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Abstract Anatomical characteristics have been proven

useful for extracting climatic signals. To examine the cli-

matic signals recorded by tree-ring cell features in the

Changbai Mountains, we measured cell number and cell

lumen diameter, in addition to ring widths, of Korean pine

(Pinus koraiensis) tree rings at sites of varied elevation,

and we developed chronologies of cell number (CN), mean

lumen diameter (MLD), maximum lumen diameter

(MAXLD) and tree-ring width (TRW). The chronologies

were correlated with climatic factors monthly mean tem-

perature and the sum of precipitation. As shown by our

analysis, the cell parameter chronologies were suitable for

dendroclimatology studies. CN and TRW shared relatively

similar climatic signals which differed from MLD and

MAXLD, and growth-climate relationships were elevation-

dependent, as shown by the following findings: (1) at each

elevation, MLD and MAXLD recorded different monthly

climatic signals from those recorded by TRW for the same

climatic factors; and (2) MLD and MAXLD recorded cli-

matic factors that were absent from TRW at lower and

middle elevations. Cell lumen diameter proved to be an

effective archive for improving the climate reconstruction

for this study area.

Keywords Climate variability � Cell features � Pinus
koraiensis � Dendroclimatology � Growth-climate

relationships

Introduction

Tree rings are known to be a useful archive for studying

climate variability (Esper et al. 2002; Cook et al. 2004).

The dendroclimatology method uses tree-ring variables to

examine radial growth-climate relationships by correlation

analysis (Fritts 1974; Gagen et al. 2006; Lebourgeois et al.

2012). Ring width, because it easily can be measured and

cross-dated, has widely been used as a climate proxy since

tree-ring dendrochronology principles and methods were

first established (Fritts 1976). Tree-ring width is a measure

of the sum of a growing season’s cell division and cell

enlargement. The width of rings is primarily a function of

three basic growth processes, viz. cell division, cell

enlargement and cell differentiation (Vaganov et al. 2006).

Thus, anatomical features such as cell number, cell size and

cell wall thickness may carry higher-resolution climatic

information than ring widths (Kirdyanov et al. 2003;

Panyushkina et al. 2003) and therefore are of importance in

examining growth-climate relationships.
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The use of cell features in dendroclimatology is strongly

related to the development of the applicable acquisition

methods (Fonti et al. 2010). Initially, researchers used field

monitoring to record changes in cell features and climate

over a given period to analyze the relationships between

cell features and climate (Knigge and Schulz 1961; Fritts

1966; Denne 1974; Ford et al. 1978; Antonova and Stasova

1993; Camarero et al. 1998). With the development of

computerized image-analysis systems, more tree growth-

climate relationships were investigated at the cellular scale

(Yasue et al. 2000; Wang et al. 2002; Kirdyanov et al.

2003; Eilmann et al. 2006, 2009; Drew et al. 2012; Olano

et al. 2012; Noval et al. 2013). In China, some studies

attempted to examine the climatic information carried by

the cell features of tree rings (Li et al. 2008; Wang et al.

2011; Xu et al. 2015). All of these studies reported that the

cell feature variables carried more climatic information

than did ring widths. Dendroclimatology studies using cell

anatomical characteristics are in their initial developmental

stages in China but have bright prospects.

The Changbai Mountains, a region in northeastern China

where climate warming became obvious early on with a

warming rate of about 0.3 �C (10a)-1 (Guo et al. 2005;

Dong and Wu 2007; Zhao et al. 2009), are of importance in

climate reconstructions for China. They include a large

area of undisturbed temperate old-growth forests (Shao and

Zhao 1998). Korean pine (Pinus koraiensis) is the main

coniferous species in the Changbai Mountains and many

tree-ring studies have reported ring widths of P. koraiensis

for this area (Shao and Wu 1997; Zhu et al. 2009; Gao et al.

2011; Yu et al. 2011; Wang et al. 2013). These studies

concluded that temperature is the main climatic factor

limiting radial growth. One study based on cell feature

variables found that cell size carried a more strongly cor-

related precipitation signal than ring-width (Wang et al.

