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Abstract In forest ecosystems, gap formation changes the

allocation of abiotic resources and thus affects the survival

and growth of understory plants. However, how tree

seedling survival and growth respond to low-temperature

events and the influencing mechanisms remain unclear. To

clarify how low-temperature event limits the survival and

growth of tree seedlings in the montane regions of eastern

Liaoning Province, northeast China, we investigated tem-

perature and light intensity within secondary forest gaps,

and the survival and growth of Juglans mandshurica

seedlings after a low-temperature event in the spring of

2014. Damage to seedlings due to low temperature sig-

nificantly varied in different aspects. Seedlings in gaps on

southeast-facing slopes were the most seriously damaged,

followed by those in gaps on northeast-facing slopes. In

contrast, seedlings in west-facing gaps and in control plots

without slope aspect were not damaged. The freezing

injury index for seedlings was negatively correlated with

minimum temperature (r = - 0.608, P\ 0.01), but it was

positively correlated with light intensity (r = 0.818,

P\ 0.01). In addition, height and root collar diameter of

damaged seedlings were significantly lower than those of

the undamaged seedlings (P\ 0.01) during the early

growing season (April–July), but no significant difference

were observed during the late growing season (July–Oc-

tober) (P[ 0.05). The extent of seedling damage was

directly related to slope aspect. Low temperature and high

light intensity were found to be the dominant factors

affecting extent of damage to seedlings on southeast- and

northeast-facing slopes.
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Introduction

Low-temperatures during the growing season fatally dam-

age plant tissues, seedlings and even whole saplings

(Blennow et al. 1998; Dittmar et al. 2006; Tan 2013).

However, studies on the effects of low-temperature have

focused on crops, while relatively little work has explored

the effects on forests (Li et al. 2013). Low-temperature

events affect survival and growth of seedlings in natural

and plantation forests (Lindkvist and Chen 1999; Chen

et al. 2000; Wu et al. 2002), and ultimately affect forest

development and the ecological services provided by for-

ests (Jönsson et al. 2004; Awaya et al. 2009; Ramming

et al. 2010). Therefore, studying the effect of low-tem-

perature event on regeneration in forest ecosystems will

provide a scientific basis for protecting existing forest

resources and promoting sustainable forest management.
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The impact of a low-temperature event depends on both

the duration and intensity of the low temperature. Topog-

raphy, slope and stand characteristics (e.g., degree of

canopy closure) are also important factors, particularly in

complex, hilly and mountainous terrain (Zhang 1992).

Forest gaps (induced by the death of trees) play an

important role in regulating composition and structural

diversity (Hubbell et al. 1999; De Grandpré et al. 2011;

Zhu et al. 2015). Gaps exist widely in forest ecosystems,

providing potential space for the growth and regeneration

of forests (Zhu et al. 2007). The canopy structure changes

significantly following gap formation, including the redis-

tribution of light, temperature and water within the gaps,

creating a specific micro-climate in the gaps (Zhang et al.

2002). Thus, it is widely recognized that the environmental

heterogeneity induced by gap formation influences the

regeneration and distribution of species, population

dynamics, species diversity and succession (Gray et al.

2012; Forrester et al. 2014; Liu et al. 2014; Stan and

Daniels 2014; Jing et al. 2015; Zenner et al. 2015; Guan

et al. 2016). The features of micro-climate and seedling

regeneration after the formation of gaps is well understood,

including differences in micro-climate between the inside

and outside of gaps, the influence of light on the regener-

ation of forests, and heterogeneities in the soil moisture and

air humidity (Duan et al. 2008; Romell et al. 2009; Zhu

et al. 2009; Li et al. 2012; Zenner et al. 2015). However,

few researches have been reported on the influence of

adverse meteorological conditions on seedlings within

forest gaps. In fact, the influences induced by adverse

meteorological conditions are expected to differ both

within an individual gap and among gaps. This in turn will

cause variations in the regeneration and growth of seed-

lings within gaps because spatial differences exist among

gaps (Duan et al. 2007; Wang et al. 2015; Zhu et al. 2016).

Therefore, research on adverse meteorological conditions

within gaps would be of great importance for furthering our

understanding of early regeneration processes of forest

ecosystems and reasonable management under natural

disturbances.

