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Abstract Temperature and freeze-thaw events are two

key factors controlling litter decomposition in cold biomes.

Predicted global warming and changes in freeze-thaw

cycles therefore may directly or indirectly impact litter

decomposition in those ecosystems. Here, we conducted a

2-year-long litter decomposition experiment along an ele-

vational gradient from 3000 to 3600 m to determine the

potential effects of litter quality, climate warming and

freeze-thaw on the mass losses of three litter types [dragon

spruce (Picea asperata Mast.), red birch (Betula albosi-

nensis Burk.), and minjiang fir (Abies faxoniana Rehd. et

Wild)]. Marked differences in mass loss were observed

among the litter types and sampling dates. Decay constant

(k) values of red birch were significantly higher than those

of the needle litters. However, mass losses between ele-

vations did not differ significantly for any litter type.

During the winter, lost mass contributed 18.3–28.8 % of

the net loss rates of the first year. Statistical analysis

showed that the relationships between mass loss and litter

chemistry or their ratios varied with decomposition peri-

ods. Our results indicated that short-term field incubations

could overestimate the k value of litter decomposition.

Considerable mass was lost from subalpine forest litters

during the wintertime. Potential future warming may not

affect the litter decomposition in the subalpine forest

ecosystems of eastern Tibetan Plateau.

Keywords Alpine forest � Elevational gradient � Freeze-
thaw � Global warming � Mass losses

Introduction

Temperature and litter quality are two key factors con-

trolling litter decomposition (Aerts 1997, 2006). In high-

altitude and high-latitude ecosystems, seasonal snow cover

and associated freeze-thaw events play an important role in

litter decomposition. The CO2 emissions from decaying

litter accounts for a considerable part of the total CO2

efflux during the winter (Uchida et al. 2005). Global air

temperatures are predicted to increase 1.8–4.0 �C over this

century, with greater warming occurring in cold biomes

(IPCC 2007). This warming may affect seasonal snow

cover and freeze-thaw cycles in these ecosystems (Sjursen

et al. 2005). Thus, projected global warming can directly

affect litter decay rates via accelerating biochemical reac-

tion rates (Aerts 2006). Moreover, future warming can also

indirectly influence litter decomposition rates by altering

soil moisture, litter quality and freeze-thaw cycles (Uchida
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et al. 2005; Aerts 2006; Cornelissen et al. 2007). Decom-

position of plant litter is an important component of the

global carbon budget (Robinson 2002). Thus, any changes

in factors that control litter decomposition rates may have

important repercussions for the global carbon budget

(Cornelissen et al. 2007).

For better insight into the mechanisms underlying litter

responses, artificial warming experiments have been done

(e.g., Aerts 2006; Luo et al. 2009; Su et al. 2010), but they

have not shown any consistent warming effects on litter

decay; positive, negative, and neutral effects have all been

reported. Moreover, responses of litter decay to experi-

mental warming varied among plant species, ecosystems

and sites (Aerts 2006; Cornelissen et al. 2007), and in

snowy regions, climate change can covary with factors such

as freeze-thaw cycle (Sjursen et al. 2005). It is apparent that

litter decomposition could be complicated by extreme soil

temperature and freeze-thaw cycles in alpine regions.

The subalpine/alpine forests located at the transition

zone from the Tibetan Plateau to the Sichuan basin could

be very sensitive to climate change with important conse-

quences for the global carbon balance (Xu et al. 2010a, b).

Red birch (Betula albosinensis Burk.), dragon spruce

(Picea asperata Mast.) and minjiang fir (Abies faxoniana

Rehd. et Wild) are the three dominant tree species in this

area (Liu and Lin 2009). Altitudinal gradients can be

considered as natural, long-term analogues for climate

change (Aerts 2006), and freeze-thaw cycle patterns vary

with elevations in the Tibetan Plateau region (Tan et al.

2011). In this study, we conducted a 2-year litter decom-

position experiment along an elevational gradient (3000,

3300 and 3600 m) to facilitate our understanding of the

interactions of climate warming and freeze-thaw events on

litter decomposition. The objectives of this work were to

(i) determine how litter mass losses are controlled by

microclimatic conditions and litter quality and (ii) quantify

the mass loss of litters under the snow during the winter.

Materials and methods

Site description

This study was conducted at the Bipenggou Nature Reserve

of Lixian County in the eastern Tibetan Plateau of China

(31�140–31�190N, 102�530–102�570E, 2458–4619 m a.s.l.).

