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Nitrogen additions inhibit nitrification in acidic soils
in a subtropical pine plantation: effects of soil pH
and compositional shifts in microbial groups
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Abstract Plantation forests play a pivotal role in carbon

sequestration in terrestrial ecosystems, but enhanced

nitrogen (N) deposition in these forests may affect plan-

tation productivity by altering soil N cycling. Hence,

understanding how simulated N deposition affects the rate

and direction of soil N transformation is critically impor-

tant in predicting responses of plantation productivity in

the context of N loading. This study reports the effects of N

addition rate (0, 40, and 120 kg N ha-1 a-1) and form

(NH4Cl vs. NaNO3) on net N mineralization and nitrifi-

cation estimated by in situ soil core incubation and on-soil

microbial biomass determined by the phospholipid fatty

acid (PLFA) method in a subtropical pine plantation. N

additions had no influences on net N mineralization

throughout the year. Net nitrification rate was significantly

reduced by additions of both NH4Cl (71.5) and NaNO3

(47.1%) during the active growing season, with the stron-

ger inhibitory effect at high N rates. Soil pH was markedly

decreased by 0.16 units by NH4Cl additions. N inputs

significantly decreased the ratio of fungal-to-bacterial

PLFAs on average by 0.28 (49.1%) in November. Under

NH4Cl additions, nitrification was positively related with

fungal biomass and soil pH. Under NaNO3 additions,

nitrification was positively related with all microbial

groups except for bacterial biomass. We conclude that

simulated N deposition inhibited net nitrification in the

acidic soils of a subtropical plantation forest in China,

primarily due to accelerated soil acidification and compo-

sitional shifts in microbial functional groups. These find-

ings may facilitate a better mechanistic understanding of

soil N cycling in the context of N loading.
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deposition �Microbial functional group � Nitrification � Soil
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Introduction

Plantation forests represent a large proportion of the total

forest area worldwide (FAO 2006) and play a pivotal role

in carbon sequestration in terrestrial ecosystems (Winjum

and Schroederb 1997). Atmospheric nitrogen (N) is

increasingly deposited on subtropical highly weathered

soils where plantation forests predominate (Hansen et al.

2013). N is quantitatively and functionally the most

important nutrient for plant growth and N deficiency fre-

quently limits forest productivity (Reich et al. 1997; Burton

Project funding: This research is financially supported by the Grants

from the National Key Research and Development Plan (No.

2016YFD06000202), and the National Natural Science Foundation of

China (Nos. 31570443, 31130009).

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s11676-018-0645-2) contains supple-
mentary material, which is available to authorized users.

& Shenggong Li

lisg@igsnrr.ac.cn

1 Key Laboratory of Ecosystem Network Observation and

Modeling, Institute of Geographic Sciences and Natural

Resources Research, Chinese Academy of Sciences,

Beijing 100101, China

2 University of Chinese Academy of Sciences, Beijing 100049,

China

3 Jiangxi Provincial Key Laboratory of Ecosystem Processes

and Information, Taihe 343725, China

123

J. For. Res. (2019) 30(2):669–678

https://doi.org/10.1007/s11676-018-0645-2

http://www.springerlink.com
https://doi.org/10.1007/s11676-018-0645-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s11676-018-0645-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11676-018-0645-2&amp;domain=pdf
https://doi.org/10.1007/s11676-018-0645-2


et al. 2007). However, persistently elevated N deposition

may affect forest productivity via altering soil N cycling

(Vitousek et al. 1997; Matson et al. 1999, 2002). Hence,

understanding how simulated N deposition affects soil N

transformations is critically important in predicting the

potential responses of productivity of subtropical planta-

tion forests in the context of N loading.

