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Abstract Nutrient resorption before abscission is an

important nutrient conservation mechanism regulated by

climatic conditions and soil nutrients. However, our current

understanding of leaf nutrient resorption is primarily

derived from site-specific studies or from the use of green-

leaf nutrient concentrations to represent those in soils. It

remains unknown how nutrient resorption responds to

natural soil-nutrient concentrations at a global scale. The

effects of plant functional groups, climatic conditions, and

soil nutrients and their interactions on leaf nutrient

resorption are also unknown. In this study, we established a

global database derived from 85 published papers,

including 547 reports of nitrogen and phosphorus resorp-

tion efficiency (NRE and PRE), climatic factors (LAT,

latitude; MAT, mean annual temperature; MAP, mean

annual precipitation) and soil-nutrient data (STN, soil total

nitrogen; STP, soil total phosphorus) across 111 research

sites. The results demonstrated that mean NRE and PRE

were 48.4 and 53.3%, respectively. NRE of trees was lower

than those of shrubs. NRE and PRE of coniferous species

were both higher than those of broad-leaved species.

Evergreen species had higher PRE than did deciduous

species. NRE was negatively related to STN, but PRE and

STP were not related. Both NRE and PRE decreased with

increasing MAT and MAP but increased with increasing

LAT. Plant functional groups, climate and soil nutrients

jointly explained 22 and 32% of the variations in NRE and

PRE, respectively. It is important to note that climate

(especially MAT) explained 12 and 29% of the variations

in NRE and PRE, respectively, implying that continuing

global warming will exert an increasingly profound influ-

ence on plant nutrient cycles.

Keywords Global � Climate change � Nutrient resorption
efficiency � Tree � Shrub

Introduction

Global warming and associated alteration of precipitation

regimes will probably influence soil nutrient availability

and plant nutrient economies of terrestrial ecosystems

(Reich and Oleksyn 2004; Ordoñez et al. 2009; Schmidt

et al. 2011). Soil nutrient availability is a primary deter-

minant of the species composition of plant communities,

and vice versa, as plants have species-specific effects on

soil nutrient availability. These patterns of plant–soil

interaction are based on trade-offs between nutrient use and

plant growth (Wright et al. 2004; Ordoñez et al. 2009;

Freschet et al. 2012). Climate and soils are the most
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important factors regulating leaf traits (Ordoñez et al.

2009; Chen et al. 2013). In a changing environment, the

plant–soil interactions might be changed, leading to a shift

in plant nutrient economies (Ordoñez et al. 2009; Zhang

et al. 2012). Thus, an essential component of accurate

impact forecasting and mitigation planning is an under-

standing of the adaptation mechanisms of plants to accel-

erating rates of environmental change.

Nutrient resorption is an efficient nutrient conservation

mechanism for plants to adapt to environmental conditions,

which refers to the process whereby nutrients are

retranslocated from senescing organs to living or storage

organs (Aerts 1996; Brant and Chen 2015). The nutrients

resorbed during senescence are directly available for fur-

ther plant growth, which reduces dependence on soil

nutrients supply (Aerts 1996). Variations of nutrient

resorption could also regulate stand-level biogeochemical

cycling via its effect on litter-fall quality, which, in turn,

influences litter decomposition and soil nutrient availability

(Aerts 1997; Oleksyn et al. 2003).

Plants are frequently exposed to soil nutrients limita-

tions (Grime et al. 1997; Han et al. 2012). Within a given

habitat, the leaf traits may coexist to make the balance

between growth and environmental conditions (Wright and

Westoby 2003). Several leaf traits, e.g., leaf nitrogen

(N) and phosphorus (P) concentrations, leaf N:P, and par-

ticularly N and P resorption, have been intensively studied

(Oleksyn et al. 2003; Ordoñez et al. 2009; Maire et al.

2015). In these site-specific studies, positive (Hidaka and

Kitayama 2011), negative (Tully et al. 2013; Hayes et al.

