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Abstract Height–diameter relationships are essential ele-

ments of forest assessment and modeling efforts. In this

work, two linear and eighteen nonlinear height–diameter

equations were evaluated to find a local model for Oriental

beech (Fagus orientalis Lipsky) in the Hyrcanian Forest in

Iran. The predictive performance of these models was first

assessed by different evaluation criteria: adjusted R2 (Radj
2 ),

root mean square error (RMSE), relative RMSE (%RMSE),

bias, and relative bias (%bias) criteria. The best model was

selected for use as the base mixed-effects model. Random

parameters for test plots were estimated with different tree

selection options. Results show that the Chapman–

Richards model had better predictive ability in terms of adj

R2 (0.81), RMSE (3.7 m), %RMSE (12.9), bias (0.8),

%Bias (2.79) than the other models. Furthermore, the

calibration response, based on a selection of four trees from

the sample plots, resulted in a reduction percentage for bias

and RMSE of about 1.6–2.7%. Our results indicate that the

calibrated model produced the most accurate results.

Keywords Random effects � Tree height � Calibration �
Sangdeh forest � Chapman–Richards model � Oriental

beech

Introduction

Measurements of tree heights and diameters are essential in

forest assessment and modeling (Schmidt et al. 2010). In

routine forest inventories, tree heights and diameters at

breast height are important growth parameters assessed to

describe and estimate stand structure and volume (Jayara-

man and Lappi 2001; Adame et al. 2008), to calculate an

index of stand productivity (Vanclay 1994; Jayaraman and

Lappi 2001), and to assess growth dynamics and succes-

sion (Curtis 1967; Peng et al. 2001; Adame et al. 2008).

Height–diameter (H–D) models are often used to predict

the height of trees where the only the diameter at breast

height (DBH) has been measured for all trees in a plot, and

where only a few trees were measured for total height. This

is because diameters can be determined quickly, easily, and

accurately at little cost, but height is more difficult to

measure, relatively complex, time-consuming and expen-

sive. Therefore, in association with many permanent and

temporary sample plot systems, DBH is conventionally

measured for all of the trees sampled but tree height for

only a sub-sample of trees over the range of diameters

(Huang 1997). H–D regression models are then developed

and used to estimate the heights of trees for each diameter

class, thus reducing the cost of data acquisition. For these

reasons, the development of suitable H–D models may be
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considered as one of the most important elements in forest

planning and monitoring (Schmidt et al. 2010).

A number of H–D models, both linear and nonlinear,

with only DBH as the predictor variable, have been

developed (e.g., Huang 1997; Zhang 1997; Amaro et al.

1998; Krumland and Wensel 1988; Yuancai and Parresol

2001; Temesgen and Gadow 2004; Calama and Montero

2004; Lei and Zhang 2004; Castedo Dorado et al. 2005;

Sharma 2009; Krisnawati et al. 2010; Ahmadi et al. 2013;

Xu et al. 2014; Corral-Rivas et al. 2014). For a given

species, the H–D relationship varies with the environment

and stand conditions and, in the case of even-aged stands,

is not constant over time even within a single stand (Curtis

1967; Pretzsch 2009; Arcangeli et al. 2014). As a conse-

quence, H–D models, which include DBH as the only

explanatory variable, are fundamentally local and need to

be defined for each single stand at every measurement

occasion. The use of a local model may still provide the

best unbiased estimates of tree height if based on a suffi-

cient number of measurements (van Laar and Akça 2007;

Arcangeli et al. 2014), but it is a costly and sometimes

impractical approach. More recently, several studies have

included mixed-effects in calibrating the model parameters

for describing the H–D relationship in order to tackle the

problem of a lack of independence among height and DBH

measurements that arises from the inherently hierarchical

structure of the data (trees within plots within stands).

Peng et al. (2001) examined the relative performance of

a Chapman–Richards H–D model for nine boreal forest

species in Ontario, Canada, and recommended the Chap-

man–Richards function based on its mathematical proper-

ties, its amenity to biological interpretation, and its

satisfactory prediction performance. However, the hierar-

chical structure of the datasets used in the previous H–D

models (i.e., trees within plots and plots within stands)

usually leads to a lack of independence among measure-

ments because observations from the same sampling unit

are highly correlated (West et al. 1984). In essence, trees

from the same plot tend to be more similar to each other

than they do to trees in different plots, and the classical

regression assumption that observations are independent

may not hold (Neter et al. 1990). Mixed model techniques

have been used successfully to deal with this problem (Hall

and Bailey 2001), providing a statistical method capable of

explicitly modeling this nested stochastic structure.