Soil N transformations (e.g., mineralization and nitrifi-

cation) are highly sensitive to N deposition and mediated

by both biotic (microorganisms) and abiotic (acidification)

factors (Zhu et al. 2013). Hence, N transformation rates are

tightly correlated to microbial biomass, enzymatic activi-

ties, and group composition (e.g., fungi to bacteria ratios)

(Wallenstein et al. 2006). Additionally, microorganisms

generally present varying degrees of sensitivities to acidity

(e.g., acid-tolerant vs. acid-adaptive). Evidence has shown

that bacterial groups were more affected by soil pH than

fungal groups (Fierer et al. 2009). Thus, N deposition

induced changes in soil pH will inevitably induce shifts in

the relative abundance of different microbial groups and

therefore in corresponding N transformations, especially

nitrification (Yao et al. 2011).

Different forms of inorganic N addition may have con-

trasting effects on soil N transformations. Addition of N as

ammonium (NH4
?) can produce more protons than nitrate

(NO3
-), regardless of being taken up by plants or being

nitrified (Matson et al. 1999). Therefore, microbial groups

may respond differentially to inputs of NH4
? and NO3

-,

which have varying potentials to incur soil acidification.

Furthermore, it has been observed that microorganisms

preferentially assimilate NH4
? over NO3

-, due to the

lower energy expenditure of NH4
? assimilation (Recous

et al. 1992). However, studies on acidic soils have shown

that microorganisms utilize equal or greater amounts of

NO3
- compared to NH4

? (Zhang et al. 2011a, b; Zhu et al.

2013), which may result from selective NO3
- uptake by

fungi (Marzluf 1997). To clarify this paradox, further

research is needed to unravel the N form effects on

microbial functional groups and associated soil N

transformations.

However, inconsistent and contradicting results have

been reported regarding N transformations and their

responses to N deposition or experimental N addition

(Rousk et al. 2010; Yao et al. 2011) and may be ascribed to

multiple causes, such as temporal variations in edaphic

conditions, differences in rates of the added N, and the N

status of forest ecosystems before N addition (Gundersen

et al. 1998). Previous studies have demonstrated that net N

mineralization is low during the growing season relative to

the winter, due to the nutrient immobilization of microor-

ganisms during the summer and nutrient release from dying

microorganisms during winter (Hobbie and Chapin 1996).

Conversely, net N mineralization is greater during the

growing season, which has optimal temperatures and

moisture conditions in contrast to the non-growing season

(Durán et al. 2013). Net N mineralization also generally

increases with an increment of inorganic N that is applied

(Heitkamp et al. 2009). Additionally, evidence has shown

that N deposition generally stimulates net N mineralization

in N-limited forest ecosystems (Vourlitis et al. 2007), but

may inhibit it as ecosystems become N-saturated (Gun-

dersen et al. 1998).

Globally, China has the largest area of plantations, with

more than half in subtropical regions (Department of Forest

Resources Management 2010). Recent 15N-labeling studies

have shown that subtropical acidic forest soils in south

China are naturally N abundant, due primarily to their

microorganism-dominated N-retention mechanism (Zhang

et al. 2013). Given the important role of soil microorgan-

isms and enhanced N depositions in subtropical China,

different rates and forms of inorganic N fertilizers were

applied on acidic soils in 2012 to (1) explore the seasonal

pattern of net N mineralization and nitrification, and (2)

determine the effects of varying rates and forms of N

addition on soil N transformations and the relative effects

of associated biotic factors (microbial groups) and abiotic

factors (soil pH) in these processes. Specifically, we

hypothesized that (1) in the acidic soils of subtropical

plantation forests, the active growing season (AGS) would

have higher soil N transformation rates than the non-active

growing season (NAGS) due to optimal temperature and

moisture conditions that occur in the AGS, (2) exogenous

N additions would suppress N transformations in acidic

soils by accelerating acidification and thus altering

microbial functional groups, and (3) ammonium has

stronger inhibitory effects on soil N transformations than

nitrate, since NH4
? is more efficient (higher potential to

produce protons) at reducing soil pH.

Materials and methods

Study site and experimental design

The study site is located at the Qianyanzhou (QYZ)

Experimental Station of Red Soil and Hilly Land, Chinese

Academy of Sciences (CAS), Jiangxi Province, southeast-

ern China (26�44029.100N, 115�03029.200E, 102 m above sea

level). The climate is a subtropical monsoon climate.