The montane region of eastern Liaoning Province has

suffered from the most serious and frequent low-tempera-

ture events. Low-temperature events commonly threaten

both agriculture and forestry in this region and are known

to be one of the main factors limiting early growth and

regeneration of seedlings and saplings. Low-temperature

events have commonly occurred in this area, with most of

these events occurring in early May (Zhang 1992) when the

leaves of plants are initially formed (Yan et al. 2016) and

seedlings are unable to withstand low-temperatures. In fact,

low-temperature events occur more easily when tempera-

ture falls below 0 �C in the early spring.

In the present study, we investigate the survival and

growth of Juglans mandshurica seedlings in secondary

forest gaps in the montane region of eastern Liaoning

Province, Northeast China, after a low-temperature event

occurred in the early May of 2014. The purposes of this

research are to clarify how low temperature limits the early

survival and growth of tree seedlings within secondary

forest gaps with different slope aspects, and hence to

clarify the impact of low temperature on early regeneration

of tree seedlings within gaps. In addition, some practical

tending felling measures will be proposed to alleviating the

seedling damage. These research results will helpful for

further understanding how adverse meteorology conditions

affect the regeneration of forest within gaps.

Materials and methods

Study sites

The study was conducted at the Qingyuan Forest CERN,

Chinese Academy of Sciences, located in a mountainous

area of Liaoning Province, Northeast China (41�510N,
124�540E, 500–1100 m above sea level). This region has a

continental monsoon climate, with humid and rainy sum-

mers and cold and dry winters. The mean annual temper-

ature is 4.5 �C, ranging from - 37.6 �C in January to

36.5 �C in July. The annual precipitation fluctuates

between 700 and 850 mm, with up to 80% falling from

June to August. On average, the frost-free period lasts for

about 130 days, with an early and late frost in October and

April, respectively (Zhu et al. 2007).

The study site was dominated primarily by mixed

broadleaf Korean pine forests prior to the 1930s but it was

subjected to unregulated timber removal for decades

thereafter. In the early 1950s, a large-scale fire almost

decimated the original forest, resulting in that the study site

naturally regenerated to secondary forest. The natural

secondary forests are mainly composed of Fraxinus

mandschurica, Juglans mandshurica, Phellodendron

amurense, Quercus mongolica and Acer mono in the tree

layer; Acer mandshricum, Acer triflorum, Acer tegmento-

sum and Syringa amurensis in the understory layer, and

Cardamine leucantha, Allium monanthum, Arisaema

amurense and Polygonatum involucratum in the herbage

layer. In the early 1960s, patches of the natural secondary

forests were partially cleared and replaced by larch (Larix

gmelinii) plantations. The larch plantations mainly con-

sisted of Acer tegmentosum, Acer pseudo-sieboldianum,

Schisandra chinensis, Syringa wolfi and Acanthopanax

senticosus in the shrub layer and Cardamine leucantha,

Rubia sylvatica and Spuriopimpinella brachycarpa in the

herbage layer (Yang et al. 2013).
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Experimental design and seedling transplantation

The selected gaps located in the secondary forests were

formed by damage during a severe windstorm in 2003. The

six gaps studied has similar area (260–300 m2) with dif-

ferent aspects (west, northeast and southeast). Each aspect

was represented by two replicates and two control stands

located in nearby secondary forests. These plots were sit-

uated in the middle of each aspect replicate, which were all

located on slopes between 20 and 25� and at elevations

ranging from 580 to 660 m asl. The soil in all plots was

typical brown forest soil. The height of the secondary

forests was 15–20 m, respectively. The shape of the studied

gaps was an irregular ellipse (Fig. 1). We laid out five

1 m 9 1 m plots (A, B, C, D and E) in each gap (Fig. 1)

and three randomly placed plots (1 m 9 1 m) in each

control stand. Twenty one-year-old seedlings of J. mand-

shurica with similar heights and root collar diameters were

planted in each plot (with a row space of 0.2 m).

Environmental factors and seedling growth

The temperature and photosynthetic photon flux density

(PPFD) (lmol m-2 s-1) at a height of 0.5 m above the

forest floor were measured automatically in each plot

during the growing season (April–October). The tempera-

ture was continuously monitored at 10-min intervals using

a HOBO U23 Pro v2 external temperature data logger

(U23-004, MacArthur, USA), and the PPFD was recorded

by using a LI-191SA (LI-COR, Lincoln, NE, USA) at 1-h

intervals during the daytime on May 6–9, 2014. The

measurements were taken between 8:00 and 17:00. The

height and root collar diameter of each seedling were

measured in the middle of each month during the growing

season.

