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Abstract Environmental change attracts particular atten-

tion by biologists concerned with the performance of bio-

logical systems under stress. To investigate these, dose–

response relationships should be clarified. It was previously

assumed that the fundamental nature of biological dose–

responses follows a linear model, either with no threshold

or with a threshold below which no effects are expected to

occur in biological endpoints. However, substantial litera-

ture, including widespread documentation in plants, has

revealed that hormesis commonly occurs. Hormesis is

highly generalized and can be utilized as a quantitative

measure of biological plasticity. Conditioning induced by

adaptive responses also occurs in the framework of

hormesis and is of particular importance to environmental

change biology with regards to evolutionary adaptations.

This paper presents additional evidence for hormetic dose

responses induced by temperature in plants. The current

understanding on hormesis provides a perspective for next

generation environmental change research. Hormesis

should have a central role in environmental change biology

of vegetation.
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Introduction

Environmental change is the focus for biologists concerned

with the functioning of biological systems under stress.

How biological systems respond to environmental stres-

sors, what capacity biological systems have to adapt, and

what are ‘‘safe’’ levels of environmental change ‘‘stress’’

factors to not only avoid adverse effects but also to enhance

productivity, are some of the many questions puzzling

scientists dealing with environmental change biology,

policy and decision makers, and governments.

At the center of these biological questions is the dose–

response relationship, a pillar of toxicology and funda-

mental in biology which guides the assessment of envi-

ronmental tolerances. Throughout the 20th century, it was

assumed that the fundamental nature of dose–response

relationships (Fig. 1) was either linear or a threshold below

which no effects were expected (Calabrese

2016a, 2017a, b). Linear non-threshold (LNT) and thresh-

old models have been widely applied and adopted by

worldwide regulatory agencies for human cancer and non-

cancer endpoints, (e.g., endocrine disruptor agents), but

also for the effects of air pollutants on vegetation as in the

case of ground-level ozone (Fuhrer et al. 1997; USEPA
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1998, 2013; WHO 2000a, 2006; Enstrom 2005, 2017; Mills

et al. 2007; Zoeller et al. 2015; Bogen 2016, 2017).

The problem with the adoption and use of these two

dose–response models that regulatory agencies employ is

that they are accompanied by thousands of exceptions

(Calabrese 2016a, 2017a, b). The vast majority of these

reflect biphasic dose responses commonly referred to as

hormesis (Calabrese and Blain 2011; Calabrese 2017c;

Calabrese and Mattson 2017; Agathokleous 2018; Agath-

okleous et al. 2018a, b; Kim et al. 2018).

In light of recent significant progress in the field of dose

response, this paper examines the question of whether

hormesis should have a central role in vegetation envi-

ronmental change biology or be ignored or even

marginalized. In the framework of this examination, plant

response to air temperature is provided as a paradigm of the

occurrence of hormesis in vegetation environmental

change biology.

The biological basis of the phenomenon
of hormesis

Hormesis (Fig. 1) is a dose–response phenomenon where

low doses induce stimulation and high doses induce inhi-

bition (Stebbing 2003). The differentiation of the biological

response between the low and high dose zones, as seen in

the hormetic model, has generated considerable scientific

curiosity about the biological mechanisms underpinning

the response. Therefore, the biological mechanisms have

been widely studied, and there is now available a large

record documenting such processes (Calabrese

2013, 2016b, c; Calabrese and Mattson 2017).

These findings suggest that the concept of hormesis can

be utilized as a quantitative measure of biological plastic-

ity, i.e., the organism capacity to re-arrange biological

functions via the activation of adaptive responses under the

influence of stress (Calabrese and Blain 2011; Calabrese

and Mattson 2017; Agathokleous 2018). By studying hor-

metic dose responses, the quantitative limits of biological

plasticity can be clarified (Fig. 1). Meta-assessment of

& 9000 dose responses revealed that the maximum

Fig. 1 Hypothetical linear non-

threshold, LNT (a), threshold

(b) and hormesis (c, d) dose–

response models. Hormesis

provides quantitative estimates

on the limits of biological

plasticity, and appears as

inverse U-shape (c) or U-shape

(d) dose–response curve,

depending on the endpoint. For

example, inverse U-shape curve

would appear for net

photosynthetic rate and biomass

whereas a U-shape curve would

appear for hydrogen peroxide

and non-photochemical

quenching. Notes:

Toxicological threshold in the

LNT model indicates a

threshold of zero dose, i.e.

practically no traditional

threshold. NOEL and ZEP

indicate no observed effect level

and zero equivalent point (i.e.,

toxicological thresholds) for the

threshold and hormesis models.

