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Abstract Artificial neural network models are a popular

estimation tool for fitting nonlinear relationships because

they require no assumptions about the form of the fitting

function, non-Gaussian distributions, multicollinearity,

outliers and noise in the data. The problems of back-

propagation models using artificial neural networks include

determination of the structure of the network and over-

learning courses. According to data from 1981 to 2008

from 15 permanent sample plots on Dagangshan Mountain

in Jiangxi Province, a back-propagation artificial neural

network model (BPANN) and a support vector machine

model (SVM) for basal area of Chinese fir (Cunninghamia

lanceolata) plantations were constructed using four kinds

of prediction factors, including stand age, site index, sur-

viving stem numbers and quadratic mean diameters. Arti-

ficial intelligence methods, especially SVM, could be

effective in describing stand basal area growth of Chinese

fir under different growth conditions with higher simulation

precision than traditional regression models. SVM and the

Chapman–Richards nonlinear mixed-effects model had less

systematic bias than the BPANN.

Keywords Chinese fir � Basal area � Artificial neural
network � Support vector machine � Mixed-effect model

Introduction

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is a

characteristic species of the subtropical zone in southern

China, and an important reforestation and commercial tree

species. According to the eighth Chinese National Forest

Inventory, Chinese fir plantations occupy approximately

8.95 million ha, and have a standing timber volume of

625 million m3 (SFA 2013).

Basal area (BA) is an important stand variable in forest

surveys and directly related to other important economic

variables such as stand volume and quadratic mean diam-

eter. Many management and silvicultural considerations,

for example, thinning intensities, are based on measure-

ments of basal area. In addition, curves of mean basal area

are useful tools for effective management of stands as they

help to estimate the timing of intermediate and final cuts

(Assmann 1970; Sun et al. 2007).Therefore, basal area

growth models have traditionally been one of the primary

models in forest growth and yield prediction systems. Over
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the past several decades, a number of individual-tree or

stand-level basal area growth models have been developed

for a variety of tree species in pure or mixed forests (Li

et al. 1988; Monserud and Sterba 1996; Schroder et al.

2002; Mohammadi et al. 2017; Lamb et al. 2018). These

often used ordinary least squares (OLS) regression analysis

to establish an empirical relationship between basal areas

and stand age under different conditions. But many of the

assumptions necessary for traditional OLS regression are

violated by using time series data that characteristically

exhibit non-normality, and thus tend to suffer multi-

collinearity and autocorrelation (Clutter et al. 1983; Li

et al. 1988; Liu and Zhang 2005).

Artificial neural networks (ANNs) are loosely modeled

on brain function: a series of nodes representing inputs,

outputs, and internal variables are connected by synapses

of varying strength and connectivity (Jensen et al. 1999).

ANNs require no assumptions for OLS regression about the

normality and independence of study data. Instead, the

network is trained to find underlying relationships between

input and output. During the last two decades, ANNs have

received considerable attention as a valid alternative to

traditional statistical methods to predict behavior of non-

linear systems (Gianfranco et al. 2007; Dande and Samant

2018), and have been used to predict forest biomass (Foody

et al. 2003; Henry et al. 2013), basal area and stem density

(Corne et al. 2004), bark volume (Diamantopoulou 2005;

Diamantopoulou and Milios 2010; Ashraf et al. 2013; Wu

and Ji 2015).

The back-propagation artificial neural network

(BPANN) is a popular model for the application of artifi-

cial intelligence (Wu and Ji 2015). Vapnik et al. (1997)

proposed a support vector machine (SVM) which also

belongs to a feedforward neural network. In recent years, a

number of nonlinear classification and regression SVMs

have been developed and these have been benchmarked

against an ANN. SVMs have been successful in some areas

such as: time series prediction (Sapankevych and Sankar

2009); intrusion detection (Hong 2012); and, surface ozone

(Alkasassbeh 2013).

The focus of this study was to determine accurate esti-

mates of stand basal areas of Chinese fir plantations. ANN

models were used as an alternative to the traditional gen-

eralized nonlinear regression approach. Data for the

planting density trial were from permanent plots nearly

30-years-old. The objective was to analyze the abilities of a

back-propagation artificial neural network (BPANN) and

SVM to describe the stand basal area dynamics of Chinese

fir plantations under different growing conditions.