Investigation of seedling damage

After the low-temperature event, the extent of damage that

occurred to each seedling in the plots was recorded using

the following classification: 0, no leaf damage; 1 (light

damage), 1/3 of the leaf area was damaged; 2 (moderate

damage), 1/2 of the leaf area was damaged; 3 (moderate-

heavy damage), 2/3 of the leaf area was damaged, 4 (heavy

damage), the entire leaf area was damaged (Li et al. 2005).

The freezing injury index (FI) was used to quantify the

level of leaf damage for each plot, and the calculation of FI

(at A, B, C, D and E) was as follows:

FI ¼ 1� S1þ 2� S2þ 3� S3þ 4� S4ð Þ=
total number of leaves

ð1Þ

where 1, 2, 3 and 4 represent the damage levels (1–4) and

S1, S2, S3 and S4 represent the number of leaves damaged

relative to each level (1–4).

The damage ratio (DR) refers to the number of damaged

seedlings relative to the total number of seedlings in each

plot.

Data analysis

A t test was used to determine the differences in damage

among seedlings of J. mandshurica for different gaps and

the differences in the increases in the height and root collar

diameter between the damaged and undamaged seedlings.

Correlation analysis and multivariate analysis of variance

(MANOVA) were used to determine the relationships

between the damage of seedlings and the light and tem-

perature in the gaps. All the statistical analyses were con-

ducted using SPSS 19.0 for windows. The significance

level was set at of P\ 0.05.

Results

Overview of the low-temperature events

Controlled by cold vortex weather, most regions of

Liaoning Province suffered from three times of apparent

temperature decreases during the period of May 2–9, 2014,

which involved a long period of rainy, cold weather. The

minimum temperature during the period dropped to

- 2.0 �C. This stage was the critical period for early plant

growth. As a result, crops and seedlings in the region were

severely damaged by the low-temperature event.
Fig. 1 Schematic of the experimental design for each replicate gap
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The study plots were also subjected to the low-temper-

ature event. Night time and early morning temperatures

were below zero on May 3, May 5–6 and May 8–9, and the

longest period of low temperature (more than 10 h)

occurred on May 5–6, with a minimum temperature of

- 1.4 �C (Fig. 2). The leaves of seedlings were initially

formed during this period because the temperature of late

April was commonly higher than 10 �C. However, seed-
lings at this site (including the J. mandshurica seedlings in

gaps) were damaged by the early spring freezing resulting

from the sudden and long period of rain and low

temperatures.

The damage of seedlings in different gaps

The damage ratio (DR) of the J. mandshurica seedlings in

the southeast-, northeast-, west-gaps and the control plots

were 71.2, 54.6, 0 and 0%, respectively. The corresponding

seedling mortality of above four plots were 23.1, 18.9, 0

and 0%, respectively. Significant differences were

observed for FI between the southeast and northeast gaps

(t = - 2.75, P\ 0.05, Table 1).

The relationships between FI and light

and temperature

Across all plots, FI was significantly and negatively cor-

related with minimum temperature (r = - 0.608,

P\ 0.01). By contrast, FI was significantly and positively

correlated with PPFD for the 8:00 a.m.–12:00 p.m. period

after low temperature events (r = 0.818, P\ 0.01). No

significant relationships were observed between FI and

mean temperature, diurnal temperature range or PPFD for

the 1:00–5:00 p.m. period (Table 2). This result suggests

that the minimum temperature, as well as PPFD after the

minimum temperature, closely link to the FI. Therefore, we

performed multivariate variance analysis to examine the

relationship between the low temperature and PPFD (8:00

a.m.–12:00 p.m.) for different gaps.

Multivariate variance analysis showed that there were

significant differences relative to the minimum temperature

(P = 0.012) and the PPFD for the 8:00 a.m.–12:00 p.m.

period (P = 0.001) among the gaps. The minimum tem-

perature in the southeast-facing gap (highest FI) was not

the lowest in all the studied gaps, but the PPFD was the

highest. In contrast, the west-facing gap (with the mini-

mum temperature and a relatively low PPFD) and the

control plots (with relatively higher temperature and the

lowest PPFD) did not suffer from low-temperature (Fig. 3).

