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Abstract Soil chemistry influences plant health and car-

bon storage in forest ecosystems. Increasing nitrogen

(N) deposition has potential effect on soil chemistry. We

studied N deposition effects on soil chemistry in subtrop-

ical Pleioblastus amarus bamboo forest ecosystems. An

experiment with four N treatment levels (0, 50, 150, and

300 kg N ha-1 a-1, applied monthly, expressed as CK,

LN, MN, HN, respectively) in three replicates. After

6 years of N additions, soil base cations, acid-forming

cations, exchangeable acidity (EA), organic carbon frac-

tions and nitrogen components were measured in all four

seasons. The mean soil pH values in CK, LN, MN and HN

were 4.71, 4.62, 4.71, and 4.40, respectively, with a sig-

nificant difference between CK and HN. Nitrogen additions

significantly increased soil exchangeable Al3?, EA, and Al/

Ca, and exchangeable Al3? in HN increased by 70%

compared to CK. Soil base cations (Ca2?, Mg2?, K?, and

Na?) did not respond to N additions. Nitrogen treatments

significantly increased soil NO3
-–N but had little effect

on soil total nitrogen, particulate organic nitrogen, or

NH4
?–N. Nitrogen additions did not affect soil total

organic carbon, extractable dissolved organic carbon,

incorporated organic carbon, or particulate organic carbon.

This study suggests that increasing N deposition could

increase soil NO3
-–N, reduce soil pH, and increase mobi-

lization of Al3?. These changes induced by N deposition

can impede root grow and function, further may influence

soil carbon storage and nutrient cycles in the future.

Keywords Base cations � Carbon fractions � Nitrogen
deposition � Soil chemistry � Soil acidification

Introduction

Anthropogenic nitrogen (N) deposition has significantly

increased worldwide since the beginning of the 20th cen-

tury (Vitousek et al. 1997; Gruber and Galloway 2008). It

has been predicted that annual N deposition will increase

considerably in the 21st century, given the growing N

demands of global agriculture and industries, as well as the

generally existing phenomenon of inefficient N use (Gal-

loway et al. 2008). China has the greatest emissions of NOx

and NH3 around the world (Vet et al. 2014), and among the

most intensive N deposition rates. In the next several

decades, the largest increases in N deposition are expected

to occur in China and South Asia (Dentener et al. 2006).

Increased N deposition has profound effects on forest

ecosystems (Fenn et al. 2003; Michopoulos et al. 2004;

Manning et al. 2006). Plant growth generally responds to N

deposition positively, since primary productivity in most

forests is N-limited (Lebauer and Treseder 2008). How-

ever, the effects of N deposition on soil biochemistry are

complex (Magill et al. 1997). Under the global climate
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change background, the effect of N deposition on forest

soil carbon (C) storage gets more attention, since forest soil

are the most important carbon sinks in terrestrial ecosys-

tems (Lal 2005). However, the effects of N deposition on

soil organic carbon pools remain controversial. Some

studies have indicated that N additions significantly

increase soil C sequestration in some ecosystems (Cusack

et al. 2011; Huang et al. 2011; Du et al. 2014), but other

studies have indicated substantial C loss in other ecosys-

tems (Cleveland and Townsend 2006). The soil carbon

pool is comprised of many different carbon compounds and

N additions have varying impacts on these carbon fractions

(Song et al. 2014). Thus further research is warranted on

how soil C fractions respond to N additions.

Nitrogen deposition has the most direct effect on the soil

N cycle and soil N status is important for the ecosystem

response direction and intensity to N deposition (Homyak

et al. 2014). N deposition usually increases soil NO3
-–N

concentrations and can lead to soil acidification and cation

depletion (Tian and Niu 2015). This has been verified in

grassland ecosystems and many boreal forests (Lucas et al.

2011; Tian and Niu 2015). However, there are few reports

on soil cation responses to N deposition in subtropical or

tropical forest. Subtropical or tropical forest soil cations

might respond to N deposition in ways similar to those of

boreal forests. Whereas, most results show that N deposi-

tion has little effect or increased cation concentrations in

subtropical or tropical forest soil (Lu et al. 2009; Lucas

et al. 2011). Base cations are essential elements for plant

growth and the lack of base cations limits ecosystem pro-

ductivity (Lucas et al. 2011). Understanding the impact of

N deposition on soil base cations is therefore of concern.