Materials and methods

Study site and experimental design

Permanent plots of Chinese fir plantations, located in

Dagangshan Mountain (27�340N,114�330E), Jiangxi Pro-

vince, southern China (Fig. 1), were established in the

spring of 1981 with bare-root seedlings. The soil is a red

and yellow loam. Elevations are from 250 to 300 m with

slopes \ 45%. The average frost-free growing season is

265 days and average annual precipitation is estimated to

be 1591 mm.

Plots were installed in a random block arrangement with

spacings of 2 m 9 3 m (A), 2 m 9 1.5 m (B), 2 m 9 1 m

(C), 1 m 9 1.5 m (D), and 1 m 9 1 m (E). Each spacing

was replicated three times for a total of fifteen plots

(Table 1). Each plot was 20 m 9 30 m (0.06 ha), with a

buffer zone of two rows of the same species density around

each plot, and a fixed boundary of concrete piles. Seedling

mortality surveys were carried out annually during the first

2 years; seedlings that died were replaced to ensure spac-

ing was maintained.

Tree measurements

All trees in each plot were numbered. For the first 10 years,

the plots were measured once every year, and then every

other year. Height is often viewed to be independent of

stand density, and can thus be used as an indicator of site

productivity. For calculating site index, we selected two

dominant trees from the upper, middle and lower areas of

the plot from 6-year-old trees. The arithmetic mean height

of six dominant trees at the reference age of 20 years for

every plot was calculated and viewed as its site index.

Diameters outside bark at breast height (DBH) were mea-

sured for all numbered trees which reached 1.3 m. Total

heights were measured on a systematic sample of 50 trees

per plot. The under-branch height (crown base height) was

also measured for these trees.

All data from repeated censuses in undisturbed stands

were used for simulations. In 2008, the plots had been

measured 19 times (Table 2). Plot data included age (A),

dominant height (H), number of living trees ha-1 (N), basal

area ha-1 (G) and quadratic mean diameter (Dg). The latter

was derived from the basal area of the average tree in the

corresponding plot.

Neural networks modelling

An ANN consists of connected nodes usually arranged in a

multilayer structure. Each connection between nodes in

different layers has a weight, and each node is a processing
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unit that operates on the weighted sum of inputs. The

number of nodes in the input corresponds to the number of

input variables. In our case, there were four input nodes for

the growth factors in the input layer. The output layer

Fig. 1 Location of the area of

study

Table 1 Descriptive statistics

of plots
Plot Planting density (trees ha-1) Stand density in 2008 (trees ha-1) Site index (m)

A1 1667 1500 15.87

A2 1667 1650 13.68

A3 1667 1567 16.38

B1 3333 2883 15.05

B2 3333 3200 14.18

B3 3333 1933 16.87

C1 5000 4267 14.47

C2 5000 3917 14.52

C3 5000 2967 14.08

D1 6667 5033 12.56

D2 6667 4517 13.22

D3 6667 3283 13.32

E1 10,000 4383 14.23

E2 10,000 3650 14.58

E3 10,000 1567 14.53

Table 2 Situation of surveyed

stands
Factor of stands Maximum Minimum Standard deviation

Age (A) 28 4 –

Stem density (N/ha) 10,000 1500 –

Site index (SI) (m) 16.87 12.56 –

Quadratic mean diameter (Dg) (cm) 20.08 2.23 4.18

Basal area (m2/hm-2) 1.35 65.36 17.15
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contains one node representing basal area (BA). The

number of hidden nodes is usually determined by a number

of trial-and-error runs. Some studies have shown that there

is rarely an advantage to using more than one hidden layer

(Rumelhart et al. 1986; Lippmann 1987). For this reason,

several supervised feed forward neural networks in this

study were trained with one hidden layer containing several

hidden nodes (Fig. 2).

The principle of ANN has been described in previous

studies (Rumelhart et al. 1995; Basheer and Hajmeer

2000). Several computer software packages are available

for analyzing artificial neural networks, and we chose

Matlab 7.11.0.584 (R2010b) (Demuth and Beale 2009).