Iran has lagged behind in adopting modeling techniques

that can assist in the estimation of tree heights, particularly

approaches that lead to higher precision and accuracy than

what might be obtained using ordinary least squares and

nonlinear least squares methods (which are the commonly

used approaches). This study was therefore carried out to

demonstrate the utility of the mixed effects modeling

approach in tree height prediction models. Mixed-effect

models allow for both population-averaged and subject-

specific responses. The first considers only fixed parameters

common to the population, while the second considers both

fixed and random parameters, common to each subject. The

inclusion of random parameters enables the variability of

given phenomena among different locations and time to be

modeled (Lappi and Bailey 1988), once a common fixed

functional structure has been defined (Lindstrom and Bates

1990). The Hyrcanian forests in Iran have been forested since

the third geological era and are considered one of the oldest

forests in the world (Sagheb-Talebi et al. 2004). Oriental

beech (Fagus orientalis Lipsky) is one of the most abundant

broad-leaved species in the Hyrcanian forests, accounting for

approximately 17.6% of the total forest area, 30.0% of the

standing volume and 23.6% of the stem numbers. The aim of

this study is to evaluate and model F. orientalis height–di-

ameter relationships using a mixed effects modeling approach

to determine whether tree heights can be estimated with higher

precision and accuracy. The objectives of this study were: (1)

to compare linear and nonlinear H–D equations for uneven-

aged forests in northern Iran; and, (2) to use local and gener-

alized equations to study the capacity of mixed models to

explain the variability in the H–D relationship.

Materials and methods

Study area

The study area was the Hyrcanian forest, District 3 of the

Sangdeh’s forests, northern Iran (Fig. 1). The management

plan indicates that the total area is 2709.0 ha. The study

area consists of uneven-aged forests dominated by F. ori-

entalis which cover approximately 90% of the area. Ele-

vation ranges from 320 to 1350 m a.s.l.

The data used for modeling the H–D relationships were

collected using a random systematic network of 233 per-

manent sample plots. These plots were circular and 0.1 ha

in size. In each plot, information on all trees with

DBH[ 12.5 cm was collected. The height of five trees in

each plot was determined as were basal areas and number

of trees per hectare. A total of 1165 height–diameter

measurements were recorded and separated into two sets;

70% (n = 810) of the data were used for model fitting

(Fig. 2a), and 30% (n = 355) for model calibration

(Fig. 2b) and validation. In addition, an independent data

set was collected which consisted of 100 trees in 20 sample

plots, and used for model testing.

Model analyses

A number of different equations have been described in the

literature for modeling H–D relationships with stand
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variables (e.g., Huang et al. 1992; Soares and Tomé 2002;

Trincado et al. 2007). In this study, two linear regression

models, including simple and quadratic models, and 18

generalized H–D equations were selected (Table 1). All

have adequate mathematical properties and have performed

satisfactorily in previous studies (Huang et al. 1992;

Adame et al. 2008; Ahmadi et al. 2013; Li et al. 2015).

Model selection and evaluation

Evaluation of the models was based on the root mean

squared error (RMSE), relative RMSE, bias, relative bias,

adjusted coefficient of determination (Radj
2 ), and

significance of parameters estimate (p\ 0.05). The model

resulting in the largest Radj
2 , smallest relative RMSE,

RMSE, and smallest values of bias and relative bias was

selected as the best model. The expressions of these

statistics are as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
ði¼1Þ ðesti � obsiÞ2

n

s

ð1Þ

Relative RMSE ¼ 100

� RMSE=mean observation valueð Þ
ð2Þ

Fig. 1 Location of the study area
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BIAS ¼
Pn

ði¼1Þ ðesti � obsiÞ
n

ð3Þ

Relative bias ¼ 100 � Bias=mean observation valueð Þ
ð4Þ

where esti is the ith estimated value; obsi the ith observed

value and n the number of observations.