According to long-term climate records (1989–2008), the

annual mean air temperature ranges from 17.4 to 18.9 �C,
and the annual precipitation ranges from 945 to 2144 mm,

of which approximately 24, 41, 23, and 12% on average

falls in spring, summer, autumn, and winter, respectively

(Zhang et al. 2011a, b). The lower rainfall and high tem-

peratures in the late summer frequently caused seasonal
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droughts at the QYZ site (Wen et al. 2010). Based on the

USDA soil taxonomy, the soil that weathers from red

sandstone and mud stone is classified as Typic Dystrudepts

(Wang et al. 2012). The original vegetation on the gently

undulating terrain was evergreen broad-leaved forest, but it

was heavily cleared by logging and land conversion to

agriculture before the 1980s. The vegetation was restored

in approximately 1985 by planting slash pine (Pinus

elliottii), Masson pine (Pinus massoniana) and Chinese fir

(Cunninghamia lanceolata). The background wet N depo-

sition rate at the site is about 33 kg N ha-1 a-1 (Zhu et al.

2015; Kou et al. 2017). More information regarding the soil

and stand characteristics of the study site can be found in

Table 1 and the description of Kou et al. (2015).

The N addition experiment was carried out in a subtrop-

ical P. elliottii plantation in November 2011. A randomized

complete block design with three replicates was employed,

and each block was divided into five 20 9 20 m plots. The

buffer zone between any two plots was more than 10 m.

Topographic position and slope (less than 15�) was consid-
ered to ensure uniformity among plots. Within each block,

one plot served as the control, receiving ambient N deposi-

tion only, and the remaining four plots received ambient N

deposition plus randomly assigned chronic atmospheric N

deposition (40 vs. 120 kg N ha-1 a-1 NH4Cl and 40 vs.

120 kg N ha-1 a-1 NaNO3, respectively.). Fertilizers were

weighed (509.5 g, low NH4Cl; 1528.5 g, high NH4Cl;

809.6 g, low NaNO3; 2428.8 g, high NaNO3), fully dis-

solved in 30 L tap water, and evenly sprayed onto N-addition

zone once per month (i.e., 12 equal applications per year),

and the control plots were supplied with the equivalent

amount of tap water. The understory N addition started on

May 1, 2012 and proceeded at 1-month intervals on days

without rain. In this study, we divided the year into the active

growing season (AGS) from May to October and the non-

active growing season (NAGS) from November to April of

the following year.

Field sampling and measurements

Net N mineralization and nitrification were measured in situ

using an intact soil core incubation technique. Monthly

(approximately every 4 weeks) measurements started on

April 30, 2012 in the AGS, in March and April in the NAGS,

and bimonthly (roughly every 8 weeks) during the rest of the

NAGS. Five pairs of 5 cmdiameter 9 15 cm long polyvinyl

chloride tubes were inserted (to 10 cm depth) in the soil at

each plot when the incubation began. Five tubes were

removed immediately prior to the N additions (before incu-

bation), and the soil in the tube was mixed as one composite

sample (approximately 300 g) after hand sorting and

removing roots and rocks, and then sent to the laboratory for

the extraction of NO3
- and NH4

? to determine the initial

inorganic N content. The other five tubes were capped with

parafilm, which is permeable to air but not water, and were

left in place for incubation (after incubation). Upon com-

pletion of in situ incubation, these five tubes at each plot were

removed and processed in the same manner as above to

determine soil inorganic N content. For each soil composite

sample, a subsample (ca. 30 g) was dried in an oven at

105 �C to determine the soil water content, and 50 mL of

2 mol L-1 KCl was added to approximately 13–15 g soil to

extract mineral soil N (NH4
?–N and NO3

-–N).