The software integrates 14 neural network algorithms for

the MLP network. Three-layered feed-forward networks

with a back-propagation training function (BP) were cho-

sen as a nonlinear regression model(Demuth and Beale

2009). The SVM experiments were conducted using the

LibSVM package(Chang and Lin 2011). K-fold cross-val-

idation (K-CV) indicates that the original data is divided

into K groups (at average). Each subset is a validation set,

and the remaining subset (K-1 group) is used as the training

set. The average performance of k models indicates model

performance. K-CV can effectively avoid the occurrence of

learning and insufficient learning, so the results obtained

are more convincing. Performance of the BP and SVM

models were also improved by a sixfold cross-validation. A

total of 200 samples were selected as a training set at

random, and 40 samples were used as a test set to evaluate

the performance of the model. All other training parame-

ters were left at their default values.

According to the model selection strategy in artificial

neural networks (Egrioglu et al. 2008), the BP model

LM451 with five hidden neurons was the most reliable

based on WIC criterion. The model indicates that Leven-

berg–Marquardt (LM) algorithms is composed of one input

layer with four input variables, one hidden layer with five

nodes and one output layer with one output variable.

Data preparation

Similar to ANN, scaling before applying SVM is important

since input data have very different orders of magnitude

between attributes. Normalization of data within a uniform

range is essential to prevent larger numbers from overrid-

ing smaller ones, and to avoid numerical difficulties during

the calculation. The training and testing sets were sepa-

rately scaled to the range [- 1,1] by a linearly scaling

formula (Basheer and Hajmeer 2000) as following:

Xi ¼
2� ðZi � Zmin

i Þ
Zmax
i � Zmin

i

� 1 ð1Þ

where Xi is the normalized value of Zi, Z
min
i , and Zmax

i are

the minimum and maximum values of Zi in the database.

Linearly scaling each attribute to the range [- 1, 1] is

recommended. To standardize the scales of input and

output variables, they were converted over the interval

[- 1…- 1] to adapt to the transfer function (Swingler

1996).

To further understand the influence of the input vari-

ables on the BP model, a sensitivity analysis was carried

out holding three variables constant while letting the fourth

Fig. 2 The ANN dependency graph for modelling basal area growth

of Chinese fir

Table 3 The input s of sensitivity analysis under the LM451 model

Classes Input format/[A;N;Dg;SI]

A1 [-1:0.2:1; 1…1; 1…1; 1…1]

A2 [-1:0.2:1; 0.5…0.5; 0.5…0.5; 0.5…0.5]

A3 [-1:0.2:1; 0…0; 0…0; 0…0]

A4 [-1:0.2:1; -0.5…-0.5; -0.5…-0.5; -0.5…-0.5]

A5 [-1:0.2:1; -1…-1; -1…-1; -1…-1]

N1 [1…1; -1:0.2:1; 1…1; 1…1]

N2 [0.5…0.5; -1:0.2:1; 0.5…0.5; 0.5…0.5]

N3 [0…0; -1:0.2:1;0…0; 0…0]

N4 [-0.5…-0.5; -1:0.2:1;-0.5…-0.5; -0.5…-0.5]

N5 [-1…-1; -1:0.2:1;-1…-1; -1…-1]

Dg1 [-1:0.2:1; 1…1; 1…1; 1…1]

Dg2 [-1:0.2:1; 0.5…0.5; 0.5…0.5; 0.5…0.5]

Dg3 [-1:0.2:1; 0…0; 0…0; 0…0]

Dg4 [-1:0.2:1; -0.5…-0.5; -0.5…-0.5; -0.5…-0.5]

Dg5 [-1:0.2:1; -1…-1; -1…-1; -1…-1]

SI1 [1…1; -1:0.2:1; 1…1; 1…1]

SI 2 [0.5…0.5; -1:0.2:1; 0.5…0.5; 0.5…0.5]

SI 3 [0…0; -1:0.2:1;0…0; 0…0]

SI 4 [-0.5…-0.5; -1:0.2:1;-0.5…-0.5; -0.5…-0.5]

SI 5 [-1…-1; -1:0.2:1;-1…-1; -1…-1]
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vary (Table 3). The sensitivity analysis is based on Olden

and Jackson (2002).