2011). Additionally, elevation is one of the main factors to

affect tree radial growth, and many dendroclimatology

studies have reported that tree growth-climate relationships

were affected by or strongly dependent on elevation

(Brookhouse and Bi 2009; Zhang et al. 2012). The

Changbai Mountains are characterized by vertical vegeta-

tion zonation (Editorial Committee for Forestry of Jilin

1988; Hao et al. 2007). Previous studies found that growth-

climate relationships were elevation dependent for Larix

olgensis (Yu et al. 2005; Chen et al. 2011) and Picea

jezoensis (Yu et al. 2006), the other two dominant conif-

erous species in the Changbai Mountains. Korean pine

might also have an elevation-dependent growth-climate

relationship.

Therefore, we examined Korean pine tree-ring samples

from various elevations of the Changbai Mountains to (1)

identify the consistent climatic signals contained in cell

parameter chronologies and (2) quantify the effect of

elevation on tree-growth relationships indicated by cell

parameters.

Materials and methods

Study area and sampling sites

Our study area was on the northern slope of Changbai

Mountain National Nature Reserve in northeastern China,

in Jilin Province (42� to 42�450E, 127�300 to 128�300N).
The area attains its highest elevation of 2189 m above sea

level (asl) at Tianchi Lake (Fig. 1). This area has not been

extensively affected by anthropogenic activity, because

Changbai Mountain did not become a tourist attraction

until in the 1980s and was then designated a protected

nature reserve (Yu et al. 2012). This area is characterized

by a temperate continental monsoon climate (Editorial

Committee for Forestry of Jilin 1988). Based on the aver-

age meteorological data from the Donggang and Erdao

stations (data from the National Meteorological Informa-

tion Center of China, Fig. 1), the mean annual temperature

was 3.7 �C, with a mean temperature of 15.6 �C in January

and 20.1 �C in July during the period 1971–2000 (Fig. 2).

Mean annual precipitation was 811 mm, and mainly

occurred from May to September. The vegetation of the

area showed typical vertical zonation. Korean pine and

broad-leaved mixed forest extended from 500 to 1100 m

asl. A spruce-fir forest continued from 1100 to 1800 m asl.

Soils in the coniferous forest zone are mountainous brown

forest soil (Editorial Committee for Forestry of Jilin 1988).

Tree-ring cores were sampled from three sites desig-

nated Site 1, Site 2 and Site 3 (Fig. 1) at three elevations

(Table 1). Site 1 and Site 2 were located at the lower and

upper elevational range of distribution of Korean pine and

broad-leaved mixed forest, respectively. Site 3, at 1258 m

asl, sampled spruce-fir forest. All sites were located on a

north-facing slope of 0–10. Approximately 30 of the largest

and presumably oldest trees were selected at each site for

sampling. Using increment borers two cores were extracted

at breast height from each tree.

Laboratory work and chronology development

All cores were air-dried and then mounted and sanded to

produce clearly visible tree-ring boundaries. They were

visually cross-dated (Stokes and Smiley 1968) under

stereoscopes. Total ring width was measured using a

LINTAB-station (Frank Rinn, Heidelberg, Germany) at

0.01 mm resolution. The COFECHA program (Holmes

1983) was used to check the quality of cross-dating and

measurements. Based on the statistics from COFECHA,

only individual samples with consecutive segments that
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correlated well with the master series and had high sensi-

tivity were included in development of cell parameter

chronologies. Twelve to 15 cores of different trees were

selected for cell parameters measurements. The number of

samples was sufficient to obtain credible cell features

(Fonti et al. 2009). These cores were further polished to

Fig. 1 Locations of tree-ring

sampling sites and

meteorological stations in the

study area

Fig. 2 Long-term monthly

mean temperature (line/squares)

and precipitation (bars) at the

Donggang and Erdao stations,

based on data for the period

1971–2000

Table 1 Geographic locations

and sampling information for

Sites 1, 2 and 3

Site name Latitude (N) Longitude (E) Elevation (m) Slope Trees/cores

Site 1 42.4� 128.1� 740 0–5� 32/65

Site 2 42.37� 127.77� 940 10� 29/59

Site 3 42.15� 128.47� 1258 0–5� 29/58
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make cell boundaries clearly visible for identification. We

used the MIVNT image analysis system (Guilin, Guangxi,

China) to measure cell number and cell lumen diameter.

