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Abstract Root chemistry varies with tree species and root

diameter but little information is available about Tibetan

forest species. The root chemistry of three root diameter

classes (fine: 0–2 mm, medium: 2–5 mm, coarse:

5–10 mm) of three subalpine species (Abies faxoniana

Rehd. and Wild, Picea asperata Mast., and Betula

albosinensis Burkill) were investigated. Carbon concen-

trations, and carbon/nitrogen and carbon/phosphorus ratios

increased but nitrogen, phosphorus and nitrogen/phospho-

rus ratios decreased with increasing root diameter. The

roots of the conifers had higher carbon levels, and higher

carbon/nitrogen and carbon/phosphorus ratios than birch

roots. The opposite was found with nitrogen and phos-

phorus levels and nitrogen/phosphorus ratios. Lignin con-

centrations decreased but cellulose concentrations

increased with greater root diameters. The results indicate

that diameter-associated variations in root chemistry may

regulate their contribution to detrital pools which has

important implications for below-ground carbon and

nutrient cycles in these subalpine forests.
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Introduction

Plant root systems are important components of terrestrial

ecosystems. In forests, fine root turnover accounts for

approximately 30–50% of net primary production (Vogt

1991). Turnover rates and decomposition patterns gener-

ally vary with root diameters (Silver and Miya 2001; Joslin

et al. 2006). Moreover, large diameter roots play an

important role in the transport and storage of C (carbon)

and nutrients (Ludovici et al. 2002; Melin et al. 2009), and

also provide a slow delivery of C to the soil which affects

long-term ecosystem productivity and CO2 emissions

through slow decomposition (Johnsen et al. 2005).

Root chemistry is thought of as substrate quality, which

not only can reflect the distribution of chemicals, but can

also predict functional processes (Birouste et al. 2012).

Carbon is the main element of plant tissues; nitrogen

(N) and phosphorus (P) are the most important nutrients for

a variety of proteins and genetic materials (Hessen et al.

2004; Ladanai et al. 2010). Cellulose and lignin are the

main components of cell walls and of natural lignocellu-

losic materials. Their concentrations or stoichiometry are

widely used as predictors of root decomposition or respi-

ration (Silver and Miya 2001; Jia et al. 2013). Root

chemistry differs widely between species (Roumet et al.

2006; Birouste et al. 2012). Compared to broadleaved

species, conifer roots usually have lower N, P and lignin

(Silver and Miya 2001; Newman and Hart 2006). Root

diameters integrate both chemical and physical properties

(Andrén et al. 1992).With the increase in diameters, N and

P concentrations decrease but the C/N ratios, and lignin
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and cellulose increase (King et al. 2002; Pregitzer et al.

2002). Research has mainly focused on diameter-associ-

ated variations within a fine-root system (e.g.,\ 0.5 mm

vs. 0.5–1 or 0.5–2 mm), (Yang et al. 2004; Sun et al. 2013;

Wang et al. 2014). However, chemical differences between

fine roots and larger roots are still poorly understood in

forests such as Tibetan forest ecosystems.

Subalpine forests on the eastern Tibetan Plateau play

important roles controlling headwaters, conserving soils,

maintaining biodiversity and regulating regional climates

(Yang et al. 2005). Minjiang fir (Abies faxoniana Rehd. and

Wild, dragon spruce (Picea asperata Mast.), and red birch

(Betula albosinensis Burkill) are three dominant species in

these forests. Previous studies have shown that there are

significant differences in above-ground litter quality among

the three species (Xu et al. 2016). In order investigate the

chemical traits of below-ground roots of these species, C,

N, P, lignin and cellulose concentrations in three diameter

classes (0–2.0, 2.1–5.0 and 5.1–10.0 mm) were deter-

mined. The main objective in this study was to determine if

root chemistry and stoichiometry vary with species and

root diameter.

Materials and methods

The research was carried out at the Long-term Research

Station of Alpine Forest Ecosystems of Sichuan Agricul-

tural University located on the eastern Tibetan Plateau.

Annual mean precipitation is approximately 850 mm and

annual mean temperature 3 �C. The ground is snow cov-

ered from mid-November to early April. Soils are typical

dark brown forest soils classified as Cambic Umbrisols

according to the IUSS Working Group (IUSS 2007).

Minjiang fir, dragon spruce and red birch are dominant

forest species.

Sampling and dissection

In July 2013, root samples of the three species were col-

lected from a mixed forest stand with slope\ 5�, aspect
NE 46�, and a canopy cover of approximately 80%. Top-

soil properties (0–15 cm) were organic C 89 g kg-1, N

5.5 g kg-1, and pH 6.3. Three plots (100 m 9 100 m)

were established as replicates for root collection. For each

species, three trees were chosen and soil trenches

50 cm 9 50 cm 9 20 cm 1–2 m from each sample tree

were dug to give access to the root system. Soil particles

and other materials were removed from roots by washing

and brushing with deionized water (Yang et al. 2004).

