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Abstract Forest inventories based on remote sensing often

interpret stand characteristics for small raster cells instead

of traditional stand compartments. This is the case for

instance in the Lidar-based and multi-source forest inven-

tories of Finland where the interpretation units are

16 m 9 16 m grid cells. Using these cells as simulation

units in forest planning would lead to very large planning

problems. This difficulty could be alleviated by aggregat-

ing the grid cells into larger homogeneous segments before

planning calculations. This study developed a cellular

automaton (CA) for aggregating grid cells into larger cal-

culation units, which in this study were called stands. The

criteria used in stand delineation were the shape and size of

the stands, and homogeneity of stand attributes within the

stand. The stand attributes were: main site type (upland or

peatland forest), site fertility, mean tree diameter, mean

tree height and stand basal area. In the CA, each cell was

joined to one of its adjacent stands for several iterations,

until the cells formed a compact layout of homogeneous

stands. The CA had several parameters. Due to high

number possible parameter combinations, particle swarm

optimization was used to find the optimal set of parameter

values. Parameter optimization aimed at minimizing

within-stand variation and maximizing between-stand

variation in stand attributes. When the CA was optimized

without any restrictions for its parameters, the resulting

stand delineation consisted of small and irregular stands. A

clean layout of larger and compact stands was obtained

when the CA parameters were optimized with constrained

parameter values and so that the layout was penalized as a

function of the number of small stands (\ 0.1 ha). How-

ever, there was within-stand variation in fertility class due

to small-scale variation in the data. The stands delineated

by the CA explained 66–87% of variation in stand basal

area, mean tree height and mean diameter, and 41–92% of

variation in the fertility class of the site. It was concluded

that the CA developed in this study is a flexible new tool,

which could be immediately used in forest planning.

Keywords Forest planning � Particle swarm optimization �
Raster data � Segmentation � Spatial optimization

Introduction

Forest inventory methods based on remote sensing often

produce inventory results for small square-shaped pixels.

This is the case for instance when the inventory is based on

the interpretation of satellite images. When the inventory

uses laser scanning and the area-based interpretation

approach (Næsset 2002; Maltamo and Packalen 2014;

Vauhkonen et al. 2014), the optimal size of the interpre-

tation unit is of the same magnitude as the size of the field

plots that are used as ground truth (Pippuri et al. 2013).

Commonly used field plot sizes range from 250 to 500 m2,

corresponding to pixel sizes of about 16 m 9 16 m

(256 m2) to 22 m 9 22 m (484 m2). For example, in the

Finnish Lidar-based forest inventory, stand variables are
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predicted for 16 m 9 16 m pixels. Lidar inventories cover

most of the privately owned forests of Finland (www.met

sakeskus.fi). The results of these inventories are freely

available at www.metsaan.fi/paikkatietoaineistot.

Another source of free forest inventory data is the multi-

source National Forest Inventory of Finland (Tomppo et al.

2008). Also in this inventory, site and stand characteristics

are predicted for 16 m 9 16 m pixels, which cover the

whole country. The data source is available in the internet

for free download (www.paikkatietoikkuna.fi).

These forest inventories are excellent datasets for forest

management planning because the data are spatially con-

tinuous and include all variables required in planning cal-

culations (Maltamo and Packalen 2014). The essential

information for management planning includes a few site

characteristics, which in Finland are the main type of the

site (mineral soil or peatland), fertility class, and temper-

ature sum (accumulated temperature during the growing

season). The required growing stock characteristics are

mean tree diameter, mean height and stand density (basal

area or number of trees per hectare).

Modern forest planning consists of simulation and

optimization steps (e.g., Zubizarreta-Gerendiain et al.

2018). The pixels or grid cells for which the stand variables

are predicted, can be used as simulation units in these

calculations. However, pixels and cells are too small to be

used as treatment units in actual management (e.g. harvest

blocks). Fortunately, optimization offers possibilities to

aggregate treatments into large enough continuous areas,

called as dynamic treatment units (DTUs). Usually, various

heuristics are used for this purpose (e.g., Bettinger et al.

1999, 2002; Heinonen and Pukkala 2004). Mathematical

programming is often ruled out since the number of cells

may be tens or even hundreds of thousands (Öhman 2000;

Öhman and Lämås 2003; Heinonen et al. 2018).

Heuristic methods available for spatial optimization fall

into two categories: centralized and decentralized methods

(Pukkala et al. 2014). Centralized heuristics may be cate-

gorized as global methods, since the effect of changing the

solution during the optimization process is evaluated

‘‘globally’’, i.e., at the level of the whole planning area.

Decentralized or local methods compare treatment alter-

natives at the pixel level. Therefore, they are faster than

global heuristics in solving large spatial forest planning

problems (Pukkala et al. 2008, 2014).

