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Abstract The status of woody plants in dry-land systems

is a fundamental determinant of key ecosystem processes.

Monitoring of this status plays an important role in

understanding the dynamics of woody plants in arid and

semi-arid ecosystems. The present study determined the

dynamism of the Zagros forests in Iran using Remote

Sensing and Geographic Information System techniques

and statistical science. The results show that the density of

trees varied from 10 to 53 % according to the physio-

graphic and climatic conditions of semi-arid regions. The

best and lowest correlation between vegetation indices and

forest density were obtained for the global environmental

monitoring index (GEMI; R2 = 0.94) and soil adjust veg-

etation index (R2 = 0.81), respectively. GEMI is used to

monitor land use changes over a 10-year period. Results

show that 2720 ha2 of forest have been destroyed by

human interference and tillage on steep slopes during this

period which also resulted in the loss of the fertile soil

layer. GEMI determined the areas with a biomass of trees

and could normally separate border regions with low bio-

mass density of trees from regions without canopy cover.

The results revealed that assessment of forest and vegeta-

tion cover in arid and semi-arid arduous forest regions

using satellite digital numbers and ordinary sampling is

subject to uncertainty. A stratified grouping procedure

should be established to increase the accuracy of

assessment.
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Introduction

Arid and semi-arid ecosystems are those in which the ratio

of total annual precipitation to potential evapotranspiration

is 0.05–0.50; these areas cover about 30 % (about 4 billion

ha2) of global dry land (Beadle 1959; Bailey 1979; Paruelo

et al. 2000; Diouf and Lambin 2001; Lal 2004; Austin and

Vivanco 2006; Heisler-White et al. 2008; Rotenberg and

Yakir 2010; Walker 2012; Riha et al. 2014; Letnic et al.

2015). Vegetation in dry-land ecosystems support global

biodiversity, carbon sequestration, and the majority of the

world’s livestock. The woody plant mosaic in dry-land

ecosystems is a fundamental determinant of key ecosystem

processes (e.g., evapotranspiration, fire disturbance) and

associated abiotic patterns (Breshears 2006).

Monitoring long-term changes in an ecosystem over

large spatial extents is critical for understanding the

dynamics of woody plants in arid and semi-arid ecosystems

and their responses to natural disturbance and rangeland

management (Jian et al. 2012; Saranya et al. 2014). Mon-

itoring long-term tree cover dynamics in semi-arid wood-

lands requires repeated retrieval of the tree canopy cover
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area with relatively high accuracy (Hostert et al. 2003;

Cohen et al. 2003; Jian et al. 2012).

Field measurement of the tree canopy cover is expen-

sive, labor-intensive, and often limited in temporal scope

and spatial scale. Remote sensing (RS) has been demon-

strated to be a suitable alternative for quantifying bio-

physical variables such as leaf area index and vegetation

cover (Cohen et al. 2003; Tang et al. 2014; Béland et al.

2014). Tree canopy cover in dry land ecosystems can be

confounded by shrub cover and can contribute considerably

to leaf area and foliar biomass. Quantifying tree canopy

cover in dry land ecosystems using RS data can be par-

ticularly challenging in areas with low tree cover and

density, short tree stature, and coexistence of trees and

shrubs at fine spatial scales (Ko et al. 2009). In arid and

semi-arid regions, changes in woody plant cover have

dramatic effects on ecosystems (Breshears 2006; Homet-

Gutiérrez 2015). RS has been used to provide spatially

explicit information about the heterogeneity of woody

plant distribution over extensive dry land areas (Walker

et al. 2012; Ferreira et al. 2015).

Landsat archival imagery (LAI) can be effective for

monitoring woodland expansion and contraction in semi-

arid landscapes over time (Zhu et al. 2012; Jian et al. 2012;

Griffiths et al. 2014; Schmidt et al. 2015). Studies on dif-

ferent biomes, including cropland, plantations, and forests

(conifer and deciduous stands) have successfully linked

LAI measurements on the ground using direct or indirect

techniques to RS data (Chen and Black 1991; Chen and

Cihlar 1996; Colombo et al. 2003; Brantley et al. 2011).

About 300 vegetation indices have been published; how-

ever, only a few of those based on biophysics or on specific

methods have been adopted (Thenkabail et al. 2016). These

studies correlate spectral vegetation indices (SVIs) from

different types of satellite data (Adina et al. 2014). The

most popular of these indices are the normalized difference

vegetation index (NDVI), simple ratio (SR) index, and soil-

adjusted vegetation index (SAVI).