Following the methods of Camiré et al. (1991), the intact

root system was classified into three diameter classes using

a vernier caliper: fine roots (0.0–2.0 mm), medium roots

(2.1–5.0 mm) and coarse roots (5.1–10.0 mm). Each sam-

ple was mixed to get one composite sample which was then

passed through a 0.15 mm sieve and used for chemical

analyses.

Chemical analyses

Levels of C, N and P were determined as described by Lu

(1999). Carbon contents were determined using the

dichromate oxidation-sulphate-ferrous titration method. N

and P levels were evaluated by the Kjeldahl method and the

phosphomolybdenum yellow colorimetry method, respec-

tively. Lignin and cellulose were measured using the acid

detergent lignin procedure (Vanderbilt et al. 2008; He et al.

2016). Briefly, 1.0 g root samples were oven-dried and

ground, transferred to digestion tubes, and suspended in an

80 mL solution of 1.0 mol L-1 H2SO4 and cetyl trimethyl

ammonium bromide (CTAB; 20 g L-1). The tubes were

heated at 169 �C for 1 h. After cooling, they were trans-

ferred to a sand core funnel and washed with acetone until

the solution through the suction filtration was clean. After

oven drying at 170 �C for 1 h, the sample and tube were

weighed and designated as W1. Subsequently, the sample

was soaked for 3 h in a 72% H2SO4 solution, subjected to

suction filtration, washed with acetone as described above,

and oven-dried at 170 �C for 1 h. Sample and tube were

weighed, designated as W2, and placed in a muffle furnace

(Box Furnace; Lindberg/Blue M, Asheville, NC, USA) at

550 �C for 3 h, weighed after cooling and designated as

W3. The cellulose concentration was determined from the

difference between W1 and W2 divided by the sample

weight (1.0 g), and multiplied by 100. The lignin concen-

tration is the difference between W2 and W3.

Statistical analyses

Two-way ANOVA examined the effects of species, root

diameter, and their relationship on C, N, P, lignin, and

cellulose concentrations and theirs ratios. One-way

ANOVA with Tukey post hoc test were used to compare

the differences in all variables among root diameters for a

given species, and for species for a given root diameter.

Pearson correlation analysis examined relationships

between all variables. The statistical tests were considered

significant at the P\ 0.05 level and were performed using

the Software Statistical Package for the Social Sciences

(SPSS) version 19.0.
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Results

C, N and P concentrations

Tree species and root diameter often had significant effects

on C, N and P concentrations (Table 1). Carbon levels

increased with root diameter while there were no signifi-

cant differences between fine and medium roots of spruce

and birch (Fig. 1; Table 1). The average C concentrations

of fir, spruce and birch were 526.8, 501.7 and

476.5 mg g-1, respectively (Fig. 1). However, N and P

levels often decreased with increasing diameter within all

three species. Regardless of diameter, birch roots generally

had higher N and P concentrations than those of the two

conifers (Fig. 1).

C/N, C/P and N/P

Root C/N, C/P and N/P were also influenced by tree spe-

cies, root diameter (Table 1). In general, both C/N and C/P

tended to increase with increasing root diameter but the

opposite pattern was found in N/P (Fig. 2). However, root

C/P was similar between fine and medium roots for all

three tree species and root diameter did not affect N/P of

birch root. Irrespectively of root diameter, both fir and

spruce had higher C/N and C/P compared to birch. Con-

versely, the N/P of birch was higher than those of two

coniferous trees in each diameter (Fig. 2).

Lignin and cellulose concentrations

ANOVA results indicated that lignin and cellulose con-

centrations were significantly affected by tree species and

root diameter (Table 1). Individual lignin concentration

ranged from 188.1–394.3 mg g-1 and individual cellulose

concentration varied between 131.1 and 360.4 mg g-1

(Fig. 3). Both lignin and cellulose concentrations peaked in

the fine root of fir and coarse root of birch, respectively.

Regardless of tree species, fine roots exhibited higher lig-

nin concentration but lower cellulose concentration com-

pared to larger diameter roots. The effect of tree species on

lignin and cellulose concentration was dependent on root

diameter (Table 1).

Lignin/N, Lignin/P and Lignin/cellulose

There were significant differences in lignin/N, lignin/P and

lignin/cellulose among tree species or root diameters

(Table 1). However, no significant interaction of

species 9 diameter on lignin/P was observed (Table 1).