Even when heuristic methods are used, planning calcu-

lations (both simulation and optimization) become too time

consuming if the number of calculation units is very large.

Global heuristics may become impractical already with a

few tens of thousands of calculation units (Heinonen et al.

2018). However, real-life planning problems may include

much larger datasets. For example, if the planning area is

10,000 ha (10 km 9 10 km) and the size of the pixel is

256 m2 (16 m 9 16 m), the number of pixels is 390,625.

To alleviate the problems arising from a high number of

small spatial units, segmentation methods have been

developed to aggregate these units into larger segments

(Pekkarinen 2002; Pekkarinen and Tuominen 2003; Mus-

tonen et al. 2008; Wulder et al. 2008; Koch et al.

2009, 2014; Dechesne et al. 2017). The segments, which

are spatially continuous and homogeneous forest patches,

are then used as calculation units in forest planning. Seg-

mentation may use interpreted stand variables, ALS (air-

borne laser scanning) pulse data, intensities of different

wavelengths of electromagnetic radiation, external data

such and soil and road maps, as well as combinations of

different data sources and types.

Many segmentation methods have been suggested in the

literature, but only a few are commonly used in forestry

(Wulder et al. 2008). The most common category of seg-

mentation methods might be region merging, in which

adjacent units are gradually merged into larger areas

according to their similarity, until a stopping criterion is

reached. The initial units may be small raster cells (Mus-

tonen et al. 2008) or Voronoi polygons, each of which

represents an individual tree (Olofsson and Holmgren

2014). The shape of the segments can be taken into account

in some of the region-merging algorithms (Mustonen et al.

2008). The size of the final segments can be controlled

through the stopping criterion.

Also other types of segmentation methods have been

presented in forestry literature. For example, Koch et al.

(2009) developed a method in which grid cells of

20 m 9 20 m are first classified based of forest type,

roughness of canopy surface and tree height. Then, the

adjacent cells of the same class are grouped into forest

stands. Wu et al. (2013) describe a method that uses the

mean shift algorithm to generate ‘‘raw stands’’, which are

subsequently refined by using the spectral clustering

algorithm. Dechesne et al. (2017) provide a review of

segmentation methods for airborne LIDAR data and high

resolution multispectral imagery.

The use of segmentation methods needs expertise and

special software. An alternative to the commonly used

segmentation methods are cellular automata (CA). They

are transparent and flexible systems, which are easy to

program, use, control and understand. CA are self-orga-

nizing systems, which have been used for many purposes

(Von Neumann 1966; Wolfram 2002). In forestry, CA have

been used for land allocation and planning (Strange et al.

2001; Heinonen and Pukkala 2007), and for simulating the

spread of pests and pathogens (Möykkynen and Pukkala

2014; Möykkynen et al. 2015, 2017).

Although CA are simple, they have parameters, which

affect the result of the CA run. Therefore, an analysis on
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the effects of parameters that guide the CA process is

required, in addition to programming the CA tool. When

small pixels are aggregated into homogeneous forest seg-

ments or stands, common criteria are the shape of the

stands, their size, and the homogeneity of forest attributed

within stands. The usual aim is to have a stand delineation

with small within-stand and large between-stand variation

in stand attributes. In addition, irregular stand shapes are

avoided, as well as very small stands.

The importance of the above criteria depends on the

purpose of aggregation; shape of the segments is not

important if the main purpose is to reduce the number of

calculation units for scenario analyses, yield predictions,

etc. In this case, the segments correspond to strata, which

do not need to be continuous. On the other hand, shape is

important if the segments are used in forest management to

implement treatments. Round, compact, and not too

irregular segments are targeted. The segments should not

be too small, but not too large either. If the segments are

regarded as non-divisible management units, large seg-

ments may reduce the possibilities of planning to optimize

the use of forest resources. For example, an even-flow

constraint and a low number of large segments may be a

problematic combination.

This study developed a CA for stand demarcation so that

all the main criteria of good stand delineation were taken

into account, namely shape, size and homogeneity of the

created stands. In addition to describing the CA, the effects

of its parameters on stand delineation were analyzed. Since

the number of parameters and their combinations is high,

numerical optimization was used to find parameters that

result in good stand delineation.

Materials and methods

Cellular automaton

Cellular automata are self-organizing algorithms based on

the assumption that the interaction between cells decreases

rapidly with increasing distance (Strange et al. 2001). Each

cell takes one of a limited number of states, which can be

management schedules, land uses or, in the case of the

current study, stand numbers. In stand delineation, the

purpose of CA is to find the optimal stand number for each

cell. The cell values evolve in discrete time steps according

to a set of rules. These rules only consider the local

neighborhood of the cell.

The starting points of the cellular automaton for stand

delineation were the studies of Strange et al. (2001, 2002)

and Heinonen and Pukkala (2007). Strange et al.