2014) or no (Wright and Westoby 2003; Huang and

Boerner 2007) relationship was reported between nutrient

resorption and soil nutrients. Few major reviews have

attempted to explore the relationships between nutrient

resorption and soil nutrients globally (Aerts 1996; Kobe

et al. 2005; Vergutz et al. 2012). However, these studies

have methodological limitations, namely, they all replaced

soil nutrients though green leaf nutrient concentrations but

did not use soil nutrients directly (Brant and Chen 2015).

Therefore, Brant and Chen (2015) emphasized that it is

imperative to explore the relationships between nutrient

resorption and natural gradients of soil nutrients for woody

plants at large scale. Climate factors have profound effects

on nutrient resorption (Brant and Chen 2015). Yuan and

Chen (2009) reported that NRE decreased but PRE

increased with increasing mean annual precipitation

(MAP) and temperature (MAT). Vergutz et al. (2012)

reported that both NRE and PRE decreased with increasing

MAP and MAT. Thus, no universal relationship was

identified to date.

To the best of our knowledge, no study has considered

the relationships between nutrient resorption and natural

soil nutrients at a global scale. Additionally, the relative

effects of plant functional groups, climatic conditions and

soil nutrients, and their interactions on nutrient resorption

are also unknown. In this study, we developed a global

database derived from 85 published papers, which included

nutrient resorption efficiency, climate and soil nutrients.

Finally, 547 reports from 111 research sites were obtained

(Fig. 1). Based on this database, the following research

questions were addressed: (1) whether and how the varia-

tions in nutrient resorption of woody species respond to

soil nutrients and (2) whether and how the relative effects

of plant functional groups, climatic conditions, soil nutri-

ents, and their interactions relate to nutrient resorption.

Materials and methods

Data collection

We collected leaf nutrient resorption efficiency, climate

and soil nutrient data from the published literature

(Table S1). Despite obtaining many relevant papers, only

studies which included species-specific nutrient resorption

efficiency were selected (NRE, N resorption efficiency;

PRE, P resorption efficiency, directly obtained or by

allowed calculation), climate (LAT, latitude; MAT, mean

annual temperature; MAP, mean annual precipitation) and

soil nutrients (STN, soil total N concentration; STP, soil

total P concentration) at the same site synchronously. We

conducted searches using Web of Science and Google

Scholar search engines with the following keywords:

resorption, retranslocation, reabsorption, translocation,

nutrient resorption, nutrient retranslocation, nutrient reab-

sorption and nutrient translocation. For additional manip-

ulations (i.e., water-, N- or P- addition) studies, we only

selected the unmanipulated controls, and N-fixing species

were also included in our dataset (Wright and Westoby

2003; Vergutz et al. 2012). For studies reporting nutrient

concentrations throughout the year, we used the maximum

value for nutrient concentration of mature leaves to cal-

culate nutrient resorption efficiency. The majority of our

data points (nutrient resorption efficiency) were based on

leaf mass and leaf area. Overall, the database was derived

from 85 studies, encompassing 547 reports of nutrient

resorption, climate and soil nutrients for trees and shrubs

across 111 research sites which were distributed across

most of the world’s biomes (Fig. 1).

According to Aerts (1996) and van Heerwaarden et al.

(2003), due to the resorption of soluble carbon compounds

during leaf senescence, leaves lost mass in this process.

Therefore, we used a mass loss correction factor (MLCF)

to eliminate the underestimations of nutrient resorption

efficiency, with the calculation as follows:
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NuRE %ð Þ ¼ Nm �Ns � MLCFð Þ=Nm½ � � 100

where NuRE was nutrient resorption efficiency, and Nm

and Ns were nutrient concentrations in mature and senesced

leaves, respectively. The MLCF values were different for

plant growth forms, i.e., 0.745 for conifers, 0.780 for

evergreen broadleaved species, and 0.784 for deciduous

broad-leaved species (Vergutz et al. 2012; Yuan and Chen

2015).