Monthly net N mineralization rates (mg kg-1 d-1) were

calculated as (Inorganic-NA–Inorganic-NB)/incubation days,

and net nitrification rates were calculated as (Nitrate-NA–

Nitrate-NB)/incubation days, where Inorganic-NB and inor-

ganic-NA, represents inorganic N contents before and after

incubation, and Nitrate-NB and Nitrate-NA represents NO3
-–

N contents before and after incubation. The amounts of

ammonium and nitrate were determined with a Flow Auto

Table 1 Soil (0–10 cm) and stand characteristics at the study site at the Qianyanzhou Experimental Station of Red Soil and Hilly Land, Chinese

Academy of Sciences, Jiangxi Province, southeastern China

Soil Stand

Soil bulk density (g cm-3) 1.54 ± 0.12 Forest type Pinus elliottii plantation

pH value (KCl) 3.78 ± 0.01 Stand age (year) 28

NH4
?–N (mg kg-1) 15.9 ± 0.8 Stand density (stems ha-1) 833

NO3
-–N (mg kg-1) 2.3 ± 0.3 Mean DBH (cm) 20.9 ± 0.2

Total C (g kg-1) 23.5 ± 3.0 Mean canopy height (m) 17.5 ± 0.1

Total N (g kg-1) 1.4 ± 0.1 Dominant understory plants Woodwardia japonica (L.f.) Sm

Total P (mg kg-1) 200 ± 16 Loropetalum chinense (R.Br.) Oliv

C:N ratio 17.1 ± 1.3 Dicranopteris dichotoma (Thunb.)

N:P ratio 6.9 ± 0.6

DBH was measured in December 2011
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Analyzer (Bran Luebbe, Germany). Soil pH values were

determined in 1 mol L-1 KCl extracts (soil to KCl ratio of

1:2.5) with a pHmeter (Mettler Toledo, Switzerland). The pH

value determined for the KCl extract was lower (by approxi-

mately 1.0 unit) than it was with the water extract method in

this study. Volumetric soil moisture and temperature at

0–10 cm soil depth were automatically monitored by EM50

(Decagon, USA) at a frequency of 30 min.

The soil microbial community composition was asses-

sed using phospholipid fatty acids (PLFAs) in June and

November 2012. Specifically, lipids were extracted from

8 g soil (sampled from N mineralization composite soils

before incubation) using the procedure described by Bååth

and Anderson (2003). The abundance of individual fatty

acid methyl-esters was expressed as a mole percentage.

Nomenclature of fatty acids was made according to Fros-

tegård et al. (1993). PLFAs 16:1x7c, cy17:0, cy19:0, i15:0,
a15:0, i16:0 and i17:0 PLFA are representative of bacteria

(Frostegård and Bååth 1996), 18:1x9 and 18:2x6 are

specific to fungi (Joergensen and Wichern 2008; Frostegård

et al. 2011). PLFA 10Me16:0 and 10Me18:0 were chosen

to represent actinobacteria (Hossain et al. 2010).

Statistical analyses

Repeated-measures of analysis of variance (RMANOVA)

were used to examine effects of N rate, N form, and their

interactions on soil N transformations (net N mineraliza-

tion and nitrification rates). One-way ANOVA was per-

formed to determine the treatment effects on soil pH and

microbial functional groups. Where required, data were log

(x)-transformed to meet assumptions of normality and

homogeneity of variance. Linear regression analyses were

conducted on soil microbial groups and soil pH against soil

N transformations. Significant differences between means

were compared using Tukey’s test. All statistical analyses

were conducted using SPSS software version 18.0 (SPSS,

Chicago, IL, USA).

Results

Net N mineralization and nitrification rates

Monthly N transformation rates presented significant sea-

sonal variations (P\ 0.001, Table 2), ranging from - 0.16

to 0.52 mg kg-1 d-1 for net N mineralization rate (Fig. 1a)

and - 0.03 to 0.18 mg kg-1 d-1 for nitrification rate

across all sampling months in the control plots (Fig. 1b).

Net N mineralization and nitrification rates peaked in June

and September and were minimal in December (Fig. 1).