MAX indicates the maximum

stimulatory response in the

hormesis model
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stimulatory response is commonly less than two-fold the

control response, and that the stimulatory width is

within & 10–20-fold of the estimated toxicological

threshold (Calabrese and Blain 2011). These features of

hormesis indicate its links to evolutionary processes and

may provide an important perspective in environmental

change biology.

When adaptive responses are activated by low-level

stimuli they often elicit therapeutic properties, especially

with regards to aging-related homeostasis disruptions and

malfunctions (Calabrese et al. 2018; Son et al. 2008). The

therapeutic properties of adaptive responses are now well

recognized in medicine and find application in combating

human diseases. Adaptive responses within a hormetic

framework would have important implications to vegeta-

tion environmental change biology and could provide a

further perspective for biosphere sustainability (Calabrese

and Mattson 2017).

Conditioning is also a manifestation of hormesis (Cal-

abrese 2016b, c). Pre- and post-conditioning are the phe-

nomena, where a prior experience of low-level stress

protects against a subsequent high-level stress, and where a

low-level stress following closely after high-level stress

may alleviate much of the induced injury (Calabrese

2016b, c). Pre- and post-conditioning occur in the frame-

work of hormesis and are of particular importance to

environmental change biology in terms of significant evo-

lutionary adaptations. Conditioning that may naturally

occur in the environment, i.e., via activation of adaptive

responses by low-level stress, may mediate biological

responses to environmental change. Current understandings

about pre- and post-conditioning open new doors to the

next generation of environmental change research.

Hormesis in plants

While indications for hormesis existed from the late 1880s,

including effects on plants (Calabrese and Baldwin 2000),

the concept remained marginalized until recently. Numer-

ous studies now exist showing that hundreds of chemicals

and environmental pollutants and environmental change

factors such as radiation, nitrogen deposition, ground-level

ozone, and sulfur dioxide, induce hormesis in plants at

various organizational (i.e., cell, organ, organism, and

community) levels (Cedergreen et al. 2007; Son et al. 2008;

Costantini et al. 2010; Calabrese and Blain 2011; Belz and

Piepho 2013, 2015; Gressel and Dodds 2013; Poschen-

rieder et al. 2013; Hashmi et al. 2014; Agathokleous

2017, 2018; Belz and Duke 2017; Pagano 2017; Agath-

okleous et al. 2018a, b, c; Kim et al. 2018; Murakami

2018).

Hormetic effects of chemicals and radiation on plants

have been extensively documented since the ‘‘rediscovery’’

of hormesis in the late 1970s. However, this was not the

case with environmental factors on plants. Although there

was evidence for hormesis induced by environmental fac-

tors (including pollutants) in plants, such as for ozone,

nitrogen deposition, and sulfur dioxide via the documen-

tation of low-dose stimulation and high-dose inhibition

(Bennett et al. 1974; Roberts 1984; Darrall 1989), the

possibility of hormesis was not considered for a long time.

The concept of hormesis was proposed in a book chapter as

a potential response of plants to ozone (Jaeger and Krupa

2009). Furthermore, in a book chapter of the World Health

Organization (WHO) on the effects of nitrogen deposition,

it was suggested that nitrogen deposition stimulates growth

at lower levels and inhibits growth at higher levels, i.e.,

implying the occurrence of the phenomenon of hormesis

(WHO 2000b). Recent literature reviews suggest that,

when the experimental design permits testing the possi-

bility of hormesis, environmental change factors, including

ozone and nitrogen deposition, often induce hormesis in

vegetation even at community or ecosystem levels

(Agathokleous 2018; Agathokleous et al. 2018a, b).

Hormetic dose responses occur frequently, being inde-

pendent of biological model (organism), endpoint, stressor

and mechanism, suggesting widespread generality (Cal-

abrese and Blain 2011; Calabrese 2013, 2014; Calabrese

and Mattson 2017; Agathokleous 2018; Agathokleous et al.

2018a, b, c). The substantial evidence for non-linear bio-

logical/physiological processes produced endogenously or

after a homeostatic disruption by exogenous agents, chal-

lenges the long-held belief that the fundamental nature of

biological responses is some combination of threshold and

non-threshold linear processes.

Plant response to temperature: an interesting
example of hormesis

Temperature holds a crucial role in global change biology

as the average global surface temperature appears to have

increased over the last decades (Wen et al. 2011; Shi et al.