We only assessed soil total nitrogen (STN) and soil total

phosphorus (STP) concentrations in this study (Ordoñez

et al. 2009), measured for the upper 0–10 cm of soil in the

majority of cases. Leaf nutrient concentrations and soil

nutrients were expressed on a mass basis. To ensure data

comparability, the unit of percentages (%) for leaf nutrient

concentrations was converted to unit of mg g-1, and the

unit of percentages (%), mg kg-1 and lg g-1 for corre-

sponding soil nutrients was converted to unit of mg g-1.

When the plant functional groups (tree vs. shrub, broad-

leaved vs. conifer, and deciduous vs. evergreen) were not

provided in the original papers, it was referred and

extracted from other papers or one of several online data-

bases (http://en.wikipedia.org/wiki/Main_Page; http://

www.theplantlist.org/1/; http://efloras.org/). Data was

obtained from tables, texts, additional supporting infor-

mation directly, or from figures by the data thief software

GetData Graph Digitizer 2.24 (http://getdata-graph-digiti

zer.com). Resorption was quantified by nutrient resorption

efficiency, which is defined as the proportional withdrawal

of nutrients between green and senesced leaves

(Killingbeck 1996). Climatic variable data, including LAT

(�), MAT, (�C) and MAP (mm year-1), was derived from

the original papers, but if the information was not avail-

able, we obtained it from the WorldClim (http://www.

worldclim.org/). If several years of temperature and pre-

cipitation data were available, we preferred data in the

experimental years. Among the studied sites, a wide range

of climate and soil nutrient data was obtained. MAT and

MAP ranged from - 12.4 to 31.6 �C, and 56 to

5500 mm year-1, respectively, and STN and STP ranged

from 0.031 to 26.45 mg g-1, and 0.06 to 2.90 mg g-1,

respectively. Geographic coordinates were obtained from

Google Earth for those sites where longitude and latitude

data had not been reported in the original papers (Zhang

et al. 2012).

Data analysis

Before statistical analysis, all leaf, climate and soil data

was tested for normality and homoscedasticity of variances

using Kolmogorov–Smirnov’s and Levene’s tests, respec-

tively. Soil variables were log10-transformed before sta-

tistical analysis to improve the data normality (Han et al.

2011). Of the climatic variables, only MAP was log10-

transformed, while MAT was not transformed, as it showed

approximately normal distribution (Ordoñez et al. 2009).

We used one-way analysis of variance (ANOVA) when we

compared the significant differences in nutrient resorption

efficiency between tree versus shrub, broad-leaved versus

conifer, and deciduous versus evergreen. Linear regression

Fig. 1 Global distribution of sampling sites used in this study (a total of 111 research sites were obtained from 85 publications across the world)
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analysis of nutrient resorption efficiency (NRE and PRE)

on LAT was performed to address the geographic pattern

of nutrient resorption. Linear regression analyses were also

performed to examine the response patterns of NRE and

PRE to climatic conditions (MAT and MAP) and soil

nutrients (STN and STP). Stepwise multiple regressions

were used to identify the most influential variables (MAT,

MAP, STN and STP) on NRE and PRE. General linear

model (GLM) and partial GLM were conducted, with

nutrient resorption efficiency as the dependent variable,

and plant functional groups (tree and shrub, broadleaf and

conifer and deciduous and evergreen), climate (MAP and

MAT) and soil total nutrient (STN for NRE, and STP for

PRE) as independent variables, to evaluate the relative

effects and the interactions between independent variables

on nutrient resorption (Heikkinen et al. 2005; Han et al.

2012). To examine how these three variables influence

nutrient resorption, the variation partitioning method led to

the identification of seven fractions: independent effects of

plant functional group (a), climate (b) and soil total nutrient

(c), joint effects of functional group and climate (ab),

functional group and soil total nutrient (ac), climate and

soil total nutrient (bc), and joint effects of all three

explanatory variables (abc). The statistical analyses were

performed with SPSS 13.0 for Windows (SPSS Inc., Chi-

cago, IL, USA) and R 3.2.0 (R Development Core Team

2015).

