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Abstract Increasing field experiments have been con-

ducted in forests to better understand the response of plant

growth and photosynthesis to climatic warming. However,

it is still unknown whether there is a general pattern in

relation to how and to what extent warming impacts woody

plants in forests. In this study, a meta-analysis was con-

ducted to investigate the warming effects. When tempera-

tures increased between 0.3 and 10 �C, specific leaf area

(SLA) was significantly increased by 5.9%, plant height by

7.8%, biomass by 21.9%, foliar calcium (Ca) and man-

ganese (Mn) concentrations by 20.7% and 39.6% and net

photosynthetic rate (Pn) by 9.9%. Enhanced growth and Pn

may have a relationship with changing SLA, efficiency of

PSII (photosystem II), photosynthetic pigment concentra-

tions and foliar nutrients. The results will be useful to

understand the underlying mechanisms of forests

responding to global warming.
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Introduction

Forest ecosystems cover approximately 35% of the world’s

land surface, contribute to* 70% of terrestrial net primary

productivity, and are responsible for 66% of worldwide

photosynthesis (Meyer and Turner 1992; Melillo et al.

1993; Nagy et al. 2000; Valentini et al. 2000). Studies

suggest that climate change, especially increasing temper-

atures, may fundamentally alter ecosystem functioning

through its effect on plant growth and photosynthesis

(Eamus and Jarvis 1989). Previous experiments have been

carried out in an effort to better understand the effects of

climate warming on growth and photosynthesis (Luomala

et al. 2005; Fu et al. 2014). However, a general pattern of

these effects is lacking.

Warming could affect production and physiology via

impacting temperature-dependent parameters (Fu et al.

2014). These include concentrations of photosynthetic

pigments, chlorophyll (Chl) fluorescence parameters,

stomatal conductance (gs), rates of carboxylation (Vcmax),

apparent quantum yield of the photochemical efficiency of

PSII, and the fluorescence parameter ratio (Fv/Fm) (Yin

et al. 2008; Yang et al. 2013). The effect of warming on

these parameters could be positive, negative or neutral

depending upon the species and experimental conditions.
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For example, warming decreased gs and Fv/Fm of Betula

albosinensis Burkill (Chinese red birch), but had no effect

on Abies faxoniana Rehd &Wilson (Farges fir) (Duan et al.

2014). Studies show that photosynthesis generally benefits

from increases in gs, Chl pigments concentration, Vcmax

and AQY, but is inhibited by H2O2 and MDA (malondi-

aldehyde) (Shi et al. 2010). Thus, changes in growth and

photosynthesis under climate warming are the results of

overall changes of parameters (Fu et al. 2014).

Temperature is also a driving force for nutrient cycling

which might affect foliar nutrients, including mineral and

mobile nutrients (Coley 1998; Sager and Hutchinson

2005). For example, N (nitrogen), P (phosphorous), K

(potassium), S (sulphur), and Cu (copper) concentrations in

needles of Pinus sylvestris L. were decreased by warming

treatment, while Ca (calcium), Mg (magnesium), B

(boron), Zn (zinc), and Mn (magnesium) concentrations in

needles were increased (Luomala et al. 2005). However,

these trends were condition-dependent. Kellomaki and

Wang (1997) found elevated temperatures increased foliar

N concentration in Scots pine. Moreover, because foliar

nutrients are closely related to biochemical capacity for

photosynthesis and growth (Luomala et al. 2005), warming

could affect them indirectly through changes in nutrients.

Increasing, decreasing or neutral impacts of experi-

mental warming have been observed for biomass and/or

photosynthesis in forest ecosystems (Bruhn et al. 2007; Yin

et al. 2008; Bronson and Gower 2010; Yang et al. 2011;

Lavola et al. 2013; Li et al. 2013). Yin et al. (2008) found

that warming stimulated a significant increase in biomass

accumulation and photosynthetic performance of Picea

asperata Mast. seedlings. Yang et al. (2011) reported that

height and biomass of Abies fabri (Mast.) Craib. were

decreased by artificially simulated warming at the nearby

Gongga Alpine Forest Ecosystem Observation Station

which might be caused by a shortage in nitrogen supply.

Bronson and Gower (2010) reported that neither photo-

synthesis or nor respiration of Picea mariana (Mill.) BSP

was affected after 3 years of warming. This result is con-

sistent with a growing number of experiments which have

shown species acclimation to increased temperatures for

photosynthesis and/or respiration (Gunderson et al. 2000).