(2001, 2002) compared six different variants of cellular

automata and found that the variant that included the so-

called innovation and mutation operations, was the best.

Innovation is equal to selecting the best state for the cell,

and mutation is equal to drawing the cell state randomly

from the set of available alternatives. Both mutation and

innovation are applied with certain probability, which

means that that this variant of CA is not deterministic.

Heinonen and Pukkala (2007) used the CA proposed by

Strange et al. (2001, 2002) for spatial optimization in the

context of forest planning. They found that the best results

are obtained when the probability of innovation is high,

and the probability of mutation is low. Based on this result,

the algorithm of the current study was simplified so that the

probability of innovation was equal to 1 at every iteration

and the probability of mutation was constantly zero. As a

result, the CA was deterministic so that the best stand

number was assigned for each cell at every iteration.

Determinism is an advantage when the parameters of the

algorithm are optimized, because the CA needs to be run

only once with each tested parameter combination.

In the CA developed in this study, all cells were given

an initial stand number. This was accomplished by dividing

the area into square-shaped initial stands (two hectares in

this study). Then, the best stand number was assigned for

each cell for several iterations. The ranking of alternative

stand numbers was based on three criteria: (1) common

border between the cell and the stand (2) stand area, and (3)

similarity of stand characteristics in the cell and the stand

(Fig. 1).

The ranking of alternative stand numbers was calculated

with the following formula, which has the same form as the

general additive utility function (Kangas et al. 2008):

Uij ¼ a1u1 Bij

� �
þ a2u2 Aj

� �
þ a3u3 Dij

� �
ð1Þ

where Uij is the score (utility) of assigning the number of

stand j to cell i, Bij is the length of common border between

cell i and stand j, Aj is the area of stand j, and Dij is the

difference in stand characteristics between cell i and

stand j.

The score was calculated only for the eight immediate

neighbors of the cell; the cell took the stand number of one

of its neighbors. In this article, immediate neighbor cells to

east, west, north and south are called adjacent neighbors.

Cells to northeast, northwest, southeast and southwest are

called corner cells. A cell has eight neighbors, four of

which are adjacent and four are corner cells.

With a square lattice, the corner cells have only one

common point with the cell. To make it possible to control

the effect of corner cells on the CA, corner cells were given

a weight between 0 and 1. The weight of adjacent cells was

always 1. The ‘‘border length’’ Bij of Eq. 1 was calculated

as the sum of the weights of the eight neighbors:
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Bij ¼
X8

k¼1

vksk; j ¼ 1; . . .; J ð2Þ

where vk is the weight of neighbor k and J is the number of

stands. Variable sk indicates whether neighbor cell k be-

longs to stand j (sk = 1, otherwise sk = 0).

The difference of stand characteristics between cell i

and stand j was calculated from:

Dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XR

r¼1

wr qri � qrj
� �2

vuut ; j ¼ 1; . . .; J ð3Þ

where wr is the weight of stand variable r (Rwr = 1), qri is

the value of standardized variable r in cell i and qrj is the

mean value of the same variable in stand j. All variables

included in the calculations were standardized to mean zero

and standard deviation 1. This removed the effect of dif-

ferent units of variables.

Since each cell was joined to one of its neighbors, all

one-cell-wide stands disappeared at every iteration. The

stand number assigned to the cell depended on the weights

(a1, a2, a3) of the three criteria in Eq. 1. In the example

shown in Fig. 1, the evaluated cell (white cell in Fig. 1)

will be joined either to Stand 1 or Stand 2, depending of the

weights of the criteria. If the weight of common border is

high, the cell will be joined to Stand 1, otherwise it will be

joined to Stand 2.

The variables used to measure the similarity of stand

characteristics were: main site type (mineral soil, spruce

mire, pine bog, open bog), fertility class (mesotrophic,

herb-rich, mesic, sub-xeric, xeric), mean tree diameter,

mean tree height, and stand basal area. These are the

variables that are usually assessed in the field in manage-

ment-oriented forest inventories and imported to forest

planning systems.

Each of the three criteria of Eq. 1 had an associated sup-

priority function (u1, u2 and u3). These functions indicated

whether the effect of the criterion on the score was linear or

non-linear, and whether the effect was positive or negative.

The sub-priority functions were as follows:

u1 ¼
1

1þ exp b1 b2 � Bij

Bmax

� �� � ð4Þ

u2 ¼
1

1þ exp c1 c2 � Aj

� �� � ð5Þ

u3 ¼ �Dij ð6Þ

where Bmax is the maximum possible value of Bij (4 plus 4

times the weight of corner cells, see Eq. 2). Functions u1
and u2 are sigmoid curves (Fig. 2) indicating that small

values of Bij (common border) and Aj (stand area) do not

contribute much to the score, and the effect of increasing

Bij and Aj levels-off after certain value. Priority function u3
implies that decreasing difference in stand characteristics

between cell i and stand j increases the likelihood of

joining cell i to stand j.