Results

Variations in nutrient resorption among plant

functional groups

Globally, the mean values of NRE and PRE (both corrected

for leaf mass loss) in woody plants were 48.4 and 53.3%,

respectively (Table 1). Significant differences in NRE and

PRE were observed among plant functional groups. Trees

had lower resorption efficiency than those of shrubs, but

the difference was significant only in NRE (P = 0.012 and

P = 0.329 for NRE and PRE, respectively). Both NRE and

PRE of broad-leaved species were significantly lower than

those of conifer species (P = 0.042 and P\ 0.001,

respectively). In addition, evergreen species had higher

PRE than those of deciduous species (P = 0.014)

(Table 1).

Relationships between nutrient resorption and soil

nutrients

The NRE was significantly decreased with the increasing

soil total N (P = 0.001). However, there was no significant

relationship between PRE and soil total P (P = 0.681)

(Fig. 2).

Latitudinal pattern of nutrient resorption

Significant latitudinal trends were identified for NRE and

PRE at a global scale (Fig. 3). Generally, NRE and PRE

were both positively and significantly related to LAT

(P\ 0.001, R2 = 0.074 and P = 0.003, R2 = 0.023,

respectively) for all species pooled together (Fig. 3).

Relationships between nutrient resorption

and climate

The NRE and PRE were both negatively and significantly

related to log-MAP (P\ 0.001 and P = 0.044, respec-

tively). Meanwhile, NRE and PRE also displayed similar

relationships with MAT (both P\ 0.001) (Fig. 4). MAT

had more influence on NRE than MAP or STN (Table 1S).

The same pattern was also true for PRE (Table 1S). With

the exception of the relationship between NRE and MAT

for conifer, NRE and PRE were both negatively related to

MAT, MAP, STN and/or STP, regardless of whether all

data were pooled together or the plant functional groups

were examined individually (Fig. 4, Table 1S).

Effects of plant functional group, climate and soil

nutrients on NRE and PRE

GLM and partial GLM analyses showed that plant func-

tional group, climate and total soil nutrients had significant

effects on NRE and PRE. These three explanatory variables

together explained 22 and 32% of the variations in NRE

and PRE, respectively (Fig. 5). Both the independent

(b) and total effects of climate (b ? ab ? bc ? abc)

accounted for the largest contribution to the variations in

NRE and PRE (16 and 22%; 12 and 29%, respectively).

The total effect of plant functional group (a ? ab ? a-

c ? abc) in PRE (9%) was larger than that of NRE (5%),

while the total effect of soil nutrients (c ? ac ? bc ? abc)

in PRE (1%) was lower than that of NRE (2%). The joint

effects of plant functional group and climate (ab) were 1%

and 6% for NRE and PRE, respectively (Fig. 5).

Discussion

Variations of NRE and PRE among functional

groups

Our results showed that the mean value of NRE and PRE

(corrected with MLCF) were 48.4 and 53.3%, respectively.

These results were comparable to 49.1 and 56.3%, and 51.0
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and 56.9% for the NRE and PRE reported by Tang et al.

(2013) and Han et al. (2013), respectively. The NRE and

PRE showed significant differences among functional

groups (Table 1). The NRE of trees was lower than that of

shrubs, while there was no significant difference for PRE,

which was in agreement with Yuan and Chen (2009). Both

NRE and PRE of coniferous species were higher than those

of broad-leaved species (Table 1). Similar observations

were also found by Tang et al. (2013). Given that shrubs or

coniferous species were always found in poor environ-

mental conditions, therefore, the elevated nutrient

resorption could help them survive and adapt to the stres-

sed habitats (Aerts and Chapin 2000; Yuan et al. 2005;