These results indicate that freezing damage to J. mand-

shurica seedlings was caused by a combination of low

temperature and high PPFD after low temperature.

The influence of low-temperature on the seedling

growth

The increases in the heights and root collar diameters of

damaged seedlings in the early growth season (from April

to July) were significantly lower than those of undamaged

seedlings (P = 0.001 and P = 0.000, respectively). There

were no significant differences in the increases in the

heights and root collar diameters of the damaged seedlings

in the later growth season (from July to October)

Fig. 2 The variations of 24-h

minimum temperature from

April 20 to May 9 of 2014

Table 1 FI values of the J. mandshurica seedlings between south-

east- and northeast-slope gaps

Slope FI

Mean value Standard deviation t P

Southeast 2.28 0.36 - 2.75 0.025

Northeast 1.53 0.49
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(P[ 0.05) (Fig. 4). This indicates that the seedling growth

in early growth season is susceptible to low temperature.

Discussion

When seedlings are stressed by short-term periods of low

temperatures, they can adapt to the low temperature by

self-regulating and establish a new equilibrium to reduce

the damage caused by the low temperature and to resist

cold to a certain extent (Luo et al. 2007; Jie et al. 2008).

However, the physiological functions of the seedlings are

completely destroyed under sustained periods of low tem-

perature, e.g., cell membranes are severely damaged and

their rate of electrolyte leakage increases, causing severe

damage to plants (Zhou et al. 2010; Wang et al. 2011).

Although the minimum temperature during this low-tem-

perature process was not much below freezing (- 1.4 �C),
the damage occurred due to the sustained stress of low

temperatures.

In general, damage caused by low temperature is greater

under high light conditions; i.e., low-temperature damage

occurs more easily in the light than in the dark (Jie et al.

2008). The damage to photosynthetic tissue caused by low

temperatures is exacerbated when plants are co-stressed by

low temperature and strong light (Egerton et al. 2000; Guo

et al. 2015). Dirks et al. (2002) reported that photoinhibi-

tion occurs under the stress of low temperatures even when

plants are exposed to moderate-intensity light. Ultimately,

light-induced oxidative stress occurs in the leaves of plants

(Sane et al. 2003; Wang and Feng 2005). Therefore, light,

especially strong light, intensifies plant damage when

temperature is low (Jie et al. 2008). The degree of canopy

openness and light intensity markedly increase in gaps,

which potentially aggravates the stress caused by low

temperatures. Light and temperature conditions in gaps are

affected by topography (e.g., depending on slope aspect),

which in turn exerts different degrees of physiological

stress on the seedlings growing in gaps (Table 2, Fig. 3).

Although the temperature in the west-facing gaps is the

lowest, seedlings did not experience damage due to the

relatively smaller PPFD. By contrast, seedlings in the

southeast-facing and northeast-facing gaps with relatively

lower temperature and higher PPFD were seriously dam-

aged, especially in the southeast-facing gaps having the

highest PPFD. This indicates that the combined stress of

low temperature and strong light is the dominant factor for

determining the extent of damage in J. mandshurica

seedlings, which is consistent with previous studies (Hu

et al. 2011; Song et al. 2013; Tian et al. 2013).

Variations in light and temperature are relatively com-

plex in montane regions due to variations in topography

(e.g., slope aspects). Many researchers have simulated the

spatial variations of low temperature and light in montane

regions in order to assess damage or to predict the damage

caused by low temperature and strong light (Laughlin and

Kalm 1990; Blennow 1998; Blennow and Lindkvist 2000).

The aim of these studies was to reveal how the distribution

of low temperature and strong light, in combination with

the physiological characteristics of trees, can be used to

guide forestation and damage alleviation. For example,

Blennow et al. (1998) demonstrated that under the simu-

lated temperature and light conditions, areas with low

temperature and high light coincided with the areas con-

taining damaged seedlings. More specifically, the combi-

nation of increased interception of direct radiation energy

(IDRE) and reduced temperature would result in strong

photoinhibition. Further, Song et al. (2013) reported that

shading treatment for Populus xiaohei should be performed

after the onset of low temperatures (i.e., after the seedlings

are transplanted in the spring), with the aim of reducing

photoinhibition and thus maximizing the survival rate. Cai

Table 2 Correlations between FI and meteorological factors

Minimum temperature Mean temperature Diurnal temperature PPFD of 8–12 a.m. PPFD of 1–5 p.m.