However, we do not know to what extent warming impacts

woody plant biomass and photosynthesis in forest

ecosystems.

A meta-analytic method was used in this study to

summarize the effects of climatic warming on woody plant

physiology and growth and to evaluate the direction and

magnitude of the effects of experimental warming. Studies

at a global scale have demonstrated that experimental

warming could stimulate plant growth (Wu et al. 2011).

Forest ecosystems have the most terrestrial net primary

productivity (Meyer and Turner 1992; Melillo et al. 1993;

Nagy et al. 2000; Valentini et al. 2000) and are large CO2

sinks (Valentini et al. 2000). We hypothesize that warming

is beneficial to woody plants, and the positive response

magnitude would be higher than the global average.

Materials and methods

Data collection

Journal articles published before December 2015 were

searched using the Web of Science database, and the

keywords ‘forest’ and ‘warming’, ‘plant’ or ‘forest’, and

‘temperature’ and ‘plant’. The literature survey was

intended to be comprehensive with studies on woody

species, including trees, shrubs and lianas. Publication

years were restricted between 1996 and 2015. Papers

published in Chinese were searched in the CNKI database

(http://www.cnki.net/). A total of 522 observations from 52

papers (Table S1and S2) were selected and the database

included 24 variables related to woody plant growth and

physiology. The final database included data from 25 forest

sites. Most data were located between latitudes (30�–60� N
and S) (See Table S1).

The collected variables included: (1) plant growth

parameters of height, basal diameter, shoot length, specific

leaf area (SLA), total biomass and ratio of root/shoot (R/S);

(2) foliar nutrient content, including nitrogen, carbon/ni-

trogen (C/N), phosphorus, potassium, calcium, magnesium,

aluminum, and manganese; (3) photosynthetic parameters

of net photosynthetic rate (Pn), leaf transpiration (E),

stomatal conductance (gs), Vcmax, maximum photosyn-

thetic rate (Amax), Fv/Fm, yield, concentration of chloro-

phyll a (Chla), chlorophyll b (Chlb), and carotenoids

(Carot).

For each study, we collected latitude, longitude, eleva-

tion, species, warming magnitude and duration, and the

response variables. In addition, the variables warming

magnitude and experimental duration were divided into

three classes to reveal general patterns of plant response to

warming (for warming magnitude (�C), B 2, 2–5,[ 5; for

warming duration (month), B 12, 12–36,[ 36). Data in

tables were directly extracted, and data with graphs, were

digitized with GetData software (http://getdata-graph-digi

tizer.com/). For experiments along warming gradients, data

were only collected at both ends. We identified the means,

standard deviations (SD), standard errors (SE), and sample

sizes (N). SE was transformed to SD when studies only

provided the SE value. When SD or SE was missing, SD

was estimated from van Groenigen et al. (2011). We first

calculated coefficient of variation (CV) for each dataset

and then averaged all CVs. The missing SD was estimated

by multiplying the reported mean value by the average CV.
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Selection criteria were: (1) only studies conducted in

forest ecosystems were included, including natural and

planted forests; (2) laboratory incubation studies were not

included; only field warming manipulation studies were

selected; (3) studies included pair-wise control and exper-

imental treatments. Warming and control plots had the

same ecosystem and soil types; (4) the warming method,

magnitude and experimental duration were clearly recor-

ded, and the measurements of variables in the control and

experimental groups were performed at the same temporal

and spatial scales; (5) only data from woody plants were

used; (6) at least one of the selected variables was mea-

sured; and, (7) for multifactorial studies, only control and

warming treatment data were used.

Meta-analysis

In this study, Metawin v.2.0 (Rosenberg et al. 2000) was

used to perform the meta-analysis. As a metric for the

response of variables to experimental warming, we used the

natural log of the response ratio (R), defined as the ‘effect

size’ (Hedges et al. 1999). For a given variable, R was

calculated as the ratio of its value in the warming treatment

group �Xt to that in the control group �Xc, without and with

standardization by warming magnitude (Eqs. 1, 2).

loge R ¼ loge
�Xt

�Xc

� �
¼ loge �Xtð Þ � loge �Xcð Þ ð1Þ

loge R ¼
loge

�Xt
�Xc

� �
Tt � Tc

¼ loge �Xtð Þ
Tt � Tc

� loge �Xcð Þ
Tt � Tc

ð2Þ

where Tt and Tc are the airtemperature in the control and

warming treatments, respectively.