2018). Therefore, it is important to understand how plants

respond to temperature within a dose–response continuum.

Air temperature is a critical factor for organismal health,

and biota have evolved complex biological mechanisms to

regulate body temperature, including organisms which

cannot move but still have evolved mechanisms for regu-

lating internal temperature (Wigge 2013; Szymańska et al.

2017; Körner and Hiltbrunner 2018). A large amount of

literature deals with the effects of air temperature on plants.

A review study has suggested that a variety of tree species

shows a positive response to elevated temperature (Saxe

Temperature-induced hormesis in plants 15
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et al. 2002). A recent meta-analysis also suggests that a

temperature increase of 0.3–10 �C enhanced growth, pro-

ductivity, and health overall of woody plants (Yuan et al.

2018).

In their Tansley review, Saxe et al. (2002), in the sup-

plement to their findings for positive tree response to ele-

vated temperature, have questioned ‘‘but how close are we

to the optima?’’ This question would be answered by

studying dose–response relationships. However, there is a

lack of sufficiently high number of exposure levels in

dose–response experiments and narrow spacing of expo-

sure levels, especially when the stressor agent is an envi-

ronmental factor such as temperature, ozone, and carbon

dioxide due to technical difficulties compared to studies

with chemical agents.

Here, we examine the literature and provide for the first

time collective evidence for temperature-induced hormesis

in plants (Fig. 2).

As early as the 1960s, hormesis was revealed for the

foliage yield of warm temperate, cool temperate and winter

annual species in response to soil temperature; the maxi-

mum stimulatory response was in the temperature range of

12.5–27.5 �C (Davidson 1969). In the 1970s, a report was

published after an extensive experimentation on the effects

of ozone and sulfur dioxide on oat (Avena sativa L.)

varieties (Heck and Dunning 1976). This research was

sponsored by the Agricultural Research Service (ARS),

Environmental Protection Agency (EPA), and the North

Carolina Agricultural Experiment Station of the U.S, and

was prepared for the Office of Research and Development

of the EPA. In this study, the response of oat plants to four

temperature levels in the rage 18–30 �C was studied under

different sulfur dioxide levels and relative humidities.

These results suggested the occurrence of hormesis in top

and root dry weight of oat plants exposed four times, three

hours per time, in each experiment (Heck and Dunning

1976). This was seen in controlled environments with

modified temperatures only (Fig. 2a), under different sulfur

dioxide levels (Fig. 2b), and under different sulfur dioxide

exposures for two different relative humidity levels

(Fig. 2c, d). The results also suggested that temperature-

induced hormesis is modified/offset by other environmental

conditions such as relative humidity and sulfur dioxide.

Hormetic dose response was also found in the number of

pods of snap bean (Phaseolus vulgaris L.) plants exposed

to different levels of air temperature at 82 days after

seeding (Fig. 2e) (Agathokleous et al. 2017).

Indications for hormesis were also observed in several

biological/physiological endpoints of different plant spe-

cies. One example was the response of gas exchange to

growth temperatures investigated in the temperate ever-

green tree species Quercus myrsinaefolia Blume (Hikosaka

et al. 1999). Hormetic-like dose–response relationships

were observed for gross photosynthetic rate (net photo-

synthetic rate ? dark respiration) and potential rate of

ribulose bisphosphate (RuBP) carboxylation (Fig. 2f).

Hormetic-like dose–response relationships of net photo-

synthesis to leaf or mean monthly temperature has been

also revealed in numerous species from a variety of fami-

lies (Ishikawa et al. 2007; Vårhammar et al. 2015; Slot and

Winter 2016, 2017; Slot et al. 2016; Benomar et al. 2018;

Zhang et al. 2018). Another example is a hormetic-like

response of dimethylallyl diphosphate (DMADP) pool,

precursor of leaf-emitted isoprene, to leaf temperatures

observed in hybrid aspen (Populus tremula 9 P. tremu-

loides) (Rasulov et al. 2011) (Fig. 2g). Likewise, a hor-

metic-like response in leaf anthocyanin content of Betula

hybrid ‘Royal Frost’ (Betula populifolia ‘Whitespire’ 9 B.

populifolia ‘Crimson Frost’) seedlings to temperature was

found; maximum stimulatory response was observed at

20 �C (Yang et al. 2017). Interestingly, a U-shaped curve

of litter decomposition in response to climate (cooler to

warmer) was also hypothesized in a recent study on early

stage litter decomposition across biomes (Djukic et al.

2018), which remains to be validated by narrow-spaced

dose–response experiments.