Over the sampling period, both net N mineralization and

nitrification rates were higher in the AGS than in the

NAGS (Fig. 1). Mean net N mineralization rates in the

control plots were 0.38 mg kg-1 d-1 during the AGS and

- 0.02 mg kg-1 d-1 during the NAGS (Fig. 1a). Mean net

nitrification rates in the control plots were 0.12 mg kg-1

d-1 during the AGS and almost negligible during the

NAGS (Fig. 1b).

Exogenous N input significantly inhibited nitrification,

and the inhibitory effect was more dependent on rate

(P = 0.032, Table 2; Fig. 1b) than form (marginally sig-

nificant, P = 0.054, Table 2; Fig. 1b) of N. Specifically,

net nitrification rate significantly decreased with addition

of N as NH4Cl by 71.5% and NaNO3 by 47.1% during the

AGS. The inhibitory effect of N input on nitrification was

stronger under the low rate (73.3%) than high rate of N

(45.3%), especially under addition of NaNO3. However,

exogenous N additions slightly reduced net N mineraliza-

tion throughout the year (Fig. 1a).

N transformations and microbial community

Microbial PLFA biomass (in nmol g-1 dry mass) and the

PLFA ratio of fungi to bacteria differed among sampling

times (Fig. 2). Although N addition showed a trend of

inhibition for all microbial groups, it was not statistically

significant (Fig. 2a, b). Specifically, N input slightly

decreased the PLFA biomass of all microbial groups in

June and fungal PLFA in November. Although N input

slightly decreased the fungal PLFA biomass, the ratio of

fungi to bacteria decreased significantly by 0.28 (49.1%)

on average compared with the control in November

(P = 0.008, Fig. 2d).

Varying forms of N addition exerted contrasting influ-

ences on the relationships between soil N transformations

and microbial groups (Table 3). Specifically, net N min-

eralization exhibited significant negative relationships with

fungal biomass (P = 0.018, Table 3), and nitrification

presented positive relationships with fungal biomass

(P = 0.038, Table 3) after ammonium-based N addition.

Net N mineralization exhibited significant negative rela-

tionships with all microbial groups except for fungal bio-

mass (Table 3), and nitrification had a significant positive

relationship with all microbial groups (Table 3) except for

bacterial biomass when nitrate-based N was added.

N transformations and soil pH

The response of soil pH to N additions fluctuated little

during the entire study. Varying rates and forms of N

addition decreased soil pH, and a significant difference was

observed after 10 months of N input (Fig. 3). Irrespective

of the rate (40 vs. 120 kg N ha-1 a-1) applied, ammo-

nium-based N additions caused a significant decline in soil

pH by 0.16 units (P\ 0.05, Fig. 3).
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The effects of varying forms of N addition on the rela-

tionships between soil N transformations and soil pH were

divergent (Table 3). Specifically, net N mineralization

(P = 0.041, Table 3) and nitrification (P = 0.029, Table 3)

exhibited significant positive relationships with soil pH

under ammonium-based N additions. However, no signif-

icant relationship between soil N transformations and soil

pH were observed with nitrate-based N additions (Table 3).

Discussion

Seasonal variations in net N mineralization

and nitrification

Supporting our first hypothesis, net N mineralization and

nitrification in both the control and the N addition plots

were higher during the AGS than during the NAGS

(Fig. 1). This result is consistent with previous studies,

suggesting higher mineralization and nitrification rates

during the growing season than in the non-growing season

(Durán et al. 2013). It has been reported that competition

between roots and microorganisms for inorganic N has

temporal variations (Xu et al. 2011), which may be asso-

ciated with soil temperature and moisture. Higher tem-

peratures during the growing season may intensify soil

respiration and competition for N between fine roots and

microorganisms. Consequently, greater N transformation

rates help meet the demand for N by fine roots and/or

microorganisms. Conversely, lower N transformation rates

were observed in the winter, because both plants and

microorganisms are inactive or dormant.