The software is widely used to process and analyze images

in various fields, such as material science, biology and

chemistry. Cell numbers and lumen diameters were mea-

sured along each of five radial files of each growth ring. To

allow direct comparisons of cell dimensions patterns

between rings with different cell numbers, we converted all

size measurement series to the average numbers of all

annual rings using the method of Vaganov (1990). The cell

variable values were averaged within each tree ring to

develop chronologies.

Tree-ring chronologies were developed using the

ARSTAN program (Cook 1985). A cubic smoothing

spline with 67 % of the series length was used to remove

the age-related growth trends of raw ring-width

chronologies and cell number chronologies. Lumen

diameter chronologies have no obvious long-term growth

trends; therefore, they were standardized using straight

lines ((value-mean)/mean) (Conkey 1986). The resulting

ratio series was then computed as a biweight robust mean

of the detrended and standardized individual series (Cook

et al. 1990). Finally, the chronologies of ring-width

(TRW), cell number (CN), maximum lumen diameter

(MAXLD) and mean lumen diameter (MLD) were con-

structed. To show the strength of common signals in the

chronologies, we performed a within-chronology common

interval analysis for each chronology. The statistical

quality of each chronology was measured using several

coefficients commonly used in dendrochronology,

including standard deviation (SD), mean sensitivity (MS),

first-order autocorrelation (AC1), mean correlation

between trees (R), variance in the first principal compo-

nent (PC1) (Fritts 1976) and the expressed population

signal (EPS) (Wigley et al. 1984). The EPS indicates the

chronology confidence level (Briffa and Jones 1990), and

a threshold value of 0.85 is often used to evaluate the

useful time span of the final chronologies (Wigley et al.

1984). Three types of chronologies (residual, standard or

arstan) were established (Cook and Holmes 1986), and the

standard chronologies were used to analzye growth-cli-

mate relationships. To measure the similarity between any

two chronologies, we used Pearson correlation analysis

and principal component analysis for the common time

span from 1958 to 2002.

Climatic data

Climatic data were obtained from the Erdao (591 m asl),

Donggang (774 m asl) and Tianchi (2623 m asl) meteo-

rological stations near the sites in the study area (Fig. 1).

The Tianchi station data were not used because winter

observations were terminated in 1989. The monthly mean

temperature and precipitation correlation coefficients of

Erdao and Donggang stations in corresponding months

from 1958 to 2007 were 0.95 and 0.79, respectively.

Therefore, we averaged the meteorological data from the

Erdao and Donggang stations to improve the regional

representation, and we used the average values to analyze

the growth-climate relationships.

Analysis of tree growth-climate relationships

Pearson correlation analysis was used to identify the

growth-climate relationship (Fritts 1974). Because the

width of an annual ring can be affected by climatic con-

ditions over a long period, the climatic conditions in the

prior year may affect the growth in the current year (Fritts

1976). Thus, the monthly mean temperature and total

precipitation from the prior September to the current

August were included in the analysis. Meteorological data

were limited from 1958 to 2007, therefore we analyzed the

growth-climate relationship for the period 1959–2007 at

Site 1 and Site 3 and for the period 1959–2002 at Site 2.

Results

Chronology characteristics

The statistics of the cell chronologies of each site were

lower in value than were those for the TRW, especially for

MLD and MAXLD (Table 2). The SD and MS values,

which indicate the dispersion degree of indices and the

annual variability, respectively, were especially low.

The characteristics of the chronology changed with

elevation. MS, SD and EPS were highest for the Korean

pine chronology at Site 1 and smallest at Site 2. The result

means that the annual variability of ring variables and the

population signal of the sample declined with increasing

elevation. The AC1 of the chronologies at Site 2, was

lowest, particularly for the MAXLD, and there were fewer

common signals at Site 2 chronologies with lower R and

PC1.