Multiple nonlinear regressions with mixed effects

To compare the BP model with conventional methods to

determine basal area (BA), we built a multiple nonlinear

mixed-effects model with plot level effects. The frequently

used Chapman–Richards equation was adopted, and its

mathematical expression is (Li et al. 1988):

BA ¼ b1ðSIÞb2ð1� expð�b4AÞÞb3 ð2Þ

where b1–b4 are parameters, and the others as defined

above. S-plus software was used for the regression analysis

(Harrell 2001).

Model evaluation

The quantitative evaluation of models is an important part

of growth modelling and based on the calculated adjusted

coefficient of determinations (R2
adj), mean square error

(MSE), residual sum of squares (RSS), standard deviation

(SD), and model efficiency (ME). Corresponding forms are

as follows:

R2
adj: ¼ 1�

1
n�i�1

Pn
i¼1 ðyi � ŷiÞ2

1
n�1

Pn
i¼1 ðyi � yiÞ2

ð3Þ

MSE ¼
Pn

i¼1 ðyi � ŷiÞ2

n
ð4Þ

RSS ¼
Xn

i¼1

yi � y
_

� �2

ð5Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 yi � �yð Þ2

n� 1

s

ð6Þ

ME ¼ 1�
Xn

i¼1

ðyi � ŷiÞ2=
Xn

i¼1

ðyi � �yiÞ2
" #

ð7Þ

where yi, �y and ŷi are the observed value, the mean value,

the corresponding predicted value of sample i from ANN

and nonlinear mixed-effects model, respectively. n is the

number of samples.

The normality of residual distribution and

heteroscedasticity were checked using the Shapiro–Wilk

test (Shapiro and Wilk 1965) and the graphs of the resid-

uals against the measured values. To detect dependencies

or patterns, observed values may be plotted over predicted

values or residuals over measured values (Gadow and Hui

1999). The selected model should have the largest value for

the coefficient of determination (R2) after adjusting for

degrees of freedom.

Results

Sensitivity analysis of the BP model

LM451, a three-layer network of four input neurons, five

hidden neurons and one output neuron, was used for the

sensitivity analysis. The predicted basal area values

increased slowly with stand age increasing at different

density levels, and finally stabilizing (Fig. 3). The

stable values presented after 16a, close to the stand harvest

age.

When the density was \ 6000 stems ha-1, basal area

increased rapidly under different site indices (Fig. 4). With

[ 6000 stems ha-1, three variation trends were found. A

decreasing trend occurred under the condition of two

higher site indices, and basal area stabilized or increased

under relatively low site conditions.

The changing trajectory of basal area with the stand Dg

(quadratic mean diameter) resembled an S-shaped curve

(Fig. 5). Basal area increased with Dg across its entire

range, but the magnitude was different. It increased

noticeably near the intermediate value of Dg while with

lower or higher Dg it often slowly increased.

A flat response curve indicated that the basal area of the

stand remained constant and was not affected by site index

value (Fig. 6).

Fig. 3 Simulated variation curves of basal area with stand age under

five density levels
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Precision comparison of SVM, BP model

and the Chapman–Richards model

Table 4 lists the simulation statistics of SVM, LM451

model (BP) and Chapman–Richards nonlinear mixed-ef-

fects model. The SVM model had the highest R2
adj and ME,

and the lowest MSE and RSS. Simultaneously, the LM451

model had higher R2
adj and ME, and lower MSE and RSS

than the Chapman–Richards model. The SVM had the

optimal simulation performance among the three models,

and all simulated values were similar to measured values

(Table 5). Although the Chapman–Richards equation

considered the plot-level mixed effect, its simulation

property was inferior to the SVM and LM451 models.

The residuals of the BP (LM451) model show an

increasing trend with basal area increasing. The residuals

tended towards negative values when basal areas were

smaller, and the residuals tended towards positive values

when basal areas were larger (Fig. 7). There was no

obvious trend for the relationship between residuals of the

Chapman–Richards model and the basal area, but when the

basal area was large, the residuals had an increasing trend

(Fig. 8). The residuals of SVM were randomly distributed

and there was no systematic trend (Fig. 9). It was clear that

the SVM model had less systematic bias with increasing

stand age than the LM451 and Chapman–Richards models.

