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Abstract Forests are among the most important carbon

sinks on earth. However, their complex structure and vast

areas preclude accurate estimation of forest carbon stocks.

Data sets from forest monitoring using advanced satellite

imagery are now used in international policy agreements.

Data sets enable tracking of emissions of CO2 into the

atmosphere caused by deforestation and other types of

land-use changes. The aim of this study is to determine the

capability of SPOT-HRG Satellite data to estimate above-

ground carbon stock in a district of Darabkola research and

training forest, Iran. Preprocessing to eliminate or reduce

geometric error and atmospheric error were performed on

the images. Using cluster sampling, 165 sample plots were

taken. Of 165 plots, 81 were in natural habitats, and 84

were in forest plantations. Following the collection of

ground data, biomass and carbon stocks were quantified for

the sample plots on a per hectare basis. Nonparametric

regression models such as support vector regression were

used for modeling purposes with different kernels includ-

ing linear, sigmoid, polynomial, and radial basis function.

The results showed that a third-degree polynomial was the

best model for the entire studied areas having an root mean

square error, bias and accuracy, respectively, of 38.41,

5.31, and 62.2; 42.77, 16.58, and 57.3% for the best

polynomial for natural forest; and 44.71, 2.31, and 64.3%

for afforestation. Overall, these results indicate that SPOT-

HRG satellite data and support vector machines are useful

for estimating aboveground carbon stock.

Keywords Aboveground carbon stock � Support vector
machine � SPOT-HRG � Darabkola

Introduction

The global carbon cycle is a major issue in global climate

change research. As the largest terrestrial ecosystem, the

forest ecosystem and carbon exchange within it have an

important influence on the global carbon balance. Esti-

mating aboveground forest biomass is thus the most

important step in measuring carbon stocks and fluxes from

forests and helps to determine the contribution of forests to

the global carbon cycle (Vicharnakorn et al. 2014). An

estimate of forest biomass also provides an important ref-

erence point for global carbon and carbon cycle research

(Dong et al. 2013; IPCC 2000).

The amount of carbon sequestered by a forest can be

inferred from its biomass accumulation because approxi-

mately 50% of forest dry biomass is carbon (Brown

1997a, b; Vicharnakorn et al. 2014). The bulk of biomass

assessments are performed on aboveground biomass
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(AGB) of trees since it generally represents the greatest

fraction of the total living biomass in a forest and does not

pose significant logistical problems during field measure-

ments (IPCC 2007; Vicharnakorn et al. 2014). Forest

inventories can be used to determine the spatiotemporal

distribution of aboveground forest carbon pools, but they

require substantial amounts of time and money and are

limited to five years (Goetz et al. 2009).

Satellite data make it possible to monitor and map

forests and to trace changes in forest biomass and car-

bon stock (Eckert 2012). A great deal of research has

been devoted to remote sensing-based estimations of

biomass, as interdependencies between remote sensing

data and biomass have been increasingly discovered for

empirical methods when compared to more complicated

approaches based on physical mechanism models (Liu

et al. 2015).

A common approach is to apply regression analyses to

the reflectance channels and spectral and textural indices

based on information from sampling sites (Steininger 2000;

Castillo-Santiago et al. 2010). Recently, nonparametric

algorithms have been explored to estimate forest attributes

because of advantages such as flexibility and ability to

describe nonlinear dependencies compared with parametric

algorithms (Sironen et al. 2010). One particularly useful

advantage of nonparametric algorithms is that they are free

from assumptions of any given probability distribution and

observations are assumed to be independent (Sironen et al.

2010). Machine-learning algorithms are groups of data-

mining and nonparametric-based algorithms that use

numerous independent variables in classification and

regression applications.

Support vector machines (SVMs) are a family of clas-

sification and regression techniques that use statistical

learning theory (Walton 2008). SVMs have emerged in

recent times as a popular technique for data mining, with a

great number of applications such as tissue classification

(Furey et al. 2000; Pavlidis et al. 2004), shape extraction

and classification (Cai et al. 2001; Du and Sun 2004),

protein recognition (Zien et al. 2000), bakery process data

(Rousu et al. 2003), hyperspectral data (Gualtieri and

Cromp 1998), crop classification (Perales et al. 2003), and

regression problems (Mukherjee et al. 1997; Pontil et al.

1998; Sivapragasam et al. 2001; Gao et al. 2003; Bray and

Han 2004).

Support vector regression (SVR) is the application of

SVM in regression, where the output is in real or contin-

uous numbers (Mustakim et al. 2016). The aim of this

study was to assess SPOT-HRG satellite data and SVM

model regression as tools for estimating aboveground tree

carbon stock in Darabkola forest in Mazandaran Province,

Iran.