Nonlinear mixed modeling

Once the best eighteen generalized H–D models were

selected, a nonlinear mixed-effects modeling framework

was used to fit the models to the sample data. A general

expression for the model may be written (Lindstrom and

Bates 1990) as follows:

Fig. 2 Model fitting (a) and model validation data (b) for Oriental beech height–diameter relationships

Table 1 Generalized H–D

equations
Number Function name Equation References

Linear model

1 Simple H = 1.3 ? a ? bd ? eij
2 Quadratic H = 1.3 ? a ? b1d ? b2d

2 ? eij

2-parameter functions

1 Naslund H = 1.3 ? (d2/(a ? bd)2) Näslund (1936)

2 Curtis H = 1.3 ? a (d/1 ? d)b Curtis (1967)

3 Michailoff H = 1.3 ? a e((-bd)-1) Michailoff (1943)

4 Meyer H = 1.3 ? a(1 - e-bd) Meyer (1940)

5 Power H = 1.3 ? adb Stoffels and van Soest (1953)

6 Michaelis–Menten H = 1.3 ? (ad/b ? d) Michaelis and Menten (1913)

7 Wykoff H = 1.3 ? e(a?(b/d?1)) Wykoff et al. (1982)

8 Schum H = 1.3 ? a exp(- bd-1) Schumacher (1939)

3-parameter functions

9 Exponential H = 1.3 ? a e(-b/(d?c)) Ratkowsky (1990)

10 Prodan H = 1.3 ? (d2/a ? bd ? cd2) Strand (1959)

11 Logistic H = 1.3 ? (a/1 ? be-cd) Pearl and Reed (1920)

12 Chapman–Richards H = 1.3 ? a(1 - e-bd)c Richards (1959)

13 Weibull H = 1.3 ? a(1 - e(-bd)c) Yang et al. (1978)

14 Gomperz H = 1.3 ? a e(-b exp(-cd)) Huang et al. (1992)

15 Sibbesen H = 1.3 ? ad(bd)-c Sibbesen (1981)

16 Korf H = 1.3 ? a e(-bd-c) Lundqvist (1957)

17 Ratkowsky H = 1.3 ? a e(-b/d?c) Ratkowsky (1990)

18 Hossfeld IV H = 1.3 ? a/(1 ? (1/bdc)) Peschel (1938)

d is breast-height diameter, H is total tree height, and a, b and c are fitting parameters
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yi ¼ f ðU;XiÞ þ ei ð5Þ

where yi is an (ni 9 1) observation vector of heights from

the ith sampling unit (plot), f (.) a nonlinear function, Ai a

(r 9 1) parameter vector (r is the number of parameters in

the model), Xi the (ni 9 r) predictor matrix for the ith plot,

and ei a (ni 9 1) vector of the residuals.

Equation (5) is assumed to be common to all plots but

the parameter estimates may vary across the plots.

Therefore, regression coefficients can be broken down

into fixed components, common to the population, and

random components, specific to each plot. Nonlinear

mixed models contain unobserved mean-zero random

variables known as random effects. These are conditional

upon the observed data and assumed to have a Gaussian

distribution with some general nonlinear mean function

and unknown variance–covariance parameters (Adame

et al. 2008).

Details on nonlinear mixed-effects modeling for height–

diameter relationships are provided by Calama and Mon-

tero (2004) and Castedo Dorado et al. (2005). A key

question when fitting mixed-effects models is the selection

of parameters considered as representing fixed effects and

those considered as representing random effects. The best

local mixed-effects model was the Bertalanffy–Richards

model (Yuancai and Parresol 2001; Corral-Rivas et al.

2014) in which parameters a and c were expanded for

mixing (Eq. 5) and which yielded a 33% reduction in

RMSE relative to the ONLS model.

H ¼ 1:3 þ aþ uð Þ � ð1 � exp �b � Dð ÞðcþvÞ ð6Þ

where a, b and c fixed effects, and u and v are random

effects.

Parameter estimation for nonlinear mixed-effects mod-

els requires numerical integration of random effects in the

model, which often enter it nonlinearly. Traditional

approaches for fitting nonlinear mixed models are based on

a linear approximation to the marginal likelihood function,

using an expansion with a Taylor series so that the vector

of random parameters is linear. The Taylor expansion can

be either at 0 (best linear unbiased predictor, BLUP) or at

the empirical best linear unbiased predictor (EBLUP) of

the random effects. The first approach is less expensive in

terms of computing time but the second approach can be

more accurate, although possibly more unstable (Wolfinger

and Lin 1997). The variance components, along with the

parameters of fixed predictors, were estimated using the

REML method since it results in lower biases (Littell et al.