The relationship between LAI and different combina-

tions of SVIs has been analyzed in a variety of studies

(Adina et al. 2014; Le Maire et al. 2011). Besides linear,

quadratic polynomial, and cubic polynomial links, most

studies have shown logarithmic relationships (Tucker

1979; Myneni et al. 1997; Chen and Cihlar 1996; Datt

1999; Mutanga and Skidmore 2004; Le Maire et al. 2011;

Potithep et al. 2013). Time series analyses provide pow-

erful alternatives with their ability to separate seasonal

variation from long-term trends (Sulla-Menashe et al.

2014; Lanorte et al. 2014; Starr et al. 2015; Ahmed et al.

2015). Trend analysis has been frequently applied to

characterize land surface phenology change from coarse-

scale imagery (Slayback et al. 2003; Heumann et al. 2007;

Bradley and Mustard 2008).

Our study tested instrumental and technological solu-

tions that efficiently and accurately describe desertification

dynamics through creation of vegetation degradation maps

for rational management. Multispectral Landsat images and

calculation of vegetation indices were chosen to accom-

modate the large area of the study site in the Zagros forest

of Lorestan to decrease the cost of processing the tech-

nology. Field studies were carried out at single research

sites using optimal vegetation index to extract results for

desertification of the region. In past decades, deterioration

of vegetation and land degradation in arid and semi-arid

regions has forced the mangers to use new and rapid

technology to extract vegetation maps on local and regional

levels for monitoring and assessment. This ability increases

understanding of the influences of humans and climate

change on land degradation. It is crucial to calibrate and

determine the best indices to obtain reliable results about

the status of the vegetation.

Materials and methods

Study area

The study area is located in western Iran at 48�470–50�30
longitude and 32�440–33�350 latitude. This includes part of
the central Zagros forests with an area of 32,231 ha

(Fig. 1). Geomorphologic classification of area is moun-

tainous and its climate is semi-humid cold. The species in

order of frequency are Quercus brantii, Daphne mucro-

nata, Amygdalus scoparia, Acer monspessulanum, Amyg-

dalus lycioides, Cerasus brachypetala, Crataegus pontica,

Amygdalus orientalis, Pistacia mutica, and Pistacia khin-

juk (Henareh Khalyani et al. 2012; Ghanbari and Sefidi

2012).

Methodology

Our study improved the compatibility of the vegetation

index (Table 1) with trends in the environment, climate,

and cover change over a 10-year period from 2002 to

2013. Satellite imagery for the years 2002 (Landsat 5,

TM), 2009 (Landsat 7, ETM?), and 2013 (Landsat 7

ETM?) with a spatial resolution of 30 m2 were used

(Huang et al. 2009; Brandt et al. 2012). All images were

recorded in the month of July to increase accuracy by

comparison of similar time frames. Two topographic map

sheets were used to identify and visit the area and as

ground truth maps. Topographic map sheets were applied

to identify ground control points to allow geometric cor-

rection of the satellite images and evaluate the accuracy

of the geometric correction.
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Randomized systematic sampling was used in this study.

The distance between the UTM grid lines was 1 km. The

line transect method was used with a starting point for each

transect at the cross point at the 1 km 9 1 km grid lines for

the 1:25,000 scale maps with forest coverage. Along each

transect, every single tree or shrub species having crowns

that intersect the line transect were listed by scientific

name. The understory species at each transect were

recorded as an index of human influence. The length of

each transect depended on the density of the forest canopy.

For canopy cover of\10, between 10 and 50, and[50 %,

the cover transect length was 100, 200, and 400 m,

respectively. The data was managed in the form of a

database that was built, sorted, and filtered using Microsoft

Access software. Descriptive statistical parameters such as

the total number of each species, means, extremes, fre-

quency histograms were helpful for analysis of the niches

of the plants.

Because the images sent from the satellite were received

at different moments, it is necessary to compare the veg-

etation indices by converting the digital number (DN) of

the satellite images to spectral reflectance (Coppin et al.

2004; Macleod and Congalton 1998; Singh 1989). Atmo-

sphere conditions (humidity, height of sun, azimuth of sun,

accurate timing of images) from the Scanex image pro-

cessing software were used to account for the effect of

Fig. 1 Location of Zagros forests and study area in Iran

Table 1 Spectral vegetation indices

Equations Vegetation index (VI) Authors

NDVI ¼ NIR�RED
NIRþRED

Normalized VI Rouse (1974)

IPVI ¼ NIR
NIRþRED

Infrared percentage VI Crippen (1990)

SAVI ¼ NIR�RED
NIRþREDþL

� ð1þ LÞ Soil adjusted VI Huete (1988)

MSAVI2 ¼ NIR�RED
NIRþREDþL

� ð1þ LÞ

L ¼ 1� 2�NIRþ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�NIRþ1Þ2�8�ðNIR�REDÞ
p