Materials and methods

Study area

The study area was located in the Hyrcanian Forests,

District One of Darabkola’s forests, in northern Iran

(Fig. 1). Darabkola’s forest, with an area of about 2612 ha,

is a natural, nd mature forest with uneven-aged and dense

to semidense stands. These comprise mixed hardwood

types including Fagus dominant, mixed Fagus, Carpinus–

Fagus, Fagus–Carpinus, and Carpinus–Tilia. Elevations

range from 140 to 880 m, a.s.l., and the general slope in the

study area is northerly, with subtle differences in slope

aspects. Logging is performed by selecting individual trees

in an attempt to approximate natural silviculture. The

investigation was carried out in only one part of Dar-

abkola’s District One, about 1224 ha, where Persian beech

(Fagus orientalis) is a dominant species (Fagus dominant

type).

SPOT data (satellite for earth observation)

For this study, the images of the visible and near-infrared

(VNIR) and short wave infrared or middle infrared (SWIR)

subsystems were used from the SPOT HRG satellite data,

acquired on 14 July 2009. The VNIR imagery contains

three bands (green, red and near-infrared) with a spatial

resolution of 10 m. The SWIR imagery has a spatial res-

olution of 20 m.

Field inventory data

We demarcated sampling plots on areas supporting rela-

tively heterogeneous forest types. To reduce the effect of

topography on illumination, we randomly selected plots

with only a northern aspect. Plots were 30 9 30 m

(0.36 ha) (Fig. 1) distributed in a cluster with north–south

and east–west directions. The central position of each plot

was accurately registered using a high quality handheld

ground control point (STONEX SD7 model) device several

times to get an accurate position. In each plot, for all trees

with breast-height diameter greater than 7.5 cm, we

recorded tree species, diameter at breast height (DBH). For

some trees in each plot, we also measured height. The

volume per hectare in each plot in natural forest was cal-

culated based on tariff tables (Anonymous 2005) for the

Darabkola Forest and using Eq. (1) for a forest plantation.

BA ¼ d2
p
4
; ð1Þ

where BA is base area and d is diameter at breast height. To

determine the amount of biomass, densities of all species
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were measured in the laboratory, and then using Eq. (2) in

closed forests with wet weather, the amount of biomass in

the plot was calculated (FAO 1997).

B ¼ VOBWDBEF; ð2Þ

where, B is biomass, VOB is the volume of trees, WD is tree

density by species, BEF is a biomass expansion factor (FAO

1997). For calculating the amount of stored carbon, bio-

mass values were multiplied by conversion coefficients,

which are generally considered to be 50% (Eckert 2010;

Goetz et al. 2009; Gibbs et al. 2007).

Image processing

The visible and near-infrared (VNIR) and short wave

infrared or middle infrared (SWIR). Images were geomet-

rically orthorectified using a 10-m resolution digital eleva-

tion model (DEM) and 37 control points obtained by a

handheld GPS (3–5 m accuracy). The obtained root mean

square errors (RMSEs) of imagery were less than 0.59

pixels for VNIR and 0.5 pixel for SWIR images. Geometric

precision of the images was also verified using a road vector

layer and unused collected GPS control points to rectify the

accuracy of geometric rectification. Also, COST atmo-

spheric correction method was used in this research. Studies

have shown that the green and then red and near-infrared

bands have the greatest darkness and that the amount of the

SWIRv band is close to zero. With the atmospheric cor-

rection bands, atmospheric error rate was reduced.

Some commonly used vegetation indices (Table 1) for

quantifying the vegetation attributes and enhancing the

biophysical characteristics were generated using the VNIR

and SWIR imagery. Principal component analysis (PCA) is

normally performed in two standard ways: (1) using all

bands and (2) selecting bands having the highest correla-

tions. In this study, both methods were applied separately

for VNIR and SWIR bands.

Characteristics for each of the bands of green, red, near

infrared and SWIR using a gray level co-occurrence matrix

(GLCM) were used to assess the texture of the image.

GLCM is a tabulation of different constituents of pixel

values in an image (Dutta et al. 2012). In this study, to

assess the characteristics of texture matrix, occurrence and

co-occurrence were used. In total, 30 independent variables

and predictors were used in the analysis to predict the

forest attributes.