1996). The maximization of the marginal likelihood func-

tion was achieved using the BLUP approximation (Beal

and Sheiner 1982).

Calibrated response pattern

For the purposes of forest management, yield predictions

are important and previous height observations may or may

not be available for a studied plot. If a subsample of k tree

heights has been measured, such data can be used to predict

the random effects vector bi. The prediction of bi is carried

out using the expression of Vonesh and Chinchilli (1997):

b̂i � D̂ẐT
i R̂i þ ẐiD̂Ẑ

T
i

� ��1
eij ð7Þ

Here, b̂i represents the estimated random parameters for

the localized plot,D̂ is the 2 9 2 variance–covariance

matrix for the plot variability (common for all plots), R̂i is

the estimated k 9 k variance–covariance matrix for the

within-plot variability, Ẑi is the k 9 q matrix of partial

derivatives of the function with respect to random param-

eters b̂i; êij is the residual value (Gregoire 1987; Yang et al.

2009). To evaluate the predictive ability of the model, data

included in the test set are used. For this calibrated

response pattern, different alternatives of sampling size

within each plot were evaluated, measuring stand variables

and the height of three to five trees randomly selected. The

calibrated H–D equations were applied to the remaining

trees for which height measurements were available in the

same plot. As calibration responses, these sampling sce-

narios, including the selection of the previously sub-sam-

pled trees, were evaluated using a number of statistical

criteria and previously defined statistics.

Results

Summary statistics, including mean, minimum, maximum,

and standard deviation of F. orientalis variables for both

the fitting and evaluation data sets are shown in Table 2.

Selection of the basic nonlinear H–D model

Results from the comparative analysis between the func-

tions, including values of RMSE, %RMSE, bias, and

Table 2 Description of the fitting and evaluation data sets

Data Variable Mean Max Min SD

Fitting data set H 25.7 42.0 7.5 8.45

D 51.0 115.0 13.0 26.01

Evaluation data set H 28.7 42.0 11.5 6.60

D 58.0 98.0 15.0 22.66

Test data H 26.8 44.0 11.3 7.60

D 58.5 104.0 15.0 23.66

H tree height, D tree diameter, SD standard deviation
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%bias, are shown in Table 3. These goodness-of-fit

statistics indicate that the Chapman–Richards model has

better predictive ability in terms of Radj
2 (0.81), RMSE

(3.7 m), %RMSE (12.9%), bias (0.8), %bias (2.71%) than

the other models. Therefore, the Chapman–Richards was

chosen as the best H–D relationship model and used for the

nonlinear mixed effect modeling analysis that simultane-

ously included both fixed and random parameters in the

model structure.

Parameter estimations with their standard errors and

probability levels for all models are shown in Table 4. All

parameters were significant (p\ 0.05).

The residuals versus predicted heights in the Chapman–

Richards model are shown in Fig. 3. Most data points were

distributed around the zero line. This model showed an

approximately homogeneous variance over the full range

of the predicted values, as well as independence of the

residuals.

As shown in Fig. 4 for the Chapman–Richards model,

the biases for large values of diameter were greater than the

biases for other values; this may be due to a small number

of observations in larger trees.

Calibration response evaluation

Results from the analysis of different sample sizes and

designs on the predictions are shown in Table 5. The lar-

gest values of RMSE and bias were obtained when

applying the fixed-effects response model without pre-

dicting random parameters. However, the best predictive

results with the lowest bias and RMSE, 0.1 m and 3.24 cm,

respectively, with the highest reduction percentages,

- 2.68 and - 1.6%, were by the sampling alternative

based on the selection of four trees in the sample plot.

The estimates of the mixed-effects model (Eq. 6), along

with variances and covariances for the random parameters

in Eq. (6) and the goodness-of-fit statistics are shown in

Table 6.