The variance of loge
R (v) was approximated using the

following formula:

v¼ s2t
nt �X

2
t

þ s2c
nc �X

2
c

ð3Þ

where sc
2 and st

2 are the standard deviations in the control

and warming treatments, nc and nt are the sample sizes in

the control and warming treatments.

To determine if warming had a significant effect on a

variable, we employed a fixed-effects model (Rosenberg

et al. 2000). Confidence intervals (CIs) on the weighted

effect size were generated using bootstrapping (9999 iter-

ations). If the 95% CI values of the effect size for a variable

did not overlap with 0, the effect of warming on the vari-

able was considered significant. The warming effects of

different groups were considered to be significantly dif-

ferent from each other if their 95% CIs did not overlap

(Wan et al. 2001). We transformed the mean effect size of

a variable to percentage change elog
R
e � 1

� �
� 100% :

Generally, positive or negative data in ecological studies

are more likely to be published than neutral data. There-

fore, we examined whether our datasets were publication-

biased or not (Peters et al. 2006; Yang et al. 2014). First,

Spearman correlation analysis was performed between the

standardized effect size of raw data and sample size.

Spearman correlation analysis assesses how well the rela-

tionship between two variables can be described using a

monotonic function. If no correlation was found, the

dataset had no publication bias; or else, we needed to

estimate fail-safe number to confirm whether publication

bias would influence the final conclusions. A fail-safe

number is the number of studies that would have to be

added to change the results of the meta-analysis from

significant to non-significant (Rosenberg et al. 2000). In

this study we used Rosenthal’s fail-safe calculation of

5 N ? 10 where N is the original number of studies.

Results

Publication bias test

Publication bias was examined for each dataset of param-

eters. Spearman correlation analysis showed significant

correlation between standardized effect size and sample

size for height, yield and foliar Ca content datasets

(Spearman r = 0.435, P = 0.016 for height, r = 0.711,

P = 0.021 for yield and r = 0.424, P = 0.049 for foliar

Ca content). Statistics suggested that there was slight

publication bias for these three datasets. No publication

bias was detected in other datasets as no correlation was

found.

The fail-safe numbers were 304.1, 149.8 and 268.6 for

height, yield and foliar Ca content while the respective

5 N ? 10 values were 155, 60 and 120. This indicated that

although there was slight publication bias for these data-

sets, it would not change the overall meaning of the results.

Growth response to warming

Without standardization by warming magnitude, the effect

size and 95% CI of experimental warming on shoot length,

height, SLA, and total biomass were 0.1264 (0.0757–

0.1938), 0.0547 (0.0313–0.0804), 0.0798 (0.0529–0.0992),

and 0.1542 (0.0542–0.3029), respectively, and their 95%

CI did not cover zero (Fig. 1), suggesting a significantly

positive effect of warming on plant growth. Warming

increased shoot length by 13.5%, height by 5.6%, SLA by

8.3%, and total biomass by 16.7%. Basal diameter (0.0449,

-0.0033 to 0.0752) and R/S (-0.0757, -0.2104 to 0.0203)

did not respond to warming treatment.
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With standardization by warming magnitude, the effect

size and 95% CI of experimental warming on shoot length,

SLA, plant height and total biomass were 0.0661

(0.0281–0.1245), 0.0577 (0.0299–0.0916), 0.0746

(0.0397–0.1241) and 0.1979 (0.0649–0.3990), respectively,

and their 95% CI did not cover zero, also suggesting a

significantly positive effect of warming on growth.

Warming increased shoot length by 6.8%, SLA by 5.9%,

height by 7.8% and total biomass by 21.9%. Basal diameter

(0.0372, -0.0232 to 0.0595) and R/S (-0.0240, -0.0927

to 0.0648) did not respond to warming treatment (Fig. 1).

Photosynthesis and related parameters response

to warming

Without standardization by warming magnitude, the effect

size and 95% CI was 0.0349 (0.0164–0.1180) for net

photosynthetic rate (Pn), 0.0411 (0.0012–0.1045) for

transpiration (E), 0.0702 (0.0218–0.2748) for gs, 0.2226

(0.0081–0.5064) for Vcmax, 0.1265 (0.0950–0.2602) for

Amax, 0.2976 (0.0927–0.3393) for Chla, 0.2860

(0.0414–0.4349) for Chlb, 0.4034 (0.1107–0.5767) for

carotenoid (Carot). Warming significantly increased Pn by

3.6%, transpiration by 4.2%, gs by 7.3%, Vcmax by 24.9%,

Amax by 13.5%, Chla by 14.2%, Chlb by 34.7%, and

carotenoid by 49.7%. The effect of experimental warming

on Chla/b (0.0556, –0.0016 to 0.1088), yield (-0.0023,

-0.0147 to 0.1663), Fv/Fm (0.0097, -0.0187 to 0.0935)

were not significant (Figs. 2, 3).