The annual variation of indices revealed the correlations

between the chronologies of each variable (Fig. 3). Syn-

chronous behavior of the variables at Sites 1 and 2 was

visible in specific pointer years (e.g., 1965, 1974, 1975,

1983, 1990 and 1994). The correlation coefficients shown

in Table 3 illustrated this phenomenon. The correlation

coefficients of the chronologies for every variable except

MAXLD were greater than 0.439 (P\ 0.01) at Sites 1 and

2. The similarities between Site 3 and the other two sites

were very low for all variables, except for the correlation
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coefficient of MLD between Sites 2 and 3, which was

0.321 (P\ 0.05).

The chronologies of all variableswere compared at each site

to determine whether they contained the same kind of infor-

mation (Table 4). Generally, TRW and CN were very closely

related, displaying a correlation higher than 0.96 (P\ 0.01) at

all three sites. The correlations were also high between MLD

and MAXLD with the value higher than 0.60 (P\0.01).

However, the correlations were lower between cell size

chronologies andTRWorCN, although somewere significant.

This result can be best expressed by principal component

analysis at each site (Fig. 4), which sorts the variables

according to their correlations. The two first principal com-

ponents retained more than 90 % of the total variance. Ordi-

nations along the two axes all showed that TRW and CNwere

significantly different from the two cell size variables.

Table 2 Standard chronology statistics and common period analysis results for each variable of Korean pine (Pinus koraiensis) at Sites 1, 2

and 3

TRW CN MLD MAXLD

Site 1 Site 2 Site 3 Site 1 Site 2 Site 3 Site 1 Site 2 Site 3 Site 1 Site 2 Site 3

MS 0.20 0.17 0.12 0.17 0.16 0.11 0.05 0.04 0.03 0.04 0.03 0.03

SD 0.21 0.16 0.16 0.19 0.15 0.15 0.04 0.03 0.03 0.04 0.03 0.03

AC1 0.30 0.11 0.59 0.33 0.15 0.58 0.13 -0.12 0.33 0.12 0 0.25

R 0.49 0.40 0.43 0.48 0.39 0.41 0.25 0.25 0.17 0.19 0.13 0.15

EPS 0.93 0.91 0.90 0.93 0.91 0.89 0.83 0.83 0.71 0.76 0.69 0.68

PC1/% 53.3 44.6 48.6 51.4 43.9 46.4 31.9 32.5 27.4 26.1 26.6 23.7

TRW ring width, CN cell number, MLD mean lumen diameter, MAXLD maximum lumen diameter, SD standard deviation, MS mean sensitivity,

AC1 first-order autocorrelation, R mean correlation between trees, PC1 variance in the first principal component, EPS expressed population

signal

Fig. 3 Annual variations of

ring width (TRW), cell number

(CN), mean lumen diameter

(MLD) and maximum lumen

diameter (MAXLD) during

1958–2007 for Sites 1 and 3 and

during 1958–2002 for Site 2

Table 3 Correlations between

chronologies of four variables

for Korean pine (Pinus

koraiensis) between Site 1, 2

and 3

TRW CN MLD MAXLD

Site 1–Site 2 0.54 (P\ 0.01) 0.55 (P\ 0.01) 0.44 (P\ 0.01) 0.18

Site 1–Site 3 0.21 0.26 0.09 0.10

Site 2–Site 3 0.12 0.15 0.32 (P\ 0.05) 0.27
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Relationships between cell variable chronologies

and climatic factors

Climatic signals recorded by cell lumen diameters

MLD and MAXLD were correlated with monthly mean

temperature and the sum of precipitation (Fig. 5). At Site 1,

MLD was positively correlated with March temperature

while MAXLD was not. Both of these chronologies were

negatively and significantly correlated with May tempera-

ture. MLD and MAXLD were both positively correlated

with precipitation in May, and MLD was highly correlated

with June precipitation in the current year. MLD and

MAXLD were positively correlated with March tempera-

ture and June precipitation at Site 2; additionally, MLD at

this site was positively correlated with July precipitation.

At the highest elevation, MLD and MAXLD only reflected

the temperature signal and were positively correlated with

the previous October or current June temperatures.