2

Modified soil adjusted VI Qi et al. (1994)

GEMI ¼ E � 1� 0:25� Eð Þ � ðRED�0:125
1�RED

Þ

E ¼ 2� NIR2�RED2ð Þþ15�NIRþ0:5�RED

NIRþREDþ0:5 � ð1þ LÞ

Global environmental monitoring index Pinty and Verstraete (1992)

EVI ¼ NIR�RED
NIRþC1�RED�C2�BLUEþL

n o

� ð1þ LÞ Enhanced VI Rouse (1974)
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atmosphere on surface reflectance. It is crucial to remove

the effects of atmosphere, but is not possible to assess it

precisely without time data on atmospheric conditions in

countries such as Iran. The following algorithm was used to

convert the DN to spectral reflectance (Richards 1993;

Lillesand and Kiefer 1994; Roni 2013):

L ¼ Lmin þ ðLmax � LminÞ=1023� DN ð1Þ

where L is spectral radiance, Lmin is 1.238 (spectral radi-

ance of DN 1), Lmax is 15.600 (spectral radiance of DN

255) and:

qp ¼
p� Lk � d2

ESUNk � cos hs
ð2Þ

where qp is the unitless planetary reflectance, Lk is the

spectral radiance at the sensor aperture, d is the distance

from the earth to the sun in astronomical units from a

nautical handbook, ESUNk is the ALI solar irradiance, and

hs is the solar zenith angle in degrees.The following for-

mula was proposed for field research for the average per-

centage of vegetation cover in transects (Franklin 2001):

F ¼ 78:5T
P

CD

L
¼

X

CD ð3Þ

where CD is the perpendicular diameter of the canopy

cover of trees at the test points, TRCD is total CD located

on the transects, L is the length of the transect, and F is the

density of the tree canopy on the transects. Relation 3 was

used to calculate the biomass density of the trees at the test

points on the transects.

Geographical coordinates were recorded by GPS in the

statistical test and arc GIS 10.2 software was used to

convert the geographical coordinates of the test points to

vector points using Scanex. The components of each vector

point in the vegetation indices were extracted separately.

The average values of each vegetation indices of test points

and RMSE for the transects were calculated to select the

appropriate vegetation index regression formula, error

coefficient, correlation coefficients of the total biomass

density of the trees of all test points located in the exper-

imental transects.

Results

The total biomass density of the trees (percentage) at all

test points for the 7 transects are shown in Table 2 and the

average numerical values of each vegetation index are

shown in Table 3.

Correlation diagrams for each indicator versus the bio-

mass density of the trees are shown in Fig. 2. These

regression diagrams were obtained using the data from

more than 135 test points along the seven transects to

calculate the numerical values of each vegetation index

using the average values at select test points on each

transect. The result shows the highest correlation coeffi-

cient, description coefficient, and the lowest RMSE for

GEMI versus the density of the forest cover obtained from

field calculation (Table 4).

A small boundary was chosen as the control area. Aerial

photographs, Google Earth software, and the results of the

field study were visually interpreted and the forest area was

separated from bare land and imported into the software.

The area of the control step was 577.3 ha2 (Table 5).

A map of the control area was created for the indices

using Scanex to determine the relation between the accu-

racy of the forest area and the indices (Fig. 3). A visual

comparison of the maps (forest vegetation indices) results

in percentages of\30 % for bare land, 30–75 % for forest,

and 75–100 % for irrigated area. The result shows that

Table 2 Total biomass density of trees (%) at all test points on 7

transects

Transect L TRCD Density of trees (%)

1 100 67.9 53.3015

2 200 88 34.54

3 200 107.2 42.076

4 100 51.6 40.506

5 400 89.6 17.584

6 200 28.02 10.99785

7 200 97.05 38.09213

Table 3 Average numerical

value of each vegetation index

at all test points on 7 transects

Transects EVI GEMI IPVI MSAVI2 NDVI SAVI (L = 0.5) SAVI (L = 1)

1 0.192 0.459 0.605 0.144 0.211 0.158 0.14

2 0.121 0.403 0.571 0.087 0.143 0.099 0.086

3 0.147 0.421 0.583 0.106 0.166 0.118 0.103

4 0.165 0.438 0.598 0.116 0.197 0.132 0.113

5 0.1 0.351 0.554 0.08 0.108 0.087 0.079

6 0.099 0.342 0.551 0.076 0.101 0.082 0.075

7 0.167 0.438 0.594 0.12 0.188 0.134 0.117
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GEMI was more accurate than the other indices used to

calculate the forest area of each indicator by visual inter-

pretation (Table 6).

