-

ests of small trees. An important finding was that

Fig. 7 Relationship between tree density and vegetation indices
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conventional vegetative indices can be an unreliable mea-

sure of arid plant cover. The soil background can also have

an important effect on vegetation indices and has a greater

reflection in the near infrared (NIR) and RED wavelengths

than the vegetation, although the usual vegetation indices

are based on the NIR and RED wavelengths. Soil compo-

nents that affect spectral reflectance can be grouped into

three components: color, roughness, and water content.

Roughness has the effect of decreasing reflectance because

of an increase in multiple scattering and shadowing (Zhang

et al. 2017). For RED-NIR scattergram, this is referred to

as the ‘‘soil line’’ and is used as a reference point in most

vegetation studies. The important factor that influences

vegetation indices in arid and semi-arid regions is the soil

line. However, the problem is that real soil surfaces are not

homogeneous and are a composition of several types of

variation. Analysis has shown that variability in one

wavelength is often functionally related to the reflectance

in another (Baret and Guyot 1991). Therefore we applied

the TRVI based on the total wavelength (visible and NIR).

The total ratio vegetation index had high values based on

the total wavelength. Moreover, ALOS data was also used

which had good resolution in the panchromatic and mul-

tispectral bands for this region with sparse vegetation. The

ALOS data also have a suitable viewpoint for forest

inventories. Further investigation of the behavior of this

conifer species is needed. Arid and semi-arid vegetation are

adapted to hydrological and thermal stresses, and hence

special methods are required to extract the ground cover

from satellite imagery. Regeneration is one of the most

important criteria to assess the sustainable management of

natural forests. Knowledge of the quantitative and quali-

tative status of the regeneration as well as factors influ-

encing forest renewal is necessary. It is necessary to plan

for the rehabilitation and development of mountain forests.

Soil fertilization plays an important role in regeneration

and studies suggest that lime is most effective in improving

regeneration. Therefore, a study on soil organic matter is

Fig. 8 The NDVI map after atmospheric correction

Fig. 9 Atmospheric correction with the Internal Average Relative Reflectance (IARR) algorithm, a before correction b after correction
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recommended for the establishment seedlings. For other

studies, the identification of soil conditions using satellite

data is necessary.
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