FI

r - 0.608** 0.383 0.275 0.818** 0.324

P 0.007 0.117 0.269 0.000 0.190

** indicate significant correlations at the 0.01 level (n = 18)

Fig. 3 The minimum temperature and PPFD in different gaps
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et al. (2003) noted that economic crops and precious plants

should be planted in a low-light understory or under arti-

ficial shading to reduce the damage caused by low tem-

peratures and strong light. Our results also show that

defensive measures (e.g., shading treatment) should be

taken into consideration with seedling transplant in south-

east-facing gaps to reduce the low temperature and strong

light induced damages. In addition, our results show that

the seedlings in the control plots are undamaged after the

low temperature event, which are attributed to decrease of

long-wave radiation from ground and incoming solar

radiation in the control plots because the seedlings are

sheltered by the bigger branches and canopies in the con-

trol plots compared to that plots within gaps (Zhu et al.

2015). This suggests that certain measures will help to

mitigate damage extent of tree seedlings suffering from

low temperature, such as keeping some trees as protection

tree, thinning instead of clear cutting during tending felling

processes (Nunez and Bowman 1986; Blennow 1998;

Rambo and North 2009; Li et al. 2013).

The seedling stage is an important period in the history

of a plant’s life, and the growth rate of seedlings influences

the quantity and development of the population (Clark

1998; Jin et al. 2007; Nordlander et al. 2011), which is of

great importance for population stability and community

composition (Muhamed et al. 2013; Verduin et al. 2013).

The seedling stage is also the most vulnerable and sensitive

period in the life cycles of forest plants (Han and Wang

2002; Tang and Zhai 2006), and seedlings of this stage are

very sensitive to changes in habitat conditions (James et al.

2005; Diaci et al. 2012). Therefore, changes in weather can

exert a great influence on the survival and growth of

seedlings, which are directly related to the survival and

development of populations and the regeneration, devel-

opment and succession of forests. Gap formation is con-

sidered to be a crucial process in driving ‘‘the forest cycle

and succession’’ and provides an opportunity for the

regeneration of seedlings and saplings (Nagel et al. 2010).

Consequently, variations in meteorological conditions in

the gaps directly affect the growth and development of

seedlings. Our results show that some seedlings are killed,

some seedlings are damaged in some extent, and some

seedlings are not damaged after the low temperature event

in the gaps, indicating that the seedlings are sensitive to

low temperature. Our results also show that the increases in

the height and root collar diameter of the damaged seed-

lings are significantly lower than those of undamaged

seedlings. Additionally, low temperature only affects the
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Fig. 4 The increase in the height and root collar diameter in early (from April to July) and later (from July to October) stages between the

damaged and undamaged seedlings of J. mandshurica
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early growth of seedlings but has no effect on the later

growth, suggesting that the seedling growth in early growth

season was more susceptible to low temperature. Based on

these results, it can be speculated that low temperature can

lead to death of part of seedlings in gaps and damage of

part of seedlings, while damaged seedlings will suffer from

growth deficiency during early growth season, hence

affecting the regeneration of seedlings in the gaps. Further

study should be conducted to clarify ecological and phys-

iological mechanism behind the effect of adverse metro-

logical conditions on the regeneration of seedling in

secondary forest gaps.

Conclusions

The seedlings of J. mandshurica in different gaps suffered

from variable degrees of damage induced by low temper-

atures. Our results show that leaf damage to J. mand-

shurica in southeast-facing gaps is significantly higher than

that of plants in northeast-facing gaps. By contrast, the

seedlings in west-facing gaps and control plots are not

damaged. Additionally, the increases in the height and root

collar diameter (from April to July) of the damaged seed-

lings are significantly lower than those of undamaged

seedlings, while no significant differences are observed in

the later growing season (from July to October). The

minimum temperature and light intensity in gaps are the

main factors responding for leaf damage, therefore seed-

lings in southeast- and northeast-facing gaps with the

highest light intensity are the most seriously damaged. This

suggests that strong light is the key factor affecting damage

after a low-temperature event. In addition, strong light after

low-temperature only affects the growth of seedlings in the

early part of the growing season without affecting growth

in the later growing season.
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