The highest lignin/N and lignin/P was found in the coarse

root of fir. In all species, the lignin/N and lignin/P

increased with increasing root diameter but the opposite

was true for lignin/cellulose (Fig. 4). Irrespectively of root

diameter, both fir and spruce roots exhibited higher lignin/

N and lignin/P than birch roots.

Correlations between root variables

When pooled over all data of root diameter and tree spe-

cies, significant correlations between variables were

observed (Table 2). C concentration showed a negative

relationship with N and P concentration but N concentra-

tion had a positive correlation with P concentration. Root C

was positively associated with C/N and C/P. However,

Table 1 Results of two-way ANOVA for response of chemistry and

stoichiometry to tree species (TS) and root diameter (RD)

Parameters Variables source d.f. F P

C TS 2 69 \ 0.001

RD 2 45.91 \ 0.001

TS 9 TS 4 13.26 \ 0.001

N TS 2 1071.83 \ 0.001

RD 2 657.14 \ 0.001

TS 9 TS 4 59.35 \ 0.001

P TS 2 78.43 \ 0.001

RD 2 97 \ 0.001

TS 9 TS 4 17.01 \ 0.001

C/N TS 2 191.76 \ 0.001

RD 2 222.65 \ 0.001

TS 9 TS 4 6.62 0.002

C/P TS 2 31.25 \ 0.001

RD 2 71.33 \ 0.001

TS 9 TS 4 3.98 0.017

N/P TS 2 123.12 \ 0.001

RD 2 38.37 \ 0.001

TS 9 TS 4 5.69 0.004

TS 2 138.19 \ 0.001

RD 2 86.98 \ 0.001

TS 9 TS 4 21.6 \ 0.001

Cellulose TS 2 59.78 \ 0.001

RD 2 1851.79 \ 0.001

TS 9 TS 4 58.56 \ 0.001

Lignin/N TS 2 263.43 \ 0.001

RD 2 94.5 \ 0.001

TS 9 TS 4 12.33 \ 0.001

Lignin/P TS 2 67.01 \ 0.001

RD 2 13.56 \ 0.001

TS 9 TS 4 0.4 0.804

Lignin/cellulose TS 2 285.65 \ 0.001

RD 2 1111.29 \ 0.001

TS 9 TS 4 101.57 \ 0.001

Variations in root chemistry of three common forest species, southwestern China 829

123



Fig. 1 Variations of root C, N and P concentrations among diameters

and species (mean ± SD). Different lowercases represent significant

differences among root diameters for a given tree species and

different uppercases represent significant differences among species

for a given root diameter

Fig. 2 Variations of C/N, C/P and N/P among root diameters and species (mean ± SD). Different lowercases represent significant differences

among root diameters for a given tree species and different uppercases represent significant differences among species for a given root diameter

Fig. 3 Variations of lignin and

cellulose concentrations among

root diameters and species

(mean ± SD). Different

lowercases represent significant

differences among root

diameters for a given tree

species and different uppercases

represent significant differences

among species for a given root

diameter
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there were no significant correlations between root lignin

and C, N, P, C/N, C/P and N/P. Root lignin concentration

was correlated negatively with cellulose concentration but

no correlation was found between lignin and lignin/N and

lignin/P. A positive correlation was found between

lignin/cellulose and lignin. Additionally, root C, C/N and

C/P showed positive relationships with cellulose, lignin/N

and lignin/P (Table 2).

Discussion

According to the theory of ecological stoichiometry, there

exist complex coupling relationships among C, N and P,

which were largely affected by biotic and abiotic factors

(Ladanai et al. 2010). Previous studies have revealed that C

concentration and C/N was greater in conifer roots than in

broad-leaved roots (Silver and Miya 2001). Regardless of

root diameter, root C/N and C/P generally exhibited a

tendency of fir and spruce[ birch in the present case. This

is mainly due to the fact that root growth and C investment

strategy are different between needle-leaved evergreen and

broad-leaf deciduous tree species (Chang and Guo 2008).

N and P are considered as major limiting factors for plant

growth in terrestrial ecosystems (Vitousek and Howarth

1991; Vitousek et al. 1994). Regardless of root diameter,

birch root had higher N and P concentration than fir and

spruce, which was similar to the performances of leaf litter

and fine roots of three tree species (Wei et al. 2013; Xu

et al. 2016). In general, broad-leaved tree species have

higher photosynthesis and respiration rates compared to

coniferous trees. Thus, more N and P are needed via root

system to meet rapid metabolism activity (Tang et al.

2015a, b). Moreover, the C/N and C/P ratios are often used

to reflect organismic utilization efficiency for substrate.