Many studies have shown that N mineralization signif-

icantly increases with temperature (Rustad et al. 2001),

while warming may stimulate (Verburg et al. 1999) or have

no influence on nitrification (Niboyet et al. 2011). We

observed that soil temperature rather than moisture had a

dominant effect on net N mineralization (Table S1), which

confirms that soil temperatures exert greater impacts on

soil N transformations than moisture during most of the

year. However, in our study, net N mineralization peaked

at the beginning of the summer (June), rather than when

temperatures were the highest (Fig. 1a), perhaps due to the

seasonal drought that occurred later in the summer (Wen

et al. 2010), which generally inhibited N mineralization

and its sensitivity to warming (Auyeung et al. 2013).

Nitrification rates are positively related with soil mois-

ture, but may progressively decrease as the water content

exceeds a specific threshold (Kiese et al. 2008). We noticed

that nitrification rates were lowest in June during the AGS,

but peaked 3 months later than net N mineralization rates

(Fig. 1), probably due to the excessive precipitation for

Table 2 Results of repeated

measures ANOVA of the effects

of month, N rate, N form and

their interactions on net N

mineralization, nitrification, and

content of NH4
?–N and

NO3
-–N

Source of variation N mineralization N nitrification Soil NH4
?–N Soil NO3

-–N

F P F P F P F P

AGS

Between subjects

N rate 0.18 0.681 6.67 0.032 1.12 0.320 5.09 0.049

N form 2.79 0.128 4.52 0.054 3.79 0.081 5.26 0.045

N rate 9 N form 1.43 0.263 4.69 0.059 3.32 0.103 2.50 0.152

Within subjects

Month 6.00 0.001 27.69 \ 0.001 31.35 \ 0.001 5.97 \ 0.001

Month 9 N rate 6.00 0.005 5.48 \ 0.001 1.06 0.392 0.77 0.583

Month 9 N form 6.00 0.003 6.72 \ 0.001 0.63 0.684 0.16 0.982

Month 9 N rate 9 N form 6.00 0.002 3.42 0.013 1.22 0.314 1.46 0.221

NAGS

Between subjects

N rate 0.42 0.534 0.23 0.652 4.89 0.053 0.57 0.467

N form 0.70 0.421 0.01 0.906 0.07 0.792 0.10 0.764

N rate 9 N form 1.29 0.277 1.41 0.261 1.99 0.187 0.56 0.468

Within subjects

Month 39.13 \ 0.001 8.00 0.151 15.60 \ 0.001 8.00 0.079

Month 9 N rate 1.65 0.202 8.00 0.223 5.89 0.003 8.00 0.731

Month 9 N form 7.71 0.001 8.00 0.184 2.07 0.131 8.00 0.826

Month 9 N rate 9 N form 1.10 0.370 8.00 0.457 3.08 0.044 8.00 0.915

AGS active growing season, NAGS non-active growing season
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Fig. 1 Temporal variation in

net N mineralization (a) and
nitrification (b) rates in control

and N-addition (low N:

40 kg N ha-1 a-1, high N:

120 kg N ha-1 a-1) plots

during the study. Months

without gray shadows represent

AGS (mean monthly soil

temperature[ 20 �C). Months

with gray shadows represent

NAGS (mean monthly soil

temperature\ 20 �C). N ? D:

November ? December, J ? F:

January ? February. Data are

mean ± standard error (n = 3)

Fig. 2 Phospholipid fatty acid

(PLFA) biomass (nmol g-1) of

bacteria, fungi, and

actinobacteria and ratio of fungi

to bacteria in control and

N-addition plots in June (a,
c) and November (b, d). CK
control, LA low NH4Cl, HA high

NH4Cl, LN low NaNO3, HN

high NaNO3, respectively. Data

are means ? standard error

(n = 3). Different letters

indicate significant differences

(P\ 0.05) between treatments
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nitrifiers in June and relatively favorable hydrothermal

conditions in September (Figure S1).

Effects of N addition on net N mineralization

and nitrification

N additions slightly reduced N mineralization throughout

the year, but significantly inhibited nitrification in the AGS

(Table 2; Fig. 1). This partially supports the first part of

our second hypothesis that N additions would reduce net N

mineralization and strongly supports the second part of the

hypothesis that N additions would reduce nitrification. N

transformations are mediated and influenced by the bio-

mass, enzymatic activities, and functional group composi-

tion of the soil microorganisms (Wallenstein et al. 2006).