Bamboo forests represent one of the most important

forest types in the world (FAO 2010). But to date, most

studies regarding the effects of N addition on soil chemical

properties have been conducted in coniferous and broadleaf

forests (Tu et al. 2014). Bamboo is widely distributed in the

southern provinces of China, contributing about 10% of the

C stocks of living biomass of forests in China (Chen et al.

2009). Bamboo forests in China are currently experiencing

high rates of N deposition (Du et al. 2014; Zhan et al.

2015), but the potential consequences remain unclear.

We conducted a monthly N addition experiment in a

bamboo forest (Pleioblastus amarus) in southwest China

beginning in 2007 to examine variation in the concentra-

tions of soil base cations, acid-causing cations, exchange-

able acidity, C fractions (including total organic carbon,

TOC) and N fractions under different levels of N input. We

tested the hypotheses that: (1) six years of N addition will

induced loss of base cations and soil acidity will increase;

(2) active components of soil C fractions might increase;

and (3) N additions will alter soil N status in bamboo forest

ecosystems.

Materials and methods

Site area

The study was conducted in a 10-ha P. amarus plantation at

Liujiang (29�420N, 103�140E), Sichuan, China. This area

has a mid-subtropical, humid, mountainous climate.

Annual mean relative humidity is 86%, and monthly tem-

peratures range from 6.6 �C in January to 25.7 �C in July.

Mean annual precipitation (1980–2000) is 1490 mm. The

annual frost-free period ranges from 352 to 360 days. The

study site (10 ha) was converted from cropland to a P.

amarus plantation in 2000 as part of the National Project of

Converting Farmland to Forests (NPCFF). There was very

little shrub or herb in the understory. Pleioblastus amarus

mean density on the study stand was 52,200 stems ha-1,

and the mean diameter at breast height was 2.3 cm. The

aboveground dry biomass was 25.4 kg m-2 in November

2007. The soil at the site is classified as a Lithic Dys-

trudepts according to USDA Soil Taxonomy, derived from

purple sandstone and shale. The average soil depth to

bedrock was approximately 1 m, and the thickness of the

surface organic layer was approximately 1 cm before the

experimental treatments began.

Experimental design

In October 2007, twelve plots (3 m 9 3 m) were estab-

lished within the study site, at about 5 m intervals. The

plots were randomly allocated to four treatments depending

on the amount of annual N addition: control (CK, no N

added), low-N (LN, 50 kg N ha-1 a-1), medium-N (MN,

150 kg N ha-1 a-1), and high-N (HN, 300 kg N ha-1 -

a-1), with three replicates for each treatment. Nitrogen

addition began in November 2007, in the form of ammo-

nium nitrate (NH4NO3) applied monthly (12 uniform

applications per year). Before each application, the NH4-

NO3 was weighed, dissolved in 1 L of water, and applied to

each plot using a portable sprayer. The control plot

received 1 L of water without fertilizer.

Soil sample collection

Soil samples were collected in November 2013, and in

January, April, and July 2014, after more than 6 years of N

additions. Five subsamples of soil (0–20 cm) were taken

from each plot using a soil auger (27 mm in diameter). The

subsamples of each plot were composited and visible roots

were removed with tweezers. Soil samples were homoge-

nized, passed through a 2-mm sieve and stored at 4 �C for

analysis, which occurred within one week. The soil water
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content was determined gravimetrically by drying a 10-g

subsample from each plot at 105 �C. To measure soil C and

N concentration, 5 g soil samples were air-dried then

ground and sieved through a 0.25-mm mesh.

Chemical analysis

Soil pH was determined by a glass electrode in aqueous

extracts. Exchangeable base cations (Ca2?, Mg2?, K?, and

Na?) were extracted with 1 M ammonium acetate (Tamm

et al. 1999), and quantified by an atomic absorption spec-

trophotometer (TAS-986, PGENERAL, Beijing, China).

For measurement of exchangeable acidity (EA), 5 g of air-

dried soil was eluted with 1 M potassium chloride solution.

One part of this solution was used with a sodium hydroxide

standard solution titration for measurement of EA. The

other part we added sodium fluoride solution and then

titrated by hydroxide standard solution to determine

exchangeable H?. Exchangeable Al3? was calculated as

the difference between EA and exchangeable H?.

Soil total organic carbon (TOC) was measured by the

dichromate digestion method (Kalembasa and Jenkinson

1973). Soil total nitrogen (TN) was determined through

acid digestion, using the Kjeldahl method (Grimshaw et al.