A sigmoid type of relationship between Bij and U con-

tributed to the formation of compact, round-shaped stands

and acted against the appearance of stands consisting of

long and narrow chains of cells. This type of stands may be

formed in the transitional zones between two stands, or in

the transitional zone between mineral soil site and peat-

land. In forestry practice, these zones are seldom demar-

cated as separate stands.

The usual aim in stand delineation is to avoid stands that

are too small for implementing treatments. However, the

aim is not to delineate as large stands as possible, since

large stands may decrease the efficiency of forest utiliza-

tion when stands are understood as indivisible management

units. For example, when the aim is to harvest the same

amount of wood every year, a low number of large stands

may hamper the achievement of this management goal.

Therefore, a sigmoid relationship between stand area and

score (Eq. 5) was used.

Both sigmoid-type priority functions had two parame-

ters (b1, b2, c1, c2). Since the specific aim of using sigmoid

Stand 4

15

Stand 3 Stand 1

10 4 1 1 25

3 28 1

2 2 1

Stand 2

29

Fig. 1 In the cellular automaton developed in this study, a cell is

joined to one of its adjacent stands. The white cell will be connected

to Stand 1 or Stand 2 if basal area is the only stand variable

considered (the boldface italic numbers 10, 15, 25, 28, and 29 are

stand basal areas in m2 ha-1). The decision depends on the weights of

common border, similarity of stand characteristics in the cell and

neighboring stand, and area of the stand (Eq. 1)
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was to create compact round-shaped stands and avoid

creating very small stands, the parameters were constrained

to the following ranges (see Fig. 2):

• b1: [- 30, - 10]

• b2: [0.5, 0.8]

• c1: [- 5, - 1]

• c2: [1, 3]

The CA described above may lead to splitting stands to

two or more parts. If the corner cells have a weight higher

than zero, different stands may even cross each other

without being discontinuous (Fig. 3). This is not always a

problem as stands consisting of different parts may be

interpreted as strata, which can be used for yield predic-

tions, scenario analyses, etc. However, if the purpose of

stand delineation is to create management plans, spatially

continuous non-crossing stands are often pursued.

To overcome the problem arising from crossing and

discontinuous stands, renumbering was applied to the lay-

out of stand numbers every now and then so that the cells

of each continuous and non-crossing area with the same

stand number received a new stand number, different from

all other continuous areas. In the example of Fig. 3, the

yellow stand would be divided into five new stands, two of

which would consist of only one cell. As each cell is

always joined to one of its neighbors, these one-cell-wide

stands would disappear during the next CA iteration.

CA can be run in parallel and sequential modes (Hei-

nonen and Pukkala 2007). A parallel mode can be imple-

mented so that all the changes in cell state (cell state is

equal to the stand number of the cell) are implemented at

the end of the iteration. In sequential mode, the change is

implemented immediately, which means that a change in

one cell may affect the ranking of stand numbers of other

cells during the same iteration. According to Heinonen and

Pukkala (2007), there is no clear difference between the

two modes in the performance of the CA. The CA

described in this article used the sequential mode.

Optimization

The CA described above has 13 parameters:

• Weights of the main criteria of Eq. 1: three parameters

• Weight of corner cells in Eq. 2: one parameter

• Weights of stand variables used to calculate similarity

(Eq. 3): five parameters

• Parameters of sub-priority function u1 (Eq. 4): two

parameters

• Parameters of sub-priority function u2 (Eq. 5): two

parameters

0

0.2

0.4

0.6

0.8

1

Ef
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ct
 

Proportion of common border  

a 

b  -10, b  0.5 

b  -30, b  0.5 

b  -10, b  0.8 

b  -30, b  0.8 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5 6

Ef
fe
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Stand area (ha) 

b 

c  -5, c  1 
c  -1, c  1 
c  -5, c  3 
c  -1, c  3 

Fig. 2 Effect of the parameters of Eqs. 4 and 5 on the contribution of common border between cell and stand (a) and stand area (b) to the score

of the stand (Eq. 1). The score describes the likelihood of joining the cell to the stand

Fig. 3 Examples of crossing stands, which are created especially

when corner cells are interpreted as neighbors. All cells of the same

color belong to the same stand. When renumbering is done without

accepting corner cells as neighbors, each stand will be split into

several smaller stands (the borders of the new stands obtained from

the yellow stand are shown with black line)
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All these parameters affect the stand delineation result

of the CA. Finding the best setting of parameters by testing

different values with trial and error would be a very tedious

task due to the high number of combinations. For example,

if five different values for each parameter are inspected and

all their combinations are tested, the number of required

CA runs would be 513, which is equal to 1,220,703,125.