Comparison of the growth-climate relationship for cell

variables and ring widths

The relationships at each site between CN and climatic

factors were similar to the relationships between TRW and

climatic factors (Fig. 5). However, the relationships

between lumen diameters or ring widths and climate fac-

tors revealed that lumen diameters can record different

climatic signals from those recorded by ring widths.

At Site 1, TRW was not related to monthly temperature;

it was positively correlated with precipitation in the pre-

vious September and in the current June. This result was

different from that found for the precipitation signal

recorded by MLD and MAXLD. At Site 2, TRW was

positively correlated with April temperature, contrasting

with the temperature signals recorded by MLD and

MAXLD. TRW at this site was unrelated to precipitation.

TRW at Site 3 was positively correlated with July tem-

perature and precipitation during the previous September

when there was no precipitation signal in MLD or

MAXLD.

Discussion

Evaluation of the chronology characteristics of cell

variables

The established chronology characteristics of the cell vari-

ables showed substantially lower sensitivities and common

signals than did ring widths. This phenomenon was reported

by others (Yasue et al. 2000;Wang et al. 2002; Corcuera et al.

2004). The common signal indicates the statistical quality of

each chronology, so growth ring width is more suitable for

dendroclimatology study. Ring width cannot, however,

inform regarding analogies or differences in the ecological

information that the chronology records. The identification of

such information requires a comparison of the chronologies

with each other and with climate data (Wimmer and Grabner

2000; Fonti and Garcı́a-González 2004). Previous studies on

the mean vessel area of ring-porous species showed mean

sensitivities and correlations between samples ranging from

0.05 to 0.20 and from 0.2 to 0.4, respectively (Tardif and

Conciatori 2006; Fonti et al. 2007). Nevertheless, the

Table 4 Correlations among chronologies of Pinus koraiensis tree-

ring variables

TRW CN MLD

Site 1

TRW – – –

CN 0.96 (P\ 0.01) – –

MLD 0.33 (P\ 0.05) 0.23

MAXLD 0.27 0.21 0.73 (P\ 0.01)

Site 2

TRW – – –

CN 0.98 (P\ 0.01) – –

MLD 0.46 (P\ 0.01) 0.33 (P\ 0.05) –

MAXLD 0.55 (P\ 0.01) 0.47 (P\ 0.01) 0.76 (P\ 0.01)

Site 3

TRW – – –

CN 0.98 (P\ 0.01) – –

MLD 0.24 0.13 –

MAXLD 0.39 (P\ 0.01) 0.30 (P\ 0.05) 0.60 (P\ 0.01)

Fig. 4 Scatter plots of principal component analysis loading of the

four chronologies of each site for Pinus koraiensis plotted along the

axes of the two first principal components (the two first principal

components retained more than 90 % of the total variance)
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correlations with climatic parameters reached values[0.60

in certain cases. For coniferous species, Yasue et al. (2000)

found that the mean sensitivity and correlation between

samples of Picea glehnii cell wall thickness were 0.05 and

0.14, respectively, but 37 % of the variance could be

explained by climatic factors. Although the statistical quality

of MLD was lower than that for TRW at Site 1 in our study,

MLD was positively correlated with March and May tem-

perature that could not be recorded by TRW. Similar results

were recorded for Sites 2 and 3. In order to improve the

statistical quality of cell variables, we suggest to increase

sample sizes. For example, when the sample size of MLD at

Site 1 increased to 16 cores, EPS improved to 0.85.

The chronologies of TRW and CN showed almost the

same relationships with climatic factors at all three eleva-

tions. This suggests that TRW was correlated with CN,

meaning that ring width depended primarily on cell num-

bers, a common phenomenon in coniferous species.

Camarero et al. (1998) reported that the ring widths and

cell numbers of Pinus uncinata Ram. and Pinus sylvestris

L. in the Central Spanish Pyrenees were functionally cor-

related (P\ 0.001). The correlation coefficient of these

two variable chronologies was 0.78 for Larix cajanderi.