1989). The soil extractable dissolved organic carbon

(EDOC) was analyzed by a total CN analyzer (Shimadzu

model TOC-VcpH?TNM-1, Kyoto, Japan) after extract using

a 0.5 M K2SO4 solution. NH4
?–N and NO3

-–N were

extracted with a 2 M KCl solution, and their concentrations

were estimated using a colorimeter. Particulate organic

carbon (POC) and particulate organic nitrogen (PON) were

measured using the method described by Cambardella and

Elliott (1992). Ten grams of air-dried soil was dispersed in

50 ml of 5 g L-1 sodium hexametaphosphate solution and

then shaken for 18 h on a reciprocal shaker (90 r min-1).

The dispersed soil sample was passed subsequently thor-

ough a 53-lm sieve and soil fractions immersed in water

were gently swirled in a beaker to achieve preferential

resuspension of light organic particles. The resulting

material was dried at 60 �C to a constant weight and

weighed, after which C and N contents were measured.

Incorporated organic carbon (IOC) was calculated as the

difference between TOC and POC (Gong et al. 2008).

Data analysis

Plot mean values were used in all analyses. Repeated

measures ANOVA with Fisher’s LSD test were performed

to analyze soil pH, EA, and exchangeable base cations. The

annual average value for each parameter was determined,

after which one-way ANOVA with Fisher’s LSD test and

Pearson correlation analysis with a two-tailed test were

used to evaluate differences between means. All analyses

were conducted using SPSS 20.0 for Windows (IBM SPSS

Inc. Chicago, USA). Effects were considered significant at

a = 0.05 unless otherwise stated. Values are expressed as

mean ± SE.

Base saturation (BS) was calculated by the following

equation:

BS %ð Þ ¼
c Ca2þ
� �

þ c Mg2þ
� �

þ c Kþð Þ þ c Naþð Þ
c Ca2þ
� �

þ c Mg2þ
� �

þ c Kþð Þ þ c Naþð Þ þ c EAð Þ

where c(Ca2?), c(Mg2?), c(K?), c(Na?), c(EA) represent

the corresponding concentrations (cmol kg-1) of each ion.

Results

Base cations and acid-forming cations

In this P. amarus forest, soil pH was 4.71 and Al3? was the

main acid-forming cation. Exchangeable acidity,

exchangeable H?, exchangeable Al3?, BS, and all base

cations (Ca2?, Mg2?, K?, and Na?) varied seasonally

(Figs. 1, 2). Mean pH in CK, LN, MN and HN were 4.71,

4.62, 4.71, and 4.40, respectively, with pH greater in CK

than in HN (Fig. 1a). Similarly, N additions increased EA

from 6.12 cmol kg-1 in CK to 10.74 cmol kg-1 in HN (an

increase of 75%, p\ 0.05) (Fig. 1c). High-N treatment

significantly reduced exchangeable H? and significantly

increased exchangeable Al3?. Exchangeable Al3? in HN

(9.8 cmol kg-1) increased by 70% compared to CK

(5.74 cmol kg-1) (Fig. 1b, d). Nitrogen additions signifi-

cantly affected BS only in the HN treatment, with a

decrease from 17.04 cmol kg-1 in CK to 9.30 cmol kg-1

in HN (Fig. 2c). Among the four base cations (Ca2?, Mg2?,

K?, and Na?), Na? increased significantly in the MN and

HN treatments, but N addition had no effect on other base

cations (Fig. 2a, b, d, e). The ratio of exchangeable Al3? to

Ca2? in HN (22.67) was significantly higher than in CK

(9.71) (Fig. 2f). Soil acidity was significantly negatively

correlated with EA, Al3? and NO3
-–N, and was signifi-

cantly positively correlated with BS (Table 1).

Soil organic carbon fractions

No amount of N addition significantly affected the con-

centrations of TOC, EDOC, IOC, or POC (Table 2). After

6 years of monthly N additions, EDOC and POC in HN

plots increased by 24 and 14%, respectively, when com-

pared to CK plots.
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Soil nitrogen fractions

NO3
-–N concentration in HN (14.75 mg kg-1) was sig-

nificantly higher than that in CK (12.33 mg kg-1). N

treatments had no significant effect on soil TN, PON, or

NH4
?–N (Table 3). Soil TN concentration in HN was 8%

higher than that in CK.

Discussion

Soil acidification after six years of N additions

Confirming our first hypothesis, N additions significantly

reduced soil pH and increased exchangeable Al3? in HN.