As Table 1 shows, the PE increased with increasing

density; however, when the cell density was too high, the

distance between cell clusters was very small, which

increased the difficulty of isolating single-cell clones.

Therefore, according to the appropriate PE and the growth

state of cells, the initial cell density for inoculation was set

Fig. 4 Simulated variation curves of basal area with stem density

under five site indices

Fig. 5 Simulated variation curves of basal area with quadratic mean

diameter under five density levels

Fig. 6 Simulated variation curves of basal area with site index under

five density levels

Table 4 Performance comparison among SVM, LM451 model (BP)

and Chapman–Richards model

Model R2
adj:

MSE RSS ME

LM451 (BP) 0.9912 4.7144 1131.5 0.9839

SVM 0.9930 4.6338 1112.1 0.9842

Chapman–Richards 0.9837 4.8707 1134.9 0.9837
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to 3 9 103 cells mL-1. Moreover, the use of filter paper in

the nursing culture increased the chance of contamination.

So conditioned culturing was used for single-cell cloning.

Discussion

A quantitative relationship between independent and

dependent variables is required when using nonlinear

regressions to estimate model parameters. The selection of

mathematical functions and parameter-estimation methods

becomes more difficult when modelling non-linear bio-

logical growth (Johnston et al. 2010). ANNs have the

ability to identify hidden patterns in data (Scrinzi et al.

2007), and may provide a more flexible and relatively

simpler approach to modelling complex biological systems

compared with deterministic models (Gianfranco et al.

2007). The BPANN model, with the error back-propaga-

tion procedure, was affected slightly by data quality

problems and bias, and is efficient for quantifying nonlin-

ear relationships (Rumelhart et al. 1986). Studies on total

volume and stem profiles have found that the BPANN

model performs as well as or better than traditional

regression approaches (Diamantopoulou and Milios 2010;

Bráulio et al. 2017). Our results show that the BPANN

model had higher performance precision than the Chap-

man–Richards model, which is in agreement with Dia-

mantopoulou and Milios (2010). However, the residual

distribution of the BPANN model in this study was not

satisfying, and the variation trend was not the same as with

a correlated study by Ashraf et al. (2013). This might be

related to data structure or to the interior design of

BPANN. The residuals of the Chapman–Richards method

were uniformly distributed on both sides of the X axis,

which means that the mixed-effect model with plot level

random effect could help eliminate systematic trends.

The foundations of the support vector machines (SVMs)

were developed by Vapnik (1995), and are gaining popu-

larity due to their attractive features and empirical perfor-

mance. SVM was developed to solve classification

problems, but it has been extended to regression problems.

The formulation embodies the structural risk minimization

principle, which is superior to the traditional empirical risk

minimization principle used by conventional neural net-

works (Gunn et al. 1997). In this study, SVM had greater

precision than BPANN and the Chapman–Richards model.

Similar results have been reported by Godarzi et al. (2012)

in which the SVM method had the highest precision

compared to the artificial neural network method and the

maximum Likelihood method. SVM is similar to an

BPANN since both receive input data and provide output

data; the input and output data of SVM are identical to

Table 5 Descriptive statistics

for SVM
Minimum Maximum Mean SD Variance

Measured value 1.3536 65.3563 35.6313 17.1490 294.0869

Simulated value of SVM - 0.0558 65.1167 35.7498 16.4464 270.4828

Fig. 7 Residual distribution of BP model (LM451) with basal area

Fig. 8 Residual distribution of Chapman–Richards nonlinear mixed-

effects model with the basal area

Fig. 9 Residual distribution of the SVM model with basal area
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BPANN for regression equations (Alkasassbeh 2013).

However, the SVM is primarily better because it is not

affected from over fitting like BPANN. Site index (SI),

stand density and age were sufficient to predict basal area

(Merriam et al. 1995; Malinen et al. 2003). The multiple

form of OLS (ordinary least squares) regression, with many

independent variables regressed against the dependent

variable BA, was generally preferable to the linear form of

OLS regression. However, it still could not eliminate

multicollinearity and autocorrelation. In our study,

BPANN, SVM and the nonlinear mixed-effects models all

had the independent variables, including site index (SI),

stand density, and age. These models not only presented

the complex conditions of basal area growth, but also

solved problems brought by study data. These might be the

reasons why the three modelling methods proved to have

good simulation performances.