(P\ 0.05), as calculated by Panyushkina et al. (2003), and

0.907 for Picea crassifolia (P\ 0.01), as calculated by Li

et al. (2008). This phenomenon can be attributed to the

processes governing cell anatomy; Cuny et al. (2012)

monitored the intra-annual wood formation dynamics of

three coniferous species and estimated that approximately

75 % of the annual radial increment variability was

attributable to the rate of cell production, whereas only

25 % was attributable to its duration. For this reason, cell

number has been used relatively infrequently to analyze the

growth-climate relationship (Deslauriers and Morin 2005).

Limiting climatic factors for the radial growth

of Korean pine at different elevations

The combination of the relationships between cell vari-

ables/ring widths and climatic factors showed that both

temperature and precipitation were limiting factors for the

radial growth of Korean pine in the study area.

March temperature and previous September precipitation

were the common climatic factors limiting tree growth at all

three sites. MLD was positively correlated with March

temperature because a high temperature before the growing

season can promote cambial activity and can improve

photosynthesis, both of which are positively related to cell

enlargement. Greater precipitation in September leads to

greater soil-moisture availability and this is advantageous to

Korean pine growth in the following year.

The low correlations of each variable chronology

between sites (Table 3) indicated that there were also dif-

ferences in the growth-climate relationship related to ele-

vation. At the low elevation site, TRW was also limited by

precipitation in the current June. This finding is consistent

Fig. 5 Correlation coefficients between monthly climate elements

and tree-ring indices during 1959–2007 for Sites 1 and 3 (1959–2002

for Site 2). Sizes of the circles indicate the strengths of the

correlations. P9 the previous September, P10 the previous October,

P11 the previous November, P12 the previous December, T temper-

ature, P precipitation
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with the results of Yu et al. (2011). MLD and MAXLD can

record May precipitation because the largest cells are

formed during the early growing season and these are a

more reliable proxy for climatic conditions during that

period than is TRW. At the middle elevation site, MLD and

MAXLD correlated well with June precipitation, comple-

menting the climatic signals furnished by TRW. At the

high elevation site, July temperature was the limiting factor

for ring width. This finding verifies the conclusion of Gao

et al. (2011). With increasing elevation, lower temperatures

can delay the onset of the growth period and terminate

growth before the end of the growing season at lower

elevations. MLD at this elevation was significantly corre-

lated with June temperature. This verified that cell lumen

diameter can record climate factors for earlier months.

Nevertheless, at high elevation, lumen diameter chronolo-

gies did not respond significantly to the precipitation sig-

nal. The reason for this outcome might be the increase in

precipitation at this elevation.

Since the MLD and MAXLD supplied different climatic

information from that yielded by TRW, they can improve

climate reconstruction in the Changbai Mountains. How-

ever, because the climatic data used to analyze the growth-

climate relationships were expressed on a monthly basis, it

cannot be determined whether lumen diameters in this area

can offer a higher temporal resolution than ring widths. In

further studies, climatic data at a scale of days or pentads

should be used to examine the climatic signals recorded by

cell features. Additionally, mechanistic models such as

TREERING (Fritts et al. 1999), which uses daily climatic

data to simulate processes affecting the formation of cell

features, may be effective methods for studying the

growth-climate relationship at the cellular scale.

Conclusions

It is possible to build variable chronologies for cells of

Korean pine in the Changbai Mountains for dendroclima-

tology studies. Although the statistics of the cell lumen

diameter chronologies were lower in value than the

statistics of the ring-width chronologies, they can record

different climatic signals from those encoded in ring

widths. Both temperature and precipitation are limiting

factors for Korean pine radial growth, and the growth-cli-

mate relationships change with elevation. The significance

of cell features in reconstruction of spring temperature at

low elevation, summer precipitation at middle elevation,

and autumn temperature at high elevation of the Changbai

Mountains has been demonstrated, but the relationship

between cell features and climate should be further inves-

tigated to assess the climatic reconstruction potential

offered by cell features.
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Fonti P, Eilmann B, Garcı́a-González I, von Arx G (2009) Experdi-

tious building of ring-porous earlywood vessel chronologies

without loosing signal information. Trees 23:665–671

Fonti P, von Arx G, Garcia-Gonzalez I, Eilmann B, Sass-Klaassen U,
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