In our study, N inputs slightly decreased the biomass of all

microbial groups in June and of fungal groups in Novem-

ber (Fig. 2a, b). These decreases may, to some extent, be

responsible for the slight declines in N mineralization

(Fig. 1a).

Recent studies have revealed that humid subtropical

acidic soils in China have low autotrophic and relatively

high heterotrophic nitrification rates due to low soil pH

(Zhang et al. 2011a, b, 2013). Heterotrophic nitrification is

primarily carried out by fungi in the acidic forest soils of

subtropical China (Zhu et al. 2013). Our study shows that

the ratio of fungal to bacterial PLFAs decreased after the N

additions (Fig. 2d), and the fungi PLFA had a positive

relationship with nitrification (Table 3), which might par-

tially explain the decreased nitrification rates (P = 0.031,

Fig. 1b). In addition, accumulated NH4
? and NO3

- in the

soil due to the addition of NH4
? and NO3

- (Table S2) may

promote the reverse processes of N transformation, thereby

suppressing the transformation of organic N to NH4
?

(ammonification), the transformation of organic N to NO3
-

Table 3 Relationships between N transformations (net N mineral-

ization and nitrification rates) and microbial biomass (fungal,

bacterial, actinobacterial, and total PLFA biomass) as well as

between N transformations and soil pH after different forms of N

(NH4
? vs. NO3

-) were added

Variable NH4
? addition NO3

- addition

Net N mineralization Net nitrification Net N mineralization Net nitrification

R2 P R2 P R2 P R2 P

Soil pH 0.527 0.041 0.582 0.029 0.166 0.359 0.331 0.137

Fungal PLFAs 0.442 - 0.018 0.332 0.038 0.317 0.057 0.369 0.038

Bacterial PLFAs 0.187 0.160 0.006 0.812 0.374 - 0.035 0.324 0.054

Actinobacterial PLFAs 0.257 0.092 0.037 0.548 0.570 - 0.005 0.387 0.031

Total PLFAs 0.283 0.075 0.044 0.513 0.418 - 0.023 0.382 0.032

Low (40 kg N ha-1 a-1) and high (120 kg N ha-1 a-1) rates of N treatments were pooled, and the control was precluded (n = 12)

Negative P values indicate a negative relationship between N transformation and the variable

Fig. 3 Soil pH before and after

low rates (a) and high rates

(b) of N addition. Data are

means ? standard error (n = 3).

Different letters indicate

significant differences

(P\ 0.05) between treatments
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(heterotrophic nitrification) and the oxidation of NH4
? to

NO3
- (autotrophic nitrification).

Unexpectedly, the inhibitory effect of N addition on net

nitrification was much higher under low than high N rates

(P = 0.032, Table 2; Fig. 1b). Relative to the low N rate,

the high N rate is theoretically more capable of increasing

the N to C ratio of soil organic matter or organic N (the

base of heterotrophic nitrification), which may facilitate

heterotrophic nitrification. This facilitation may, to some

extent, offset the negative effects of high N rate on biomass

and activities of some heterotrophic nitrifiers. Additionally,

we found that NO3
- contributed primarily to the stronger

inhibitory effects of low N rate (Fig. 1b). In planted soils,

NO3
- generally has a greater stimulation on root-derived

respiration (Gavrichkova and Kuzyakov 2008). A recent

study based on our N-manipulative experiment shows that

low level of NO3
- input significantly increased soil CO2

flux during the AGS, which is possibly due to the increased

root autotrophic respiration (Wang et al. 2015). Hence, we

speculate that low rates of N supply may stimulate auto-

trophic respiration and N uptake of roots, while adding N at

high rate has a neutral or inhibitory effect on root-associ-

ated variables.

Contrasting effects of N form on microbial groups

and pH and thus nitrification

Soil pH was more markedly reduced by ammonium-based

than nitrate-based N inputs (Fig. 3), concurring with with

previous studies that ammonium-based N contributed

greatly to soil acidification (Matson et al. 1999).