Ecological modelling problems frequently combine

small datasets, noisy data, and weak domain theories.

These problems will present severe challenges to machine

learning techniques. Due to the comparative advantages

with conventional regression-based approaches, SVM and

BPANN have considerable potential in forest growth and

yield modelling. However, traditional regression models

can be based on few data, and can be more advantageous

for stand basal area estimation from a few plots. ANNs

modelling often requires large data sets to access the reli-

able certainty for basal area growth estimations. When

selecting a model, it is important to choose one that best

represents the observations and that is reasonably easy to

solve.

Conclusions

The results showed that SVM had higher precision and less

systematic bias than BPANN and the Chapman–Richards

nonlinear mixed-effects model. SVM was able to suc-

cessfully simulate stand basal area of Chinese fir on

Dagangshan Mountain using simple input data. The

method introduced in this article is sufficient for many

forest ecological modelling applications because of its

efficiency and accuracy.

Sensitivity analysis of the BP model demonstrated that

stand basal area increased with stand age, and stands with

different site indices eventually led to different stable val-

ues. Site index had a weak effect on the emulational basal

area growth. The response curve was almost parallel to the

X-coordinate. Ignoring the weak differences in modelling

precision, the BPANN, SVM and the nonlinear mixed-ef-

fects model all had a potential application for stand basal

area growth modelling.
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diferentes espécies por meio de redes neurais artificiais. Braz J

For Res 37(90):99–107

Chang CC, Lin CJ (2011) LIBSVM: a library for support vector

machines. ACM Trans Intell Syst Technol (TIST) 2(3):389–396

Clutter J, Fortson J, Pienaar L, Brister G, Bailey R (1983) Timber

management—a quantitative approach. Wiley, New York

Corne S, Carver S, Kunin W, Lennon J, Van Hees WWS (2004)

Predicting forest attributes in southeast Alaska using artificial

neural networks. For Sci 50(2):259–276

Dande P, Samant P (2018) Acquaintance to artificial neural networks

and use of artificial intelligence as a diagnostic tool for

tuberculosis: a review. Tuberculosis 108:1–9

Demuth H, Beale M (2009) User’s guide: neural network toolbox for

use with Matlab. The Mathworks Inc, Natick, MA

Diamantopoulou MJ (2005) Artificial neural networks as an alterna-

tive tool in pine bark volume estimation. Comput Electron Agric

48(3):235–244

Diamantopoulou MJ, Milios E (2010) Modelling total volume of

dominant pine trees in reforestations via multivariate analysis

and artificial neural network models. Biosyst Eng

105(3):306–315

Egrioglu EC, Aladag AH, Günay S (2008) A new model selection

strategy in artificial neural networks. Appl Math Comput

195(2):591–597

Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of

tropical forest biomass from Landsat TM data and their

transferability between regions. Remote Sens Environ

85:463–474

Gadow VK, Hui GY (1999) Modelling forest development. Springer,

Amsterdam

Gianfranco S, Laura M, David G (2007) Development of a neural

network model to update forest distribution data for managed

alpine stands. Ecol Model 206:331–346

Godarzi MS, Abbaspour RA, Ahadnezhad V, Khakbaz B (2012)

Comparison of support vector machine, neural network, and

maximum likehood methods for the separation of lithological

units. Iran J Geol Summer 6(22):75–92

Gunn SR, Brown M, Bossley KM (1997) Network performance

assessment for neurofuzzy data modelling. In: Liu X, Cohen P,

Berthold M (eds) Intelligent data analysis, volume 1208 of

Lecture Notes in Computer Science. Springer, Berlin

Harrell FE (2001) S-Plus software. In: Bickel P, Diggle P, Gather U,

Zeger S (eds) Regression modelling strategies. Springer series in

statistics. Springer, New York, NY

Henry M, Bombelli A, Trotta C, Alessandrini A, Birigazzi L, Sola G,

Vieilledent G, Santenoise P, Longuetaud F, Valentini R, Picard
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