Due to the huge number of alternatives, optimization

was used to find the best possible values for the parameters

of the CA. The method used was particle swarm opti-

mization (Pukkala 2009; Arias-Rodil et al. 2015), which

has been found to work well when the number of simul-

taneously optimized variables is high (Jin et al. 2018). A

description of the particle swarm optimization algorithm

used in this study is presented in Appendix 1 in ESM.

The criterion used in parameter optimization was the

degree of explained variance, i.e., how much the delineated

stands explained of the total variation in site and growing

stock characteristics. Since five stand characteristics were

used, the objective function that was maximized in

parameter optimizations was the average degree of deter-

mination of these five variables:

maxz hð Þ ¼ 1

5

X5

r¼1

R2 hð Þr ð7Þ

where h is the set of 13 parameters affecting the func-

tioning of the CA and R2(h)r is the R2 (degree of explained

variance) of variable r. The R2 of a stand variable was

calculated from

R2 ¼ 1� SSE=SST ð8Þ

where, SSE is variation not explained by the delineation

and SST is the total variation of the characteristic in the

area. SST and SSE were calculated as follows:

SST ¼
XN

j¼1

Xnj

i¼1

yij � �y
� �2 ð9Þ

SSE ¼
XN

j¼1

Xnj

i¼1

yij � �yj
� �2 ð10Þ

where N is the number of stands, nj is the number of cells in

stand j, yij is the value of the variable in cell i belonging to

stand j, �y is the overall mean of the variable, and �yj is the

mean value of the variable among the cells that belong to

stand j.

Optimization problems

It can be concluded that when R2 is maximized as the only

criterion, the optimal weight of the similarity of cell i and

stand j will be high (a3 in Eq. 1) and the weights of the

other criteria will be low. The weight of the corner cell

would most probably be high. The result of this CA would

be a very scattered layout of irregular stands, many of

which are small. To prevent this outcome, the weights of

the three criteria were constrained to the following ranges:

• a1: [0.4, 0.7]

• a2: [0.2, 0.5]

• a3: [0.1, 0.4]

In addition, the maximum weight of the corner cell was

set as 0.5. Parameter optimization conducted with these

constraints is referred to as the baseline case. Since it was

noted that the result was still a rather scattered layout of

stands with many very small stands, another parameter

optimization was conducted with a higher minimum weight

for stand area and a zero weight for corner cells:

• a1: [0.4, 0.6]

• a2: [0.2, 0.4]

• a3: [0.2, 0.4]

• Weight of corner cell: 0

This optimization is referred to as the modified case.

The third case was a penalized optimization, in which

every stand smaller than 0.1 ha (smaller than 4 cells, as one

cell of 16 m 9 16 m is 0.0256 ha) contributed to penalty,

which was subtracted from the objective function value

(Eq. 7). The penalty was calculated as follows:

Penalty = 3 9 Psmall, where, Psmall is the proportion of

stands smaller than 0.1 ha.

Preliminary runs indicated that the stands stabilized after

about 15–20 iterations. In the optimizations of this study,

the number of iterations was 17. Renumbering was done

after the 5th, 10th and 15th iteration.

Data

The multi-source national forest inventory raster maps of

2015 were used in this study (�Natural Resources Institute

Finland, 2017). In this inventory, the site and growing

stock characteristics are interpreted for 16 m by 16 m cells,

which cover whole Finland (Mäkisara et al. 2016). The

data are available at www.paikkatietoikkuna.fi. The data

are grouped into 36 rectangular sets according to the Fin-

nish TM35 division of maps by the National Land Survey

(www.nls.fi). For this study, one of these area (P5), rep-

resenting eastern part of central Finland (east of Kuopio,

north of Joensuu), was selected first (west–east range

500,000–692,000 m; south–north range 6,954,000–

7,050,000 m in the ETRS-TM35FIN coordinate system).

Then, three rectangular areas of 150 by 200 cells (30,000

cells) were randomly chosen for the CA runs (Grids A, B

and C). The CA parameters were optimized separately for

these three grids.
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Results

In the baseline optimization, the weight of the corner cell

was the largest allowed (0.5) in all three grids (Table 1).

The weight of the common border was the lowest allowed

(0.4) in two areas. The values of parameters b1 and b2 of

the sigmoid function for the effect of common border

(Eq. 4) were always - 30 (b1) and 0.8 (b2), leading to a

relationship where the proportion of common border star-

ted to increase the score of a stand only when the pro-

portion of common border was higher than 0.6 (see Fig. 2).

The obtained parameters led to stand delineation in

which the percentage of small stands (smaller than 0.1 ha)

was high, 35–43% of all stands (Table 2). The number of

stands was high, and the average stand area was small,

0.23–0.36 ha. On the other hand, the degree of explained

variance was high for all five stand variables, which indi-

cated low within-stand and high between-stand variation is

stand characteristics. Figure 4 shows that the CA produced

a stand layout where the stand shape was often irregular, in

addition to the presence of many small stands.