With standardization by warming magnitude, the effect

size and 95% CI was 0.0946 (0.0653–0.1429) for Pn,

0.1008 (0.0351–0.2132) for transpiration, 0.0179

(0.0034–0.0639) for gs, 0.2108 (0.1574–0.3752) for Amax,

0.1768 (0.0485–0.3746) for Chla, 0.1668 (0.0278–0.3211)

for Chlb, 0.2494 (0.0753–0.6435) for carotenoid, respec-

tively, and their 95% CI did not cover zero (Figs. 3, 4).

Warming significantly increased the Pn by 9.9%, transpi-

ration by 10.6%, gs by 1.6%, Vcmax by 21.9%, Amax by

23.5%, Chla by 19.3%, Chlb by 18.2%, carotenoid by

28.3%. The effect of experimental warming on Vcmax,

Chla/b, yield, Fv/Fm, was not significant (Figs. 2, 3).

Fig. 1 Effect sizes of experimental warming on basal diameter, shoot

length, plant height, specific leaf area (SLA), and total biomass,

without (hollow points) and with (solid points) standardization by

warming magnitude. Error bars indicate effect sizes and 95%

bootstrap confidence intervals. The dashed lines are drawn at effect

size = 0. The sample size for each variable is shown next to the bar

Fig. 2 Effect sizes of experimental warming on net photosynthetic

rate (Pn), transpiration (E), gs, and Amax, without (hollow point) and

with (solid point) standardization by warming magnitude. Error bars

indicate effect sizes and 95% bootstrap confidence intervals. The

dashed lines are drawn at effect size = 0. The sample size for each

variable is shown next to the bar

Fig. 3 Effect sizes of experimental warming on Vcmax, Chla, Chlb,

Chla/b, carotenoid (carot), yield, and Fv/Fm, without (hollow point)

and with (solid point) standardization by warming magnitude. Error

bars indicate effect sizes and 95% bootstrap confidence intervals. The

dashed lines are drawn at effect size = 0. The sample size for each

variable is shown next to the bar
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Foliage nutrients response to warming

Without standardization by warming magnitude, the effect

size and 95% CI of experimental warming on leaf N was

-0.0555 (-0.1224 to -0.0005), Ca 0.1879 (0.0620–

0.2906), Mn 0.3337 (0.0116–0.4446) and their 95% CI did

not cover zero. Warming significantly increased the foliage

content of Ca by 20.7%, Mn by 39.6%, and decreased N

content by 5.5%. The effect of experimental warming on

C/N, P, K, Mg, Al were not significant (Fig. 4).

With standardization by warming magnitude, the effect

size and 95% CI of experimental warming on leaf N was

-0.0369 (-0.0789 to -0.0034), Ca 0.0754 (0.0428–

0.0908), Mn 0.1013 (0.0164–0.1464) and their 95% CI did

not cover zero. Warming significantly increased the foliage

content of Ca by 7.8%, Mn by 10.7%, Mg by 2.3%, and

decreased N content by 3.6%. The effect of experimental

warming on C/N, P, K, Mg, Al were not significant (Fig. 4).

Response to warming magnitude and experimental

duration

Warming significantly stimulated woody plant biomass

when the magnitude was\ 5 �C. However, Pn was not

significantly affected when the warming magnitude

was[ 2 �C. When the magnitude was\ 2 �C, the biomass

and Pn enhancement was significantly higher than that at

the warming magnitudes of 2–5 �C (Fig. S1).

Temperature manipulations caused significant incre-

ments in plant biomass at durations of\ 12 months

and[ 36 months, but not between 12 and 36 months. Pn

of woody plants did not show significant enhancement at

durations[ 12 months (Fig. S1).

Discussion

Our meta-analysis provided evidence that when the tem-

perature was between 0.3 and 10 �C, growth and photo-

synthetic rate was significantly increased by 21.9 and 9.9%

respectively. These increases were greater than the growth

stimulation (12.3%, with a 95% CI of 8.4–16.3%) reported

by Lin et al. (2010), and Pn stimulation reported by Lu

(2013) (4.5%, with a 95% CI of 2.6–6.4%). Lin et al.