Fig. 1 Location of plots in

Darabkola’s forestry district,

Mazandaran Province, northern

Iran

Table 1 Vegetation indices used of this study

Vegetation index Formula References

DVI Ni � R Tucker (1979)

GDVI Ni � G Tucker (1979)

NDVI
Ni �Rð Þ
Ni þRð Þ

Rouse et al. (1973)

NDWI
R� SWIRð Þ

RþSWIRð Þ
Geo (1996)

NLI N2
i
�Rð Þ

N2
i
�Rð Þ

Goel and Qin (1994)

RDVI
Ni �Rð Þ
ffiffiffiffiffiffiffiffiffi

Ni þR
pð Þ

Roujean and Breon (1995)

DVI difference vegetation index, GDVI green difference vegetation

index, NDVI normalized difference vegetation index, NDWI normalized

difference WASTER index, NLI nonlinear index, RDVI renormalized

difference vegetation index, Ni near infrared, R red band, G green

band, SWIR shortwave infrared
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Extraction of spectral values

In remote sensing, each pixel of the digital images has a

numerical value that reflects the spectral behavior of the

corresponding phenomena on the Earth’s surface. In this

study, postproduction of synthetic bands and measurement

of the characteristics of the samples through field operation

were performed, and the spectral values corresponding to

plots of the original and synthetic bands were extracted.

Then the obtained values and the corresponding spectral

values of the corresponding pixels in the satellite data as

well as the statistical relations were examined.

Modeling

In this study, an SVM was for modeling. An SVM is a

nonlinear generalization of the generalized portrait algo-

rithm developed by Vapnik (1995). Generally, SVMs focus

on the boundary between classes and map the input space

created by independent variables using a nonlinear trans-

formation according to a kernel function. Linear, polyno-

mial, radial basis function (RBF), and sigmoid are the four

most commonly used kernel types. RBF is the most popular

kernel used in SVMs (Cortez andMorsis 2007; Durbha et al.

2007). The simplicity of the method is one of its main

advantages over other data mining techniques, such as arti-

ficial neural networks (ANNs). Thus, only a few parameters

need to be adjusted by the users to optimize the model.

A prerequisite for SVM to achieve better results is to

determine the parameters that play a key role in achieving

high accuracy and provide better performance (Wang et al.

2009). The specified grid search using v-fold cross-vali-

dation (Durbha et al. 2007) is the most commonly used

method to find appropriate values for the parameters, i.e.,

epsilon (e) and capacity (C) with fixed a gamma that would

produce high-accuracy results. A brief description of the

proposed methods was summarized by Durbha et al.

(2007). In this study, four different cores, including linear,

polynomial, circular and radial basis function were used.

Equation (3) was used to calculate the scale where n is

equal to the number of variables (Hsu et al. 2010).

c ¼ 1=n; : ð3Þ

To choose the best e and C values, we used the grid

search method (Hsu et al. 2010), wherein C values ranged

from 1 to 50, equal to the range of input variables (Mattera

and Haykin 1999), and e values from 0.1 to 0.5.

Model validation

The validity of the model was determined in a number of

ways. Using 30%of samples, models were selected according

to the significance of RMSE (in reverse order) and the t test

for bias (based on the t_Student). RMSE is the arithmetic

mean of square errors, which was applied to the regression

models to determine the accuracy of the estimate (Eq. 4).

Rm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 C

i
�Ci

� �2

n

v

u

u

u

t

; ð4Þ

where Rm is the root mean square error, Ĉi is the carbon

estimate based on the regression model for each plot of

sample, Ci is the carbon measured in the control plots on

the ground, and n is the number of control samples. After

the model was obtained, the precision (Pr) of the calcula-

tion prediction needed to be examined using Eq. (5) (Li

2010; Dong et al. 2013).

Pr ¼
Pn

i¼1 1� abs Ĉi�Ci

Ci

� �

� 100
h i

n
: ð5Þ

Bias (Bi, disambiguation) or systematic error is a way of

estimating regression models used to determine authentic-

ity. Biases for all models of the study were calculated using

Eq. (6).

Bi ¼
Pn

i¼1 Ĉi � Ci

� �

n
: ð6Þ

Student’s t test was used to assess the significance of the

bias and the significance was analyzed by applying Eq. (7)

(Ranta et al. 1991).

t ¼ Bi

SD= ffiffiffi

n
p ; ð7Þ

where SD is the standard deviation of the residuals (Ĉi–Ci).

Results

Statistical analysis of field data and the extracted

spectral bands

Of the 165 plots, 117 were used for modeling, while 48

were utilized for validation. Overall, 81 plots were in

natural forest areas and 84 plots in afforestation. Average

carbon storage was 206 tons per hectare, which was greater

than the average carbon stored in afforestation (151 tons

per hectare) and less than in natural forest at 264 tons of

carbon per hectare. The maximum carbon stored in natural

forests was 495.88 tons per ha, whereas the minimum of

55.8 tons per ha was estimated for afforested stands

(Table 2).