The following mechanisms may explain these results. After

6 years of N addition, significantly higher NO3
- concen-

trations were recorded in the HN treatment, indicating that

greater nitrification took place when high levels of N were

applied. From a related study we reported significantly

higher rates of soil N mineralization, nitrification and

ammonification at the same study site after 65 months of

monthly N additions (Xiao et al. 2015). When the soil

inorganic N content exceeds the demand of plants and

microorganisms, nitrification is enhanced, and as a result,

the concentration of NO3
- increases in the soil solution

(Aber et al. 1998; Evans et al. 2008). Soil nitrification

generally releases H? into the soil solution (Teklehaimanot

and Mmolotsi 2007), and leads to a substitution reaction

with base cations (Ca2?, Mg2?, K?, Na?) adsorbed on soil

colloids. This results in the loss of base cations, particularly

in wet areas (Lu et al. 2009; Lucas et al. 2011). When the

H? absorbed by organic-mineral compounds or aluminum

silicate clays exceeds a certain threshold, soil mineral lat-

tices disintegrate and release exchangeable Al3?. In gen-

eral, soil acidity depends on the balance of acid-forming

cations and base cations. In this study, increases in

exchangeable Al3? disrupted this balance and consequently

increased soil acidity. Soil acidification induced by Al3?

activation is a common phenomenon in many different

ecosystems (Asner et al. 2001; Duan et al. 2004; Huang

et al. 2014).

In this study, HN treatment significant reduced soil BS.

This was induced by increased exchanged acidity, rather

than by base cation depletion. Inconformity with our first

hypothesis, N additions did not significant reduce soil base

cations. This result confirms reports from studies of most

tropical or subtropical forests, i.e. N deposition had little

Fig. 1 Seasonal variations in soil pH, exchangeable acidity (EA), H?

and Al3? in a Pleioblastus amarus plantation (mean ± SE, n = 3).

Results of repeated measures ANOVAs are shown in the text.

Different letters indicate significant differences among N treatments

(p\ 0.05, Fisher’s least significant difference test)
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Fig. 2 Seasonal variations in soil exchangeable Mg2?, Ca2?, Na?,

K? and base saturation (BS) in a Pleioblastus amarus plantation

(mean ± SE, n = 3). Results of repeated measures ANOVAs are

shown in the text. Different letters indicate significant differences

among N addition treatments (p\ 0.05, Fisher’s least significant

difference test)

Table 1 Results of correlation

analysis of pH, NO3
-, and base

cations

pH EA Al3? Mg2? Ca2? BS

EA - 0.87**

Al3? - 0.72** 0.90**

Mg2? 0.80**

Ca2? 0.89** - 0.77** - 0.64* 0.93**

BS 0.93** - 0.89** - 0.79** 0.87** 0.95**

NO3
- - 0.78** 0.71* - 0.63*

*p\ 0.05, **p\ 0.01
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effect or increased soil cation concentrations (Lu et al.

2009; Lucas et al. 2011). This phenomenon might be due to

an increase in litterfall and decomposition by N additions

(Lucas et al. 2011). For subtropical or tropical soil, many

base cations are leached during the soil forming process

and plants adapt to environments of low base cations while

forming biotic retention mechanisms for base cations

(Perakis et al. 2013). N additions increase litterfall and

litter decomposition rates in tropical and subtropical for-

ests, and increased cation return to soils. Thus, N additions

increased or showed no significant change on base cations.

Moreover, large amounts of N might be lost as gases

through denitrification. Rosi-Marshall et al. (2016) con-

ducted an acid rain mitigation experiment showed that

Ca2? additions converted a forest watershed from a net N

sink to a net N source. This result implies that there is a

complex relationship between N and base cation leaching

and that this needs more in-depth study.

Soil acidification as a consequence of an increase in

exchangeable Al3? in the soil is a significant ecological

and environmental issue. Soil acidification can affect plant

communities, bacterial diversity, nitrogen cycling and

carbon sequestration, and can even induce forest decline

(Koptsik et al. 2001; Wuyts et al. 2013; Zhang et al. 2015).

Additionally, active Al3? has specific toxic effects on

plants, such as disruption of nutrient availability and root

function, which can result in forest decline (Akaya and

Takenaka 2001; Dise et al. 2001). The ratio of exchange-

able Al3? to Ca2? (Al/Ca) in mineral soils is a predictor of

the impact of soil acidification on tree growth (Sverdrup

et al. 1992). In this study, the Al/Ca ratio increased greatly

under N addition, indicating increased negative effects on

plant growth. Chen et al. (2017) reported that after 6 years

of N additions, there was a significant decrease in the mean

lengths of second and third order fine roots of P. amarus.

Our results confirm this result.