Lambers et al. 2008; Yan et al. 2016). Consistent with

Yuan and Chen (2009), our observation showed that

evergreen species had significantly higher PRE than

deciduous species (Table 1). The possible explanation may

be that, first, higher abundance of evergreen species grow

in P-limited low latitudes, thus a higher PRE characteristic

for evergreen species could support their nutrient demands

and adapt to P-limitation. Second, evergreen species would

prolong nutrient retention time in leaf biomass and leaf

Fig. 2 Relationships between NRE (a) and PRE (b) with log-soil

total N (Log-STN) and log-soil total P (Log-STP), respectively. For

each relationship, coefficient of determination (R2), P value (P) and

number of observations (n) are reported. The solid line is shown when

statistically significant (P\ 0.05), and the dashed line shown

indicates no significant trend of nutrient resorption efficiency among

soil nutrients (STN and STP)

Table 1 Statistics for NRE and

PRE of different functional

groups in woody plants at a

global scale

Functional groups Resorption types (%) N Minimum Maximum Mean P SE

Tree NRE 430 0.46 87.90 47.50 0.012 0.78

PRE 326 1.37 98.40 52.87 0.329 1.10

Shrub NRE 111 6.78 83.51 51.86 – 1.54

PRE 70 3.91 86.63 55.40 – 2.24

Broadleaf NRE 457 0.46 87.90 47.79 0.042 0.77

PRE 355 1.37 90.40 51.67 0.000 1.02

Conifer NRE 84 21.80 83.98 51.69 – 1.50

PRE 41 29.24 98.40 67.56 – 2.71

Deciduous NRE 251 0.46 87.90 47.12 0.088 1.16

PRE 194 1.37 91.63 50.84 0.014 1.50

Evergreen NRE 290 6.78 87.44 49.50 – 0.82

PRE 202 3.91 98.40 55.70 – 1.28

Overall NRE 541 0.46 87.90 48.40 0.000 0.70

PRE 396 1.37 98.40 53.32 – 0.99

SE standard error, n sample size

P values were the statistical results of one-way ANOVA between tree versus shrub, broad-leaved species

versus conifer species, and deciduous species versus evergreen species. Both NRE and PRE were corrected

with leaf mass loss. Values in bold indicate significant differences between plant functional groups

(P\ 0.05)
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longevity to increase nutrient use efficiency and lead to low

nutrient loss rates (Escudero et al. 1991; Aerts 1996). The

above results reflect diverse nutrient use by different plant

functional groups.

Patterns of NRE and PRE along soil nutrients

Our data demonstrated that NRE was negatively related to

STN, but PRE and STP were not significantly related

(Fig. 2). It has been widely reported that plants grown in

nutrient-poor habitats would be characterized by high

nutrient resorption efficiency (Vergutz et al. 2012; Yuan

and Chen 2015). This expectation was also supported by

Fig. 3 Latitudinal patterns of NRE (a) and PRE (b) across global scales. For each relationship, coefficient of determination (R2), P value (P) and

number of observations (n) are reported. The solid lines are represented the statistically significant trends (P\ 0.05)

Fig. 4 Relationships between NRE (a, b) and PRE (c, d) with MAT and log-MAP. For each relationship, coefficient of determination (R2),

P value (P) and number of observations (n) are reported. The solid lines represent the statistically significant trends (P\ 0.05)
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our observations for the relationship between NRE and

STN. Our results were partially supported by the previous

findings, which demonstrated that nutrient resorption was

strongly related to soil fertility (Kobe et al. 2005; Vergutz

et al. 2012; Zhang et al. 2015). The finding contradicted the

reports by Aerts (1996), which showed that the relationship

between nutrient resorption and soil fertility was absent or

very weak, or by Tang et al. (2013) which found that NRE

increased with increasing STN, but PRE decreased with

increasing STP. The decreased NRE with increasing STN

may be explained by the theoretical model, which con-

sidered that plants in fertile habitats would require less

energy to acquire nutrients from soil than by resorption

from senescent leaves (Wright and Westoby 2003). Plants

grown in high soil nutrient (e.g., STN) habitats would be

characterized by low nutrient resorption efficiency, return

higher-quality litter to soils, which in turn would produce a

positive plant–soil feedback. By contrast, plants grown in

low soil nutrient habitat would have high nutrient resorp-

tion efficiency, and the lower-quality litter reinforced the

infertile soils (Aerts 1997; Ordoñez et al. 2009; Lü et al.