When the weight of the corner cell was zero and the

weight of stand area had to be at least 0.2 (modified

problem), the weight of the common border was still near

its smallest allowed value, and the sub-priority function for

the effect of common border was similar as in the baseline

problem (Table 1). However, the number of stands

decreased drastically, and the average stand area increased

three- to four-fold (Table 2). The proportion of small

stands decreased significantly. This increment in stand size

was accompanied with decreased degree of explained

variance of stand variables. The R2 of site fertility

decreased the most, which means that within-stand varia-

tion in site fertility increased.

When the objective function was penalized based on the

number of small stands (\ 0.1 ha), the number of small

stands and the total number of stands decreased further, and

the mean stand area was over 1 ha in all tree lattices for

which the CA was optimized (Table 2). The location of the

sigmoid curve for the effect of common border changed so

that smaller proportions of common border started to

contribute to the score of the stand (Eq. 1). The degree of

explained variance decreased, as compared to the modified

problem formulation (Table 2).

Parameters obtained from the penalized problem for-

mulation led to a ‘‘clean’’ layout of stands (Fig. 4, right

panel), in the sense that the shape of the stands was seldom

very irregular and the proportion of small stands was low.

This appealing delineation was obtained at the cost of

increasing within-stand variation, especially in site fertility

(Table 2). The effect of parameters obtained from alter-

native problem formulations on the functioning of the CA

is illustrated in Fig. 5. Parameters found in the baseline

optimization led to very small average stand size, already

after a few iterations (Fig. 5a). Within-stand variation in

stand variables decreased rapidly, which is logical since all

heterogeneous areas were divided into many small stands.

The effect of renumbering after iterations 5, 10 and 15 can

be seen clearly. It can be concluded that, before renum-

bering, the layout resembled the one shown in Fig. 3, in

which the renumbering leads to dividing discontinuous and

Table 1 Optimal parameter values of the cellular automaton in three areas (Grids A, B and C) for three problems (base, modified, penalty)

Area Corner a1 a2 a3 b1 b2 c1 c2 w1 w2 w3 w4 w5

Grid A

Base 0.5 0.461 0.231 0.308 - 30 0.8 - 5 2.211 0.271 0.271 0.05 0.271 0.171

Mod 0 0.4 0.455 0.2 - 30 0.8 - 5 2.611 0.246 0.25 0.19 0.064 0.25

Penalty 0 0.456 0.345 0.2 - 10 0.773 - 2.783 1.699 0.277 0.168 0.184 0.291 0.08

Grid B

Base 0.5 0.4 0.5 0.1 - 30 0.8 - 1 1 0.262 0.262 0.05 0.262 0.199

Mod 0 0.4 0.4 0.2 - 30 0.8 - 1 3 0.322 0.05 0.315 0.05 0.322

Penalty 0 0.427 0.331 0.242 - 18.98 0.8 - 5 1.6 0.428 0.054 0.05 0.461 0.05

Grid C

Base 0.5 0.4 0.5 0.1 - 30 0.8 - 5 2.392 0.121 0.622 0.05 0.179 0.05

Mod 0 0.402 0.385 0.213 - 30 0.8 - 1 2.983 0.442 0.05 0.05 0.061 0.442

Penalty 0 0.515 0.291 0.2 - 10 0.8 - 3.208 2.937 0.44 0.05 0.172 0.159 0.201

Base refers to the baseline problem formulation, Mod to modified formulation and Penalty to the formulation in which small stands lead to

penalty

Corner = weight of corner cells in Eq. 2; a1, a2, a3 weights of the criteria in Eq. 1; b1–c2 = parameters of Eqs. 4 and 5; w1–w5 = weights of stand

variables in Eq. 3
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crossing stands into several continuous non-crossing new

stands.

When the CA was run with parameters obtained from

the modified and penalized solutions, the development of

stand delineation during the CA run was very different

from the baseline case in a few respects (Fig. 5). The

average stand area was constantly much larger, and the

effect of renumbering was smaller, suggesting a smaller

presence of crossing and discontinuous stands (see Fig. 4,

right panel). Because of larger average stand size, within-

stand variation was higher than obtained with the baseline

parameters. Most within-stand variation occurred in site

fertility, which means that larger and more round-shaped

stands were created mainly at the cost of increasing within-

stand variation in site fertility.