Effects of N additions on the soil total organic C pool

and C fractions

In support of our second hypothesis, N additions did not

significantly affect soil TOC, EDOC, POC or IOC. This

result is similar to that reported by Lu et al. (2011), who

reviewed 257 studies on this subject and reported that N

additions do not significantly change soil carbon pools,

irrespective of biome. Soil carbon storage is influenced by

many ecosystem processes, including litterfall, soil respi-

ration, litter decomposition, root biomass, and enzymatic

activity. Our previous study indicated that N additions

significant increased litterfall and soil respiration, while

reducing litter decompositions rate (Tu et al. 2011, 2013).

Chen et al. (2017) reported that N additions reduced root

biomass in P. amarus forest. Although N additions do not

significantly affect soil carbon fractions, they do affect

many processes related to soil carbon storage. The reason

that N addition did not impact soil total carbon content is

that different carbon-related processes vary in their

responses to N addition. In the future, the response of soil

carbon storage depends on these process response magni-

tudes to N additions.

Soil environments affect soil carbon stability (Schmidt

et al. 2011). Nitrogen additions increased soil acidification

and aluminum mobilization. This could have long-term and

substantial effects on soil carbon pools. We already

observed a trend that N additions increased soil EDOC and

reduced fine root biomass (Chen et al. 2017). In the future,

Table 2 Carbon fraction in a

Pleioblastus amarus plantation

in China (Mean ± SE, n = 3)

Treatment TOC (g/kg) IOC (g/kg) POC (g/kg) EDOC (g/kg)

CK 10.30 ± 0.47a 8.97 ± 0.37a 1.33 ± 0.14ab 0.21 ± 0.02a

LN 10.67 ± 0.24a 9.33 ± 0.16a 1.35 ± 0.09ab 0.25 ± 0.01a

MN 9.72 ± 0.38a 8.58 ± 0.46a 1.14 ± 0.08a 0.20 ± 0.03a

HN 10.75 ± 0.74a 9.23 ± 0.71a 1.52 ± 0.03b 0.26 ± 0.02a

Different letters within the same column indicate significant difference among treatment (One-way

ANOVA with LSD test, a = 0.05)

Table 3 Nitrogen fraction in a

Pleioblastus amarus plantation

in China (Mean ± SE, n = 3)

Treatment TN(g/kg) PON(g/kg) NH4
?–N(mg/kg) NO3

-–N(mg/kg)

CK 0.74 ± 0.02a 0.10 ± 0.00a 5.59 ± 0.79a 12.33 ± 0.80a

LN 0.75 ± 0.03a 0.08 ± 0.00a 6.00 ± 0.18a 13.05 ± 0.09a

MN 0.75 ± 0.01a 0.09 ± 0.01a 5.41 ± 0.76a 13.08 ± 0.49a

HN 0.80 ± 0.04a 0.11 ± 0.02a 5.96 ± 0.84a 14.75 ± 0.36b

Different letters within the same column indicate significant difference among treatment (One-way

ANOVA with LSD test, a = 0.05)
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the changes in soil chemical properties induced by N

additions may have substantial negative effects on soil

carbon composition and storage.

Effects of N addition on soil N status

N additions increased soil inorganic N content and TN. In

our previous study, we estimated the N requirement of P.

amarus at 39 kg N ha-1 a-1, which is less than the annual

N deposition rate. Nevertheless, N additions increased NPP

and had a positive effect on P. amarus growth (Tu et al.

2013). This is because the bamboo stand was initiating a

period of rapid growth at the start of the study, and N

demand was consequently high. Furthermore, large

amounts of N are lost through ammonia volatilization and

denitrification. Thus we previously concluded that the P.

amarus stand was N-limited. After N additions for 6 years,

the increase in the proportion of NO3
-–N in soil-available

N could be interpreted as a sign of N saturation (Aber et al.

1998, 2003). This confirmed our third hypothesis, that is, N

additions alter soil N status. This can cause negative effects

on forest ecosystems (Aber et al. 1989; Pardo et al. 2006).

Conclusion

Our study suggested that N additions significantly reduced

soil pH and resulted in nitrogen saturation in bamboo

forest. However, there were no significant effects on soil

carbon or nitrogen fractions, or on soil base cation content

after 6 years of N treatment. However, the effects of the

changed soil chemistry, as a result of N additions, on the

soil organic carbon pool remain unknown. Further long-

term studies regarding C storage under different ambient N

deposition rates are necessary to supplement our knowl-

edge of how forest C processes respond to N deposition.
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