Microorganisms are considered to present differential

sensitivities to acidity (Fierer et al. 2009). In our study,

microbial groups exhibited close relationships with net

nitrification as nitrated-based N was added (Table 3).

However, only fungal groups presented a strong relation-

ship with net nitrification (P = 0.038, Table 3) when

ammonium-based N was applied. Hence, relative to other

microbial groups, fungal groups play a dominant role in

soil N transformations when ammonium-based N is

applied. This finding indicates that soil N transformation is

mediated by compositional shifts in microbial groups due

to inorganic N additions, and in particular, that this medi-

ation is also strongly N-form dependent.

Reduced soil pH may affect N transformations by

altering soil chemical and biological properties (Fu et al.

1987). Accumulating evidence shows that soil pH is posi-

tively related to nitrification (Cheng et al. 2011; Persson

and Wiren 1995). For instance, Nugroho et al. (2007) found

that the low nitrification rates in acidic soils of Scots pine

(Pinus sylvestris L.) forest are due to low pH. We observed

a significantly positive relationship between soil pH and

net nitrification rate (P = 0.029, Table 3) with ammonium-

based rather than nitrate-based N inputs. Consequently,

different forms of N inputs may exert contrasting influ-

ences on soil pH and therefore on soil N transformations.

Despite varying responses of microbial groups and soil

pH to different forms of N, the N form effects on nitrifi-

cation were only marginally significant (P = 0.054,

Table 2; Fig. 1b). The reduced pH in our study occurred

only 10 months after ammonium-based N was added

(Fig. 3). Two factors may be responsible for this obser-

vation. First, the N-retention mechanism in the acidic forest

soils, which can efficiently immobilize inorganic N ions

(NH4
? and NO3

-) into organic N pool, reduces the release

of hydrogen ions (H?) (Zhang et al. 2013). Second, the

seasonal drought from early July to late October (Wen

et al. 2010) may reduce the risk of leaching loss of NO3
-.

Therefore, the lag effect of soil acidification may con-

tribute to explaining the lack of contrasting effects of the N

form (Fig. 1).

Heterotrophic nitrification is the dominant mode of

nitrification in humid subtropical acidic soils in China

(Zhang et al. 2011a, b, 2013) and primarily carried out by

fungi (Zhu et al. 2013). Given the decreased ratio of fungi

to bacteria, enhanced acidification, and inhibited nitrifica-

tion after N addition, our findings imply that enhanced N

deposition on the subtropical acidic soils may promote the

accumulation of soil organic matter (the basis of hetero-

trophic nitrification), increase the ratio of NH4
? to NO3

-,

and decelerate N cycling. All these effects may therefore

influence plant growth and plantation productivity via

altering soil N supply and plant uptake. Soil N transfor-

mations are extremely complex and are affected by mul-

tiple factors. Our results based on a year-long manipulative

experiment provide only a ‘‘snapshot’’ of short-term soil N

transformations in response to N additions. Further studies

are therefore needed to examine the long-term effects of N

deposition on soil N cycling.

Conclusions

In our field N-manipulation experiment, net N mineral-

ization and nitrification were higher during the active

growing season (AGS) than during the non-active growing

season (NAGS). Both ammonium- and nitrate-based N

inputs significantly reduced net nitrification rates during

the AGS. Ammonium-based N inputs exerted larger effects

on microbial functional groups and on soil pH than did

nitrate-based N inputs. The inhibitory effects on soil N

transformations are better explained by changes in the

fungal groups and soil pH when ammonium-based N was

applied. However, bacteria and/or actinobacteria groups

contributed more than fungal groups to the inhibitory

effects when nitrate-based N was applied. In summary,
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accelerated soil acidification (abiotic factor) together with

compositional shifts in microbial groups (biotic factor) was

largely responsible for the inhibited nitrification by N

addition. These results may contribute to mechanistically

understanding soil N cycling in the context of N loading.
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