The parameters obtained from the penalized problem

formulation with Grid C were used to delineate stands of a

larger area (564 9 334 = 188,376 cells, 4822 ha) shown in

Figs. 6 and 7. Grid C is located in the upper left corner of

this larger area. The results show that the obtained stand

borders very well followed the border between mineral soil

sites and peatland (Fig. 6a), which is important for forest

planning, because only winter cuttings may be prescribed

for peatland sites whereas upland forests can be harvested

also in summer. On the other hand, there were many stands,

most of which represented upland forest, where the site

fertility class alternated between two adjacent classes. In

most of these cases, the two fertility classes were mesic and

sub-xeric, and in some cases they were herb-rich and

mesic. In a few cases, the stand consisted of three different

site fertility classes.

The stand delineation obtained with the CA followed the

spatial changes in mean tree diameter and stand basal area

(Fig. 7). Stand borders were drawn in practically all places

where the mean tree size or stand density changed within a

short distance, which means that the delineation followed

the current stand boundaries of the forest. On the other

hand, there were many boundaries in places where no

change could be observed in tree size or stand density.

Only a part of these boundaries can be explained by a

change in stand fertility or main site type (Fig. 6).

Discussion

This study described a cellular automaton for delineating

homogeneous stands from inventory data where stand

variables are interpreted for grid cells. The parameters that

guide the CA run were optimized for three different

problem formulations, using particle swarm optimization.

Since the CA can be understood as an algorithm that cre-

ates optimal stand delineations, the method used in this

study is in fact an example of two-stage optimization,

which may be called as meta optimization, super opti-

mization, or hyper optimization (Jin et al. 2018). The upper

stage optimized the parameters of the CA while the lower

stage optimized the stand delineation. The objective func-

tion of the upper level optimization was Eq. 7 while the

lower level optimization maximized Eq. 1.

However, when the CA is used in forestry practice, the

CA parameters do not need to be optimized every time. If

the purpose of CAs to create homogeneous and continuous

Table 2 Results calculated for stand delineations obtained with optimized CA parameters in different problem formulations for three grids

Area No. of

stands

Mean

area (ha)

Min

area (ha)

Max

area (ha)

Small

(%)

R2

Main type Fertility Diameter Height Basal area Overall

Grid A

Base 2019 0.36 0.03 8.22 35 0.875 0.721 0.861 0.871 0.836 0.833

Mod 763 0.95 0.03 7.83 18 0.792 0.566 0.812 0.826 0.791 0.758

Penalty 467 1.55 0.03 16.71 6 0.686 0.427 0.767 0.78 0.713 0.678

Grid B

Base 2470 0.29 0.03 7.04 37 0.903 0.718 0.812 0.834 0.796 0.813

Mod 803 0.9 0.03 6.66 18 0.798 0.46 0.728 0.765 0.735 0.697

Penalty 607 1.19 0.03 7.53 10 0.816 0.43 0.685 0.712 0.652 0.659

Grid C

Base 3326 0.23 0.03 6.91 43 0.872 0.92 0.858 0.872 0.85 0.874

Mod 697 1.08 0.03 7.58 13 0.903 0.45 0.78 0.806 0.807 0.749

Penalty 467 1.61 0.03 8.5 4 0.825 0.405 0.739 0.765 0.735 0.694

Overall R2 is the average R2 of the five stand variables used to measure the similarity of cells and stands

Small = percentage of stands smaller than 0.1 ha
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a d 

b e 

c f 

Fig. 4 Evolution of stand delineation in a grid of 200 9 200 cells

during a CA run after the first (a, d), 5th (b, e) and 15th (c, f) iteration
when the parameters of the CA are obtained from the baseline (a–

c) or penalized (d–f) optimization for Grid C. Different colors

represent different stands. The initial stands were 2-ha squares
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stands for forest management planning, the results of the

penalized optimization can be used. Running the CA with

these parameters leads to stands fully applicable as calcu-

lation units in forest planning and treatment units in the

implementation of the plan. If further aggregation of

treatments or forest features is required, spatial optimiza-

tion can be used, as shown in previous studies (Öhman and

Lämås 2003; Heinonen and Pukkala 2004). Several meth-

ods are available for spatial optimization: mathematical

programming, centralized heuristics such as simulated

annealing, tabu search or genetic algorithms (Borges et al.

2002; Bettinger et al. 2002), or decentralized heuristics

such as CA and the spatial version of the reduced cost

method of Hoganson and Rose (1984), suggested by Puk-

kala et al. (2008).

Spatial optimization can organize a pixel forest into

large enough stands also during the forest planning calcu-

lations, i.e., without any prior-planning segmentation.

However, a large forest consisting of small pixels leads to

so large spatial optimization problems that they cannot be

solved in reasonable time (Heinonen et al. 2018). For these

problems, the most capable category of spatial optimiza-

tion methods are the same decentralized heuristics which

can be used in pre-planning segmentation (Strange et al.

2001; Mathey et al. 2007; Heinonen and Pukkala 2007).

Therefore, CA and other decentralized heuristics can be

used in two different stages of the planning process: first, to
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aggregate grid cells into larger homogeneous stands and,

secondly, to aggregate cuttings into larger harvest blocks.