The best value obtained for e was equal to 0.1; however,

the value of the parameter C fluctuated from 13 to 50.

Excluding the linear model, the value of gamma remained
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unchanged for all models according to the equation used in

the calculation. The parameters for prediction and model-

ing kernels in each run were used to obtain the best results.

The specified grid search for different models in the entire

study area, including natural forest and afforestation area,

are given in Table 3.

The results of SVR implementations determined by

cross validation for carbon stock estimations are given in

Table 4. The results of the carbon stock estimation for the

entire region showed a lower relative RMSE and bias using

a three-degree polynomial kernel type.

In carbon stock estimation using SVR in afforesta-

tion, the best results based on relative RMSE and bias

were obtained using a polynomial kernel type. The

validation results showed that the three-degree polyno-

mial model in the afforestation with the remaining

67.05 t/ha root mean square error and estimation

accuracy 64.3% is the best model for predicting carbon

stocks in this area (Table 5).

Evaluation of the best model in the natural forest

showed that the third degree polynomial had the lowest

root mean square error (100.81 t/ha) among the four

models, accuracy of the best forecast model for the forest

area was 57.37, lower than the accuracy calculated for the

best selected models in the entire area and the forest range

(Table 5).

The correlation between the number of artificial bands,

PCA, texture analysis and indexes are shown in Table 6.

Results showed the most of the bands were negatively

correlated.

Using the best model forecast map, the distribution of

carbon in Table 6 in the region was prepared to show the

spatial distribution of these variables in the region. This

map can be used to identify areas with high carbon storage

and apply the necessary measures. Areas marked in red

have the lowest amount of carbon stored in the study area,

and dark green colors represent areas with high carbon

stocks in the entire area of the study (Fig. 2).

The average amount of carbon stored related to classes

IV and V are located mostly within natural forest and also

points to the low carbon often seen in the afforestation

area.

Discussion

Forests play an important role in global change on Earth.

Deforestation and forest degradation can result in carbon

emission to the atmosphere, thus affecting global climate

and environmental change (Hansen et al. 2015). Current

concerns for global change and ecosystem functioning

require accurate biomass estimation and examination of its

dynamics (Zhou and Hemstrom 2009). Carbon sequestra-

tion potential in terms of plant species and in siting man-

agement practices, is different. Remote sensing data

provides nondestructive and continuous detection infor-

mation on the biomass of forest ecosystem.

In this study for estimating carbon stock using SPOT-

HRG satellite data, correlations between carbon stock

reflectance in SPOT-HRG spectral bands and forest

Table 2 Specifications and a

descriptive assessment model

for aboveground carbon stock

Parameters Natural forest Afforestation Entire region

Validation Training Validation Training Validation Training

Number 22 59 26 58 48 117

Average (t/ha) 235 264 149 151 189 206

Standard deviation 76 90 49 55 76 91

Maximum 375 495 254 254 375 495

Minimum 123 99 78 55 78 55

Table 3 SVM analysis results to determine the best parameters using the grid search for carbon stocks characteristic for the entire region, natural

forests, and afforestation

Model Entire region Natural forests Afforestation

Gamma Capacity Epsilon Gamma Capacity Epsilon Gamma Capacity Epsilon

– 19 0.1 – 15 0.1 – 47 0.1

Linear 0.016 13 0.1 0.016 50 0.1 0.016 50 0.1

Polynomial (third degree) 0.016 27 0.1 0.016 50 0.1 0.016 50 0.1

RBF 0.016 50 0.1 0.016 50 0.1 0.016 50 0.1

RBF is radial basis function
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attribute were low and negative. These negative correlation

values for stand volume and biomass are in line with previous

studies (Shataee et al. 2012). This negative value means that

with increasing age of stands and number of canopy stories,

the amount of shadow increases, leading to a reduction of the

overall spectral response. An important point is the negative

correlation between the bands and the indicators obtained

from SPOT-HRG with the carbon indicator, implying that as

carbon storage increases indicator values go down. This

negative value in the natural forest means that with increasing

age of stands and number of canopies, the amount of shadow

increases, leading to a reduction in the overall spectral

response. Thus, spectral reflection in the infrared section is

lowered, and the increase in biomass leads to reduced spectral

reflection. Naturally, the carbon that has accumulated over

time reduces the reflection, allowing the indicator to appear in

satellite images. A wide range of spectral indicators, along

with reflection values of different bands, were considered.

The results indicated that the red band and the RVI have the

highest correlation with biomass, R2 = 0.48 and R2 = 0.58,

respectively.