Root litter with low C/N has a faster decomposition rate

(Chapin et al. 2002; Zhang and Wang 2015). In this study,

higher nutrient concentrations and lower C/N and C/P in

birch roots reflect its better decomposability compared to

conifer roots. This deduction is partly line with the reported

results that the fine root of birch decay more rapidly as

compared to those of two conifers (Wei et al. 2013; Wu

et al. 2010).

Root diameter integrates both chemical and physical

properties and is widely used as an agent of litter quality

(Andrén et al. 1992). Irrespective of tree species, lower

C/N and C/P and higher N, P and N/P were observed in fine

roots compared to larger roots. This finding was in con-

sistent with most reported results (Silver and Miya 2001;

John et al. 2002; Yuan et al. 2011; Wang et al. 2014).

Compared to larger diameter roots, fine roots with higher P

concentration supported that the growth rate hypothesis

that faster growing tissues such as fine roots need more

P-rich RNA to support protein synthesis (Yuan et al. 2011).

However, higher N/P of fine roots relative to coarser roots

implied that P concentration decreased proportionally less

than N concentration with increasing root diameter. In

addition, this also indicates that C, N and P are dispro-

portionally allocated to new biomass as plant roots grow

from fine to coarse roots.

Lignin and cellulose are well known as a recalcitrant

component and they are two key components in root sub-

strate (Melillo et al. 1982). Lignin concentration of broad-

leaved tree roots seems to be higher compared to conifer

roots (Silver and Miya 2001). In the current case, birch

roots often had higher lignin concentrations than spruce

roots, but lower relative to fir roots. Moreover, a recent

study has found that there was no significant difference in

Fig. 4 Variations of lignin/N, lignin/P and lignin/cellulose among

root diameters and species (mean ± SD). Different lowercases

represent significant differences among root diameters for a given

tree species and different uppercases represent significant differences

among species for a given root diameter
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lignin concentration between Douglas fir and European

beech (Thomas et al. 2014). A meta-analysis has also

shown that there are substantial variations in root lignin

among tree species (Newman and Hart 2006). Therefore,

root lignin content is likely to be attributed to species itself

traits and the environments of tree growth. In addition,

there existed certain difference in root cellulose and

lignin/cellulose between coniferous and broad-leaved tree

species, but this tendency was dependent on root diameter

root cellulose was found to be lower in Douglas fir as

compared to that of European beech (Thomas et al. 2014).

This may be explained by thicker secondary cell walls of

beech roots, especially sclerenchymatous and xylem cells

(Kutschera and Lichtenegger 2002). Combined with lower

N and P concentration, conifer roots tend to exhibit higher

lignin/N and lignin/P than birch roots. In general, lignin/N

and lignin/P are commonly considered as one of key fac-

tors controlling long-term decomposition (Dickison 2000;

Yang et al. 2004). Thus, we further speculate that birch

roots could decay faster than those of conifer roots (fir and

spruce) during the long-term decomposition process.

Besides, lignin concentrations tended to decrease with

increasing root diameter irrespective of tree species. Sim-

ilar performances were observed in many other forest tree

species, including Douglas fir, European beech and Black

alder (Thomas et al. 2014; Camiré et al. 1991). The higher

lignin concentration in fine roots compared to larger roots

is likely to be due to the fact that fine roots often had

greater component of lignified tissue (e.g., the xylem)

compared to coarser roots (Dickison 2000). Conversely,

cellulose concentration showed an increasing tendency

with increasing root diameter. This is probably because fine

roots commonly had lower secondary cell walls relative to

larger diameter roots (Guo et al. 2008). Secondary walls

generally are thicker than primary walls, and typically

contain a higher proportion of cellulose than primary walls

(Guo et al. 2008). A negative correlation between lignin

and cellulose concentrations was found in this study, which

was line with the results observed in Douglas fir and

European beech (Thomas et al. 2014). Compared to fine

roots, higher lignin/N in the coarse roots can result in lower

decomposition rates (Stump and Binkley 1993; Rahmana

et al. 2013). A one-year incubation experiment has sup-

ported the deduction that mass loss of fine roots was greater

than those of coarse root in the subalpine forest tree species

(Tang et al. 2015a, b).

Conclusions

This study explored diameter-associated variations in root

chemistry and stoichiometry in three common subalpine

forest tree species of southwestern China. Irrespectively ofT
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root diameter, conifer roots (fir and spruce) tend to have

lower N and P concentrations but higher C/N, C/P, lignin/N

and lignin/P than birch roots. In addition, regardless of tree

species, fine roots exhibited higher N and P concentrations

and lower cellulose, lignin/N and lignin/P as compared to

larger diameter roots. In general, there are significant

relationships among root chemical variables. Taken toge-

ther, there are remarkable differences in chemical traits

among diameter classes and tree species, which have

important implication for below-ground carbon and nutri-

ent cycles in this specific area.
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