2012; Yan et al. 2016). Given that leaf nutrients, therefore,

can either be recycled within the plant or returned to the

soil via litter, plants may strive to make a trade-off between

nutrient requirements and soil conditions.

Patterns of NRE and PRE along climatic gradients

In our present study, whether all data were pooled together

or plant functional groups were examined individually,

both NRE and PRE decreased with increasing MAT and

MAP, but increased with increasing LAT (Figs. 3, 4,

Table 1S). Our results were in agreement with Vergutz

et al. (2012) and Sun et al. (2016), but in disagreement with

some of the conclusions of Yuan and Chen (2009) and

Tang et al. (2013), which found that NRE was negatively

related to MAT and MAP, but positively related to LAT,

whereas the opposite relationships were true for PRE. The

inconsistency in PRE may be due to the methodological

differences among different studies (Yuan and Chen 2009;

Vergutz et al. 2012; Brant and Chen 2015). Alternatively,

P-related leaf traits are usually more responsive to envi-

ronmental conditions relative to N-related leaf traits (Han

et al. 2011; Chen et al. 2013; Tang et al. 2013).

Our results suggested that plant species in higher-lati-

tude (lower temperature and precipitation) regions were

more dependent on internal nutrient cycling processes

(Oleksyn et al. 2003). This finding is likely to reflect an

adaptive trait with higher nutrient conservation for plants

from colder habitats (Oleksyn et al. 2003). Two main

reasons can be ascribed to this phenomenon. First, lower

temperature would limit the movement of soil nutrient

solution, as well as nutrients uptake via root (Chapin and

Oechel 1983; Körner 1999; Reich and Oleksyn 2004). Thus

plants may prefer nutrient resorption which costs relatively

less energy than uptake from soil (Wright and Westoby

2003; Viers et al. 2013). Conversely, plants grown in

higher temperature regions would have higher potential

evapotranspiration, and thus plants could enhance the

transpiration rate to cool leaves (Cramer et al. 2009; Pan

et al. 2010; Maire et al. 2015). Accompanied by this

adaptive feature, lots of mass-flow nutrients would be

delivered from soil to plant tissues (Cramer et al. 2009; Pan

et al. 2010), which may subsequently weaken the process

of nutrient resorption. Second, decomposition and nutrient

mineralization are slow at high latitudes, which in turn,

would reduce soil N and P availability (Robinson 2002;

Oleksyn et al. 2003; Reich and Oleksyn 2004). Conse-

quently, plants would improve their capacities of nutrient

resorption to meet nutrient requirements. Similar latitudi-

nal patterns were observed by Oleksyn et al. (2003), which

reported that the NRE and PRE of Scots pine populations

from colder habitats were greater than those from warmer

habitats throughout Europe.

Fig. 5 Variation partitioning

(R2, %) of plant functional

groups (PFG), climate and soil

total nutrient in accounting for

NRE (a) and PRE (b). Variables
a, b and c denote the

independent effects of PFG,

climate and soil nutrient,

respectively. Variables ab, ac,

bc and abc denote the joint

effects of PFG and climate, PFG

and soil total nutrient, climate

and soil total nutrient and the

combined three explanatory

variables, respectively
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Effects of plant functional group, climate and soil

nutrients on NRE and PRE

GLM and partial GLM showed that NRE was primarily

driven by plant functional group, climate, soil nutrients,

and their interactions, while PRE was primarily driven by

plant functional group, climate and the joint effects. Cli-

mate explained the largest part of the variations in both

NRE and PRE (12 and 29%, respectively), which implied

that continuing global warming will exert an increasingly

profound influence on plant nutrient cycles, particularly for

PRE. Evidence from Chen et al. (2013) also reported that

leaf P was more flexible than leaf N in response to

changing climate. The relatively small proportion

explained by soil nutrients may be attributed to the fact that

STN and STP are just potential soil nutrient supplies and

were rarely utilized by plants (Aerts and Chapin 2000).