The results showed that the average carbon stored in

natural forest is higher than in the afforestation, which has

young trees (approximately 23 years) with low diameter,

Table 4 The results validate the various models in the entire region and afforestation area

Model Entire region Afforestation area

RMSE RMSE

(%)

Bias Bias

(%)

P

(%)

t RMSE RMSE (%) Bias Bias

(%)

P

(%)

t

Linear 126.74 66.97 42 22.20 32.02 3.19 133.11 88.77 68.05 45.38 35.01 6.97

Polynomial (third degree) 72.69 38.41 10.04 5.31 62.2 0.91 67.05 44.71 3.47 2.31 64.3 0.36

RBF 93.24 49.27 19.36 10.23 56.01 1.76 66.69 44.72 29.19 19.46 56.54 2.99

Sigmoid 102.41 54.11 23.03 12.17 48.48 2.09 73.23 48.84 29.71 19.81 53.36 3.04

RMSE is root mean square error, Bias is disambiguation. RBF is radial basis function

Table 5 The results validate

the various models in the natural

forest

Model RMSE RMSE (%) Bias Bias(%) P (%) t

Linear 151.47 64.27 76.71 32.55 36.68 4.69

Polynomial (degree 3) 100.81 42.77 39.09 16.58 57.37 2.39

RBF 137.04 58.14 49.09 20.83 45.51 3.00

Sigmoid 112.47 47.72 43.47 18.44 55.01 2.66

RMSE is root mean square error, Bias is disambiguation, RBF is radial basis function

Table 6 Correlation between artificial and carbon bands in the entire

region

Bands Correlation Bands Correlation

M -0.442 NWVI -0.377

PCAa -0.423 MSI -0.371

PCAb -0.422 Ratio -0.354

DVI -0.405 SR -0.354

NLI -0.393 MSR -0.351

RDVI -0.385 SVR -0.351

GDVI -0.379 NDVI -0.347

PCA principal component analysis, DVI difference vegetation index,

M Mean Near infrared, NLI nonlinear index, RDVI renormalized dif-

ference vegetation index, GDVI green difference vegetation index, MSI

moisture stress index, Ratio ratio vegetation index, SR simple ratio,

MSR modified simple ratio, NDVI normalized difference vegetation

index; SVR shortwave infrared to visible ratio, NLI Non-Linear Index,

NWVI normalized difference WASTER index
Fig. 2 Carbon distribution map of the study
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thus lower volume and lower carbon stock than in older

trees.

In this study derivatives of the NIR band and NIRs,

including the NDVI index, are highly correlated with above

ground carbon stock, similar to those of Gao et al. (2000),

Todd et al. (1998) and Tucker (1979), who showed that the

NDVI index is not useful for forest areas where vegetation

is dense.

With respect to statistical applications, textural analyses

are very useful since they provide much more information

compared with spectral characteristics, especially for cases

where large variations are caused in the information spec-

trum by a heterogeneous stand forest (Wulder et al. 1998).

Texture measures are very sensitive to the spectral reflec-

tance of forest canopy. Observations by Eckert (2012) con-

firmed that the more homogeneous a forest canopy structure

is, the stronger the correlation between biomass and textural

parameters; the issue is more relevant when high-resolution

images are used (Tuominen and Pekkarinen 2005). Kajisa

et al. (2009) used generalized linear model (GLM) to merge

the data obtained from field statistics and remote sensing data

to present a model for estimating biomass in the forest.

Among other factors, this study also uses textural charac-

teristics extracted from satellite images, which showed that

the highest average was obtained for the infrared band, in

line with the findings of Sohrabi et al. (2010), who compared

various bands for estimating the stored volume in each

segment and reported that the infrared band was best.

In previous studies, linear regression (Mitchard et al.

2009; Chen et al. 2009) and machine learning such as

artificial neural network (ANNs) (Wijaya et al. 2010;

Amini and Sumantyo 2009) were used to estimate above-

ground biomass (AGB). The present study for modeling

used support vector machine (SVM) regression. SVM is an

important statistical learning algorithm to estimate forest

parameters using remote sensing data (Shataee et al. 2012).

Its advantage is its ability to use less training sample data

to produce relatively higher accuracy for classification or

estimation than other approaches.

On the basis of our results, the third-degree polynomial

model was the best model for the entire study area, natural

forest and afforestation with RMSE = 77.69 t/ha, 100.81

t/ha and 67.05 t/ha, respectively, to estimate carbon stocks.

The results of this study showed that SPOT-HRG satellite

data can be useful in estimating carbon stocks.
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