GEMI provided the most appropriate correlation for

forest area to detect changes in forest area over a 10-period

(Table 7). Satellite images for 2002 and 2013 from ETM?

(Landsat 7) were used to extract the vegetation indices for

each image (Fig. 4).

Discussion and conclusion

The results show that GEMI was the best choice for

detecting changes in the study area and other areas (Torahi

and Rai 2011; Jian et al. 2012; Henareh Khalyani et al.

2012; Adina et al. 2014). GEMI (R2 = 0.94) was chosen

because it produced the greatest accuracy and ability to

separate the border of the canopy cover of trees. It was

Fig. 2 Correlation diagrams for each indicator versus biomass density of trees

Table 4 Results of linear

regression analysis and RMSE
Vegetation

indices

Vegetation model Description coefficient

(R2)

RMSE Correlation

coefficient

EVI Y = 378.21X - 196.672 0.85 0.28 0.92

GEMI Y = 316.28X - 94.991 0.94 0.02 0.97

IPVi Y = 643.57X - 339.03 0.88 0.04 0.94

MSAVI2 Y = 536.76X - 22.029 0.81 0.05 0.9

NDVI Y = 318.76X - 16.858 0.88 0.04 0.94

SAVI (L = 0.5) Y = 546.11X - 23.558 0.84 0.043 0.92

SAVI (L = 1) Y = 486.3X - 22.401 0.81 0.04 0.9

The numerical value (Y) for the vegetation indices with canopies of 1, 5, 10, 30, 50, 75 and 100 % in

Table 5
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used to create a formula for calculating the biomass density

of trees based on the geo-ecology of the study region.

GEMI has been empirically shown to be insensitive to

atmospheric influences, but other drawbacks to the index

have not been uncovered. The value from GEMI correlated

highly with the field survey and was able to determine the

area of the biomass of trees. It can normally divide border

regions with the low biomass density of trees from regions

without canopy cover.

SAVI (R2 = 0.81) for L = 1 showed the lowest corre-

lation related to its maximum value of coefficient L as

applied to arid land; this was a result of the minimizing

effects of soil spectral reflectance (Colombo et al. 2003).

NDVI was acceptable in most studies with relatively good

coverage (Peters et al. 2002) and EVI was good for forest

area (Chaban 2004; Galvao et al. 2011), but had a lower

correlation in the study area (R2 = 0.88) than GEMI. This

could be the result of the higher impact factor in the near-

infrared band in GEMI (the band in which vegetation has

high reflectance).

Semi-arid woodland areas (such as the oak forest of

western Iran) showed a diversity of ground cover along the

transects together with GPS accuracy. It can produce high

uncertainty when relying on the statistical analysis of a

single pixel data. The averages of the records in each

transect were used to cover spatial variation and the results

revealed better correlation in some area, such as Zagros

forest, in arid and semi-arid areas.

Fig. 3 Cover classes based on

indices versus visual

interpretation

Table 5 Vegetation indices for different canopies

Indices 1 % 5 % 10 % 30 % 50 % 75 % 100 %

NDVI 0.056 0.068 0.084 0.147 0.21 0.288 0.367

GEMI 0.303 0.316 0.332 0.395 0.459 0.537 0.616

IPVI 0.528 0.534 0.542 0.573 0.604 0.643 0.682

SAVI_0.5 0.049 0.056 0.066 0.108 0.149 0.2 0.252

MSAVI2 0.043 0.05 0.06 0.097 0.134 0.181 0.227

SAVI_1 0.043 0.05 0.059 0.095 0.13 0.174 0.219

EVI 0.055 0.065 0.078 0.131 0.184 0.25 0.316
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The accuracy of indices depends on field studies and

expertise for classification for image analysis. The results

showed that the RMSE error rate in this study was very

small and field studies showed high accuracy. The biomass

density of trees as assessed for regions with similar geo-

ecological conditions for the study region using the pro-

posed formulas. As seen in thematic maps covering

11 years, the total area of the forest (with a density of

30–75 % of biomass) has decreased by 2720 ha2

(16.91 %). It can concluded that damaging agricultural

methods near forests (Pourhashemi et al. 2004), inappro-

priate use of trees (Henareh Khalyani et al. 2014;

Sadeghravesh et al. 2015), unsustainable exploitation of

water resources especially groundwater resources (Ze-

htabian et al. 2010; Mashayekhi et al. 2010; Shirmoham-

madi et al. 2013; Moosavi et al. 2013; Rahmati et al. 2016),

misplaced structures (Zehtabian et al. 2014), and depletion

of crops had increased desertification in the study region.
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