These results implied that the applications of STN and STP

were inadequate to characterize the response of nutrient

resorption to soil nutrient conditions, and the response may

be driven by collective soil variables, e.g., soil nutrient

availability, soil moisture and soil texture (Ordoñez et al.

2009; Lü et al. 2012; Reed et al. 2012). Therefore, further

studies should also take soil available N and P into con-

sideration, because these available nutrients can be directly

utilized by plants. Overall, the above biogeographic pat-

terns of nutrient resorption in woody species are generally

considered to be the acclimation or adaptation responses to

their hydrothermal environmental and soil nutrient

conditions.

Conclusions

Our present study is, to the best of our knowledge, the first

attempt to quantify the relationships between nutrient

resorption and natural soil nutrients directly, and to assess

the integrated effects of plant functional groups, climatic

factors, soil nutrients, and their interactions on nutrient

resorption of woody species at a global scale. Thus, we

provided the opportunity to explore the widely debated

issue of whether and how soil nutrients affect nutrient

resorption. Our results demonstrate that NRE decreased

with increasing STN, while by contrast, PRE was not

related to STP. There existed biogeographic patterns in

nutrient resorption of woody species at a global scale,

which likely is a result of the collective forcing of plant

functional group, climate and soil nutrient gradients. In

particular, climatic factors (especially MAT) had more

contributions to the variations in both NRE and PRE (12

and 29%, respectively) than those of plants functional

groups and soil nutrients. These results implied that the

ongoing global warming will modulate the patterns of

nutrient resorption, and subsequently affect the nutrient

returning and cycling.
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Yan T, Lü XT, Yang K, Zhu JJ (2016) Leaf nutrient dynamics and

nutrient resorption: a comparison between larch plantations and

adjacent secondary forests in Northeast China. J Plant Ecol

9:165–173

Yuan ZY, Chen YH (2009) Global-scale patterns of nutrient

resorption associated with latitude, temperature and precipita-

tion. Global Ecol Biogeogr 18:11–18

Yuan ZY, Chen YH (2015) Negative effects of fertilization on plant

nutrient resorption. Ecology 96:373–380

Yuan ZY, Li LH, Han XG, Huang JH, Wan SQ (2005) Foliar nitrogen

dynamics and nitrogen resorption of a sandy shrub Salix

gordejevii in northern China. Plant Soil 278:183–193

Zhang SB, Zhang JL, Slik JWF, Cao KF (2012) Leaf element

concentrations of terrestrial plants across China are influenced

by taxonomy and the environment. Glob Ecol Biogeogr

21:809–818

Zhang JH, Tang ZY, Luo YK, Chi XL, Chen YH, Fang JY, Shen HH

(2015) Resorption efficiency of leaf nutrients in woody plants on

Mt. Dongling of Beijing, North China. J Plant Ecol 8:530–538

Leaf nitrogen and phosphorus resorption of woody species in response to climatic conditions… 913

123

http://www.r-project.org/

	Leaf nitrogen and phosphorus resorption of woody species in response to climatic conditions and soil nutrients: a meta-analysis
	Abstract
	Introduction
	Materials and methods
	Data collection
	Data analysis

	Results
	Variations in nutrient resorption among plant functional groups
	Relationships between nutrient resorption and soil nutrients
	Latitudinal pattern of nutrient resorption
	Relationships between nutrient resorption and climate
	Effects of plant functional group, climate and soil nutrients on NRE and PRE

	Discussion
	Variations of NRE and PRE among functional groups
	Patterns of NRE and PRE along soil nutrients
	Patterns of NRE and PRE along climatic gradients
	Effects of plant functional group, climate and soil nutrients on NRE and PRE

	Conclusions
	Acknowledgements
	References