(2010) and Lu et al. (2013) studied terrestrial plants at a

global scale while we focused on forest ecosystems. In

forest ecosystems, climatic warming may trigger a stronger

positive response of plant growth and photosynthesis than

that of global averages. These results verified our

hypothesis.

Based on our results, increased growth and net photo-

synthesis by woody plants may have a relationship with

changes of temperature-dependent parameters. From our

analysis, warming increased the content of photosynthetic

pigments (Fig. 4). These increases may promote photo-

synthetic capacity (Carter et al. 2000; Yin et al. 2008).

Warming also increased Fv/Fm and quantum yield, indi-

cating higher excitation energy transfer and higher effi-

ciency of using light which reflected higher photosynthetic

efficiency (Fu et al. 2014). As stomatal conductance (gs)

could affect photosynthesis, increased gs in our analysis

may indicate higher passage rates of CO2 which might

have a positive relationship with photosynthetic rates. In

addition, other studies have shown that increased temper-

atures can improve the activity of RuBisCo (Ribulose

bisphosphate carboxylase oxygenase) to enhance photo-

synthesis (Farquhar et al. 1980). Increased carboxylation

rates (Vcmax) due to warming in our study indicated either

enhanced RuBisCo activity or higher concentrations. As

leaf nitrogen, which has a close relationship with RuBisCo

concentration, did not increase under warming treatments

(Farquhar et al. 1980), Vcmax increase might be caused by

improved RuBisCo enzyme activity rather than higher

concentrations.

Root/shoot (R/S) ratios reflect the carbon allocation

between above-ground and below-ground. Research sug-

gests that R/S ratios may be more reasonable to assess

experimental effects on plants than root or shoot biomass

alone (Agathokleous et al. 2016). From our results,

warming did not affect biomass allocation between roots

and shoots, and reflected the same stimulation of above-

and below-ground growth. In addition, the effect of

warming on R/S ratios was similar to leaf C/N in our study.

This similarity might fit the biomass allocation model

(Reynolds and Thornley 1982) which shows that R/S ratios

should show similar shifts as tissue C/N ratios because

when C/N ratios rise, N will become more limiting relative

Fig. 4 Effect sizes of experimental warming on foliage concentration

of N, C/N, P, K, Ca, Mn, Mg, and Al, without (hollow point) and with

(solid point) standardization by warming magnitude. Error bars

indicate effect sizes and 95% bootstrap confidence intervals. The

dashed lines are drawn at effect size = 0. The sample size for each

variable is shown next to the bar
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to C and biomass allocation to roots will increase. Specific

leaf area (SLA) is highly correlated with light exposure (St

Clair and Lynch 2004), so increased SLA by warming

might have a relationship with Pn.

Previous studies have found that climate warming could

increase soil organic matter decomposition (Rustad et al.

2001; Henry and Moise 2015) which is usually associated

with increased release of acidic matte (D’Orangeville et al.

2014). The production of acidic matter can result in soil

acidification (Vancleve et al. 1990; Simandi et al. 2005).

Acidic inputs can lead to the leaching of basic cations such

as calcium (Ca) and increase the availability of potentially

phytotoxic trace metals such as manganese (Mn)

(D’Orangeville et al. 2014). Thus increased Mn and Ca

concentrations in plant tissues due to warming might be the

result of soil acidification in forest ecosystems (Sager and

Hutchinson 2006; Tian et al. 2016). Because foliar con-

centrations of Ca and Mn are highly correlated with bio-

chemical capacity for plant growth and photosynthesis

(Farquhar and Sharkey 1982; Fischer et al. 2015; Hochmal

et al. 2015), the observed changes of plant growth and Pn

by warming maybe the indirect outcome in changes of

foliar Ca and Mn concentrations.

Most data used in our analysis is located between lati-

tudes 30�–60� N and S (See Table S1). The biomass and Pn

of woody plants varied with warming magnitude and

experimental duration. In order to identify the response of

plants to climate warming at a global scale more clearly,

and to distinguish the role of photosynthetic parameters in

this process, multiple field experiments that span various

environmental gradients and duration are urgently needed.

Results in this and previous meta-analyses provide evi-

dence that warming generally increases terrestrial net pri-

mary productivity (Lin et al. 2010) at a forest ecosystem

scale and a global scale. The increased growth and net

photosynthesis rates by a forest ecosystem could be

attributed to the integrated changes of various parameters.

Our findings will be useful to predict the response of plant

functioning to global climate warming.
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