In addition to creating harvest blocks, spatial optimization

may also be used to form large continuous habitat patches

(Heinonen et al. 2007), minimize the risk of wind damage

(Heinonen et al. 2009; Zeng et al. 2010) or create fuel

breaks (González-Olabarria and Pukkala 2011).

When it was required that the CA should delineate

compact, continuous and large enough stands, the result

was a delineation where the stands were homogeneous with

respect to stand variables other than fertility class. Figure 6

shows that it was impossible to create a delineation in

which there were no small stands and the stands were

homogeneous with respect to site fertility. Therefore, a

compromise was necessary. Areas where site fertility

changes within a short distance may represent sites where

fertility is near the limit of two adjacent fertility classes.

Therefore, the main reason for the seemingly heteroge-

neous stands might be that a continuous feature (site fer-

tility) was classified into discontinuous classes.

The advantage of CA, as compared to several other

segmentation methods, is that CA is transparent and flex-

ible one-step method that is easy to program and control.

The same CA can be used with several types of lattice data

(e.g. Lidar, multisource, or satellite inventory). In addition,

the shape of the interpretation unit does not need to be

square. Hexagonal shape, for example, has the advantage

that it removes the effect of corner cells. Therefore, if the

shape of the interpretation unit can be decided in forest

inventory, hexagon is preferable to square (Heinonen et al.

2007).

The shape of the interpretation unit can also be irregular

(Pukkala et al. 2014). This requires that the length of the

Fig. 6 Stand delineation when the CA was used with parameters

obtained from the penalized problem formulation for Grid C. Grid C

(200 9 150 pixels) is located in the northwest corner of the area

(consisting of 564 9 334 pixels). aMain site type (red = mineral soil,

green = spruce mire, yellow = pine bog, light blue = open bog).

b Fertility class (red = herb-rich, green = mesic, blue = sub-xeric,

yellow = xeric)

Fig. 7 Stand delineation when the CA was used with parameters

obtained from the penalized problem formulation in Grid C. Grid C

(200 9 150 pixels) is located in the northwest corner of this area

(consisting of 564 9 335 pixels). a Mean tree diameter (white = 0

cm, black = 32 cm). b Stand basal area (white 0 m2 ha-1, black

40 m2 ha-1)
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common border between adjacent units is calculated, which

can be easily done with GIS tools. The stand characteristics

used to measure the similarity of cells can be chosen freely.

In this study, they were the same variables which are

imported to Finnish forest planning systems. However,

basal area, mean tree height and mean diameter are usually

assessed separately for different tree species. Using spe-

cies-specific values was not regarded necessary in stand

delineation. However, after the delineation, the growing

stock variables can be calculated separately for different

tree species, and these variables can be imported to the

planning systems.

The much used region-merging method (Mustonen et al.

2008; Wulder et al. 2008; Mora et al. 2010; Olofsson and

Holmgren 2014) is ‘‘one-directional’’ in the sense that the

area of the segments always increases when adjacent units

are merged. New stand boundaries are never drawn as

larger segments are formed by removing boundaries

between existing adjacent units. In CA, the segments may

enlarge or shrink, and the boundaries may change location.

The starting segments may be large or small, and the final

segments may be smaller or larger than the initial seg-

ments. For these reasons, the CA can be regarded as a more

dynamic and flexible method than the region-merging

algorithm. An interesting topic for future research would be

to compare the performance of the region-merging method

and the CA algorithm presented in this study.

One feature of the stand layouts created by the CA is

that large homogeneous forest areas (in terms of site and

growing stock characteristics) were divided into several

stands, which is partly due to the shape of the sub-priority

function for stand area (Fig. 2). This is not a disadvantage

in forest planning since a higher number of stands increases

the possibilities to optimize management. Planning may

combine similar adjacent stands into larger units if further

aggregation is regarded useful to reduce harvesting costs

(Lu and Eriksson 2000), prevent forest fragmentation,

reduce the risk of wind damage (Heinonen et al. 2009;

Zubizarreta-Gerendiain et al. 2018) or create large enough

continuous habitat patches for forest-dwelling species.

As a summary, the CA described and tested in this

article is a useful new tool, which could be immediately

used in forest planning to reduce the number of calculation

units and simplify forest planning calculations. The

parameters of the CA can be adjusted based on the purpose

of the aggregation. If the purpose is to create stands for

forest planning, parameters obtained from the penalized

problem formulation of this study can be used. The need

for aggregation tools similar to the CA described here is

increasing because forest variables are increasingly inter-

preted for units that are too small to serve as treatment

units in the implementation of forest management plans.
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Möykkynen T, Pukkala T (2014) Modelling the spread of a potential

invasive pest, the Siberian moth (Dendrolimus sibiricus) in

Europe. For Ecosyst 1:10
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