Discussion

Tree height is an important variable used for estimating

stand volume, site quality and for describing stand struc-

ture. A height inventory for all trees in a stand is almost

impossible to obtain unless in particular conditions and if

scientific research is being carried out (perhaps using

LiDAR). Therefore, height–diameter (H–D) functions are

often utilized so that the height of an individual tree can be

predicted only from the diameter. This is often convenient

since measuring diameter is relatively simple, accurate, and

inexpensive (Corral-Rivas et al. 2014). For these reasons,

the development of suitable height–diameter models may

be considered one of the most important elements in forest

design and monitoring. The aim of this study was to

develop a model capable of predicting the height–diameter

pattern of F. orientalis for application in yield simulators

and basic calculations of inventories. We compared the

capability of two linear regression models and eighteen

general H–D models. The results show that nonlinear

models performed better than linear models. This is con-

sistent with the findings reported by Li et al. (2015) that

showed for height–diameter modeling, nonlinear models

are more flexible than linear models. Among these twenty

models, the nonlinear Chapman–Richards model that

accounted for 81% of the total variance in height–diameter

relationships showed the best predictive ability based on

the statistics fit. Our results are consistent with findings

reported by Zhang (1997) and Peng et al. (2001).

According to Yuancai and Parresol (2001), the Chapman–

Richard’s functions is flexible and versatile for modeling

H–D relationships. Peng et al. (2001) also found the

Chapman–Richards moel, along with two others, superior

to other models as regards prediction performance.

According to Zeide (1993), Chapman–Richard’s model,

valued for its accuracy, has been employed more than any

Table 3 Results from the comparative analysis between the

functions

Model Radj
2 RMSE %RMSE Bias %bias

Simple 0.791 3.97 13.85 - 0.90 - 3.14

Quadratic 0.777 4.11 14.34 1.00 3.48

Curtis 0.789 3.81 13.29 0.80 2.80

Naslund 0.787 3.79 13.20 - 0.80 - 2.80

Power 0.780 4.10 14.30 - 1.70 - 5.90

Schum 0.767 3.91 13.64 0.88 3.07

Michailoff 0.767 3.91 13.64 0.88 3.07

Meyer 0.767 4.09 14.27 1.30 4.53

Michaelis–Menten 0.480 6.07 21.17 - 1.70 - 5.93

Exponential 0.800 3.95 13.78 1.10 3.83

Wykoff 0.771 3.91 13.64 1.00 3.48

Prodan 0.808 3.73 13.01 0.72 2.5

Logistic 0.790 4.64 15.15 0.70 2.35

Chapman–Richards 0.810 3.70 12.90 0.80 2.79

Weibull 0.780 4.11 14.34 1.60 5.58

Gomperz 0.770 4.52 15.77 1.10 3.83

Sibbesen 0.788 3.79 13.22 - 0.19 - 0.66

Korf 0.790 3.87 13.50 0.90 3.14

Ratkowsky 0.766 3.97 13.85 - 1.10 - 3.30

Hossfeld IV 0.790 8.52 29.72 1.00 3.48
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Table 4 Parameter estimations

with their standard errors and

probability levels

Model Parameter Value SE t value Prob. (t)