Slot and Winter (2016) suggested that the temperature

where the maximum response (Fig. 1) occurs reflects the

optimum temperature at which optimum photosynthesis

occurs in the short-term temperature response. They also

proposed that the U-shaped curve moves to the right of the

x-axis and up the y-axis with higher photosynthesis

response when plants are grown under warmer or hot

conditions with a constructive adjustment (both optimum

temperature and optimum photosynthesis increase). Fur-

thermore, they proposed that the U-shaped curve moves to

the right of the x-axis but down the y-axis with a lower

photosynthesis response when plants are grown under

warmer or hot conditions with a detractive adjustment

(optimum photosynthesis decreases with increasing tem-

perature) (Slot and Winter 2016). This is an interesting

proposal which falls within the concept of hormesis as it

has been shown for various animal models, i.e., condi-

tioning (Calabrese 2016c).

Using quantitative estimates of dose–response relation-

ships, important information can be obtained as to the

biological plasticity of plants. As an example, we use a

dose-response relationship for the maximum potential

electron transport rate (Jmax) of white spruce (Picea glauca

(Moench) Voss) to needle temperature (Benomar et al.

2018). Dose–response relationships were obtained for

plants from either a southern seed source or a northern seed

source (Fig. 2h). These relationships suggest that plants

from a northern seed source show a maximum response of

Jmax at 5 �C higher than plants from a southern seed

source. In addition, temperature limits within which Jmax is

16 E. Agathokleous et al.
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up to 10% lower than the maximum response of Jmax may

provide a range of temperatures within which an approxi-

mate maximum response of Jmax occurs and a plasticity

range of Jmax values (Fig. 2h).

The discussion raises two ecologically important ques-

tions, the first one being whether a temperature-induced

hormetic dose–response curve corresponds to the curve of

Shelford’s law of tolerance (Shelford 1931), and the second

whether the hormetic zone corresponds to the optimal

temperature range for plants. Indeed, the examples pre-

sented are in agreement with Shelford’s curve, where an

organism has an optimum and a minimum and maximum

level of a single stressor or mixture of stressors which

determine success (Shelford 1931). Similarly, while the

Fig. 2 Preliminary examples of hormetic-like responses of plants to

temperature. Dose and response data presented only in figures in the

reviewed articles were estimated using image analysis software

(Adobe Photoshop CS4 Extended v.11, Adobe Systems Incorporated,

CA, USA). Jmax is the maximum potential electron transport rate.

Notes: In the experiment of Rasulov et al. (2011), control was

considered the leaf temperature closer to the day temperature under

which plants were grown (26 �C). The values in Hikosaka et al.

(1999) were averaged per target temperature, and the response data

were corrected based on the group of control values to avoid

overestimation. The control was 30 �C for the potential rate of

ribulose bisphosphate (RuBP) carboxylation and 15 �C for the gross

photosynthetic rate
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optimal temperature range for plants varies with a variety

of factors, with the stage in ontogeny being a major driver,

the hormetic zone is expected to correspond to the optimal

temperature range under certain conditions, i.e., at certain

stages of ontogeny (Abrami 1972; Hatfield and Prueger

2015).

Conclusion

We summarize, for the first time, examples of hormetic

dose responses induced by temperature in plants. Tem-

perature-induced hormesis is in agreement with extensive

evidence from studies with insects, animals, and fungi

(Rattan 2005; Sørensen et al. 2008; Vaiserman 2010).

These research programs suggest that hormesis is inde-

pendent of biological models and re-affirm the notion that

hormesis is a fundamental biological phenomenon which

occurs independently of stressor types, and not only upon

agents which were previously considered ‘‘toxic’’.

Recent developments in plant science, along with the

examples presented in this Review, underline the possi-

bility that hormesis should be implemented in the design of

vegetation-environmental change dose–response studies.

These developments are important in ecotoxicological

studies for understanding the mechanisms and processes

whereby chemicals exert their effects on ecosystems.

The latter suggestion does not imply that a hormetic

dose–response model is more appropriate than the thresh-

old or linear non-threshold model (LNT). Which model

will be more appropriate will be decided upon the dose–

response relationship; however, failure to incorporate the

possibility of hormesis will result in failure to detect

hormesis and eventually to misleading information for

decision, policy, and regulation making.

Hormesis should have a central role in environmental

vegetation change biology. The concept of environmental

hormesis provides an important perspective for advancing

the current scientific base of environmental change biol-

ogy, ecology, and evolutionary biology research agendas.
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