Simple a 9.905 0.273 36.26 0.00

b 0.315 0.005 62.76 0.00

Quadratic a 16.78 0.225 74.54 0.00

b 0.0028 0.000057 49.73 0.00

Curtis a 2.93 0.14 20.43 0.00

b 0.45 1.18 38.06 0.00

Naslund a 0.14 1.14 126.3 0.00

b 2.52 6.19 40.7 0.00

Power a 2.78 0.13 21.01 0.00

b 0.56 1.15 48.52 0.00

Schum a 42.40 0.49 85.06 0.00

b 22.92 0.55 41.54 0.00

Michailoff a 2.74 1.17 233.6 0.00

b - 22.92 0.55 - 41.5 0.00

Meyer a 42.40 0.49 85.06 0.00

b - 22.92 0.55 - 41.54 0.00

Michaelis–Menten a - 0.82 220,002.4 - 3.75 1.00

b 1.46 391,147.1 3.75 1.00

Wykoff a 3.76 1.19 316.2 0.00

b 24.35 0.57 42.2 0.00

Exponential a 59.85 3.07 19.49 0.00

b 62.58 7.33 8.53 0.00

c 23.61 3.80 6.20 0.00

Prodan a 0.0153 0.000848 18.06 0.00

b 1.26 0.078 16.05 0.00

c - 3.56 1.4 - 2.5 0.01

Logistic a - 3.367 0.57 42.2 0.00

b 1.204 3.07 19.49 0.00

c 0.00092 7.33 8.53 0.00

Chapman–Richards a 35.46 76.07 2.13 0.003

b 0.027 0.194 30.08 0.00

c - 1.1 0.071 - 4.08 0.00

Weibull a - 0.912 0.13 21.01 0.00

b - 1.921 1.15 48.52 0.00

c 0.140 0.49 85.06 0.00

Gomperz a 0.159 0.55 41.54 0.00

b - 4.625 1.17 233.6 0.00

c - 0.0016 0.55 - 41.5 0.00

Sibbesen a 2.78 0.132 21.0 0.00

b 1.28 14.074 9.09 0.00

c 0.71 1.40 5.11 0.00

Korf a 0.233 1.15 48.52 0.00

b - 3.1 0.49 85.06 0.00

c - 0.099 0.55 41.54 0.00

Ratkowsky a 39.636 1.17 233.6 0.00

b 29.14 0.55 - 41.5 0.00

c 4.89 0.132 21.0 0.00
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other functions in studies of tree and stand growth. At one

time, it was noted that the Chapman–Richards model was

widely used for forest growth and yield purposes (Amaro

et al. 1998). However, the mathematical features and the

growth performance of the Chapman–Richards function

have not been fully understood, and there still exists some

unclear conceptions (Lei and Zhang 2004). In addition, the

nonlinear mixed-effects modeling procedure was used and

the Chapman–Richards model was fitted by including

simultaneously both fixed and random effects on the height

model structure.

The calibration response based on the selection of four

trees in the sample plots resulted in fewer biased predic-

tions, the highest reduction percentage for bias and RMSE,

about 2.68 and - 1.6%, respectively. The results obtained

in this research are similar in many respects to those

obtained by other researchers. For example, Corral-Rivas

et al. (2014) observed that a mixed-effects model had better

fit statistics (R2 = 0.85; RMSE = 2.21) than the base

model fitted using ONLS (R2 = 0:73; RMSE = 2.95).

This is similar to that obtained by Calama and Montero

Table 4 continued
Model Parameter Value SE t value Prob. (t)

Hossfeld IV a - 166.503 14.074 9.09 0.00

b - 0.025 1.40 5.11 0.00

c 0.419 0.55 41.54 0.00

SE standard error

Fig. 3 Residual plots in the validation dataset for the three best

models

Fig. 4 Values of average bias

in relation to DBH for the best

models

Table 5 Comparisons of nonlinear mixed effect on Chapman–Richards model’s predictive performance for different sub-sample size alter-

natives in calibration response

Sampling alternatives RMSE (m) %RMSE bias(m) %bias

Fixed-effects model 3.7 12.90 0.80 2.79

Mixed-effects model with calibration based on three randomly selected trees in plot 3.3 11.52 0.37 1.28

Mixed-effects model with calibration based on four randomly selected trees in plot 3.24 11.30 0.10 0.17

Mixed-effects model with calibration based on five randomly selected trees in plot 3.29 11.47 0.20 0.69

Table 6 Fitting parameters and variance component for mixed model

Parameter a b C du
2 dv

2 duv
2 d2

Value 34.633 0.155 - 2.095 31.9 0.02 1.12 6.67

d are variances for random parameters
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(2004) and Castedo Dorado et al. (2005) for different types

of Pinus species. Calama and Montero (2004) proposed the

use of height measurements from four random trees.

Krumland and Wensel (1988) suggested that height mea-

surements should be for four dominant trees, and Castedo

Dorado et al. (2005) found the heights of three trees per

plot to be adequate. The calibration responses for any

mixed-effects model depend on the model structures and

the characteristics of species growing in different regions

and under local conditions. Thus, some sampling scenarios

with different sub-sample selections can present more

additive information for calibration than other sampling

alternatives.

Conclusions

Based on the nonlinear mixed model techniques, eighteen

basic height–diameter models were evaluated for F. ori-

entalis. We found that the Chapman–Richards model was

the best and this was selected for calibration. We compared

the basic models with the calibrated model through an

evaluation of the biases and the RMSE from individual

plots and found that the calibrated model produced the

most accurate results. Calibration, including the prediction

of random parameters that used the sub-sampled tree

measurements obtained from any sample plots, can be

recommended for obtaining more effective and predictive

results.
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