The mean annual temperature ranges from 2 to 4 �C with a

maximum of 23 �C and minimum of -18 �C. Annual

precipitation is about 850 mm; the monthly variation in

precipitation during the study period (from November 2008

to October 2010) is shown in Fig. 1. The growing season

generally ranges from May to October, with a maximum

snow depth of ca. 20–60 cm in the winter, depending on

the elevation and slope direction. The freeze-thaw season

generally starts in early December, and soil remains frozen

about 4 months. However, there are obvious freeze-thaw

cycles before the soil completely freezes or thaws (Tan

et al. 2011). The forest soils are classified as Cambisols and

Primosols (Gong et al. 2007). Forests are mainly dominated

by minjiang fir, dragon spruce and red birch (Liu and Lin

2009). The understory is dominated by Fargesia spatha-

cea, Rhododendron delavayi, Berberis sargentiana, Hip-

pophae rhamnoides, Carex capilliformis and Anemone

rivularis.

Experimental design

We established a litter decomposition experiment at three

sites with similar environmental factors such as slope,

aspect and canopy density but at an elevational gradient:

3000, 3300 and 3600 m. Soil temperature was recorded

every 2 h using a DS1923G Thermochron iButton data

logger (DS1921-F5#, Maxim/Dallas Semiconductor Inc.,

USA) that was placed on the forest floor close to the lit-

terbags. A freeze-thaw cycle was identified whenever the

temperature dropped below 0 �C for at least 3 h, followed

by a rise above 0 �C for at least 3 h during the winter

(November to April) (Konestabo et al. 2007).

Litter collection and litterbag construction

Late October 2008, naturally fallen leaves of dragon

spruce, red birch and minjiang fir were collected randomly

from the selected forests. Litter samples were air dried to a

constant mass. Subsamples of the leaves from each species

were oven dried at 70 �C for 48 h to calculate a moisture

correction factor and were then analyzed for initial nutrient

concentrations.

The litterbag technique was used to quantify the leaf

litter decomposition rate (Bocock and Gilbert 1957). We

constructed 20 9 20 cm litter bags using 0.5 9 0.5 mm
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study (Nov. 2009 through Nov. 2010)
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mesh nylon cloth on the bottom and 1 9 1 mm mesh nylon

cloth on the top. Air-dried litter samples were placed into

litterbags. Duplicate sets of litterbags were deployed on the

soil surface in the three sites (3000, 3300 and 3600 m) in

early November 2008. Litterbags of each litter type were

retrieved randomly with five replicates every 2 months. In

the laboratory, extraneous matter such as other plant

materials, rocks and soil animals were handpicked from the

decomposed litters, and the clean samples were then oven-

dried at 70 �C to a constant mass. Mass loss was calculated

as the difference between the initial dry mass and the actual

dry mass of leaves at each sampling date.

Chemical analyses

For each sampling date, litters of the same plant species

were pooled for chemical analyses after determination of

dry mass. Carbon and nutrients in samples were determined

as described by Lu (1999). Carbon content was measured

with the dichromate oxidation–sulphate ferrous titration

method. Subsamples of 0.2500 g were acid digested with

an 8 mL H2SO4 and 3 mL H2O2 solution at 190 �C for

10 min. The digested solution was then transferred to a

100 mL volumetric flask, rationed, and stored for N, P, K,

Ca and Mg quantification. N and P were determined by

semi-micro Kjeldahl and phosphorus molybdenum-blue

colorimetry. K, Ca and Mg were measured by atomic

absorption spectroscopy (Bao 1999). Lignin and cellulose

were measured using the acid detergent lignin method

(Vanderbilt et al. 2008).

Statistical analyses

All statistical tests were performed using the software

Statistical Package for the Social Sciences (SPSS) version

11.0. Decomposition rates were calculated from dry mass

remaining using a single negative exponential decay model

xt/x0 = e-kt, where xt/x0 is the fraction mass remaining at

time t, t the time elapsed in years and k the annual decay

constant (Olson 1963). Repeated-measures analysis of

variation with Fisher’s LSD test was performed to examine

the effects of elevation, litter type, sampling date and their

interactions on litter mass loss. One-way ANOVA was

used to examine significant differences among litter types

in decay constant (k) and initial leaf litter chemistry.

Results

Soil temperature along the elevations

The annual average values over 2 years were 4.9, 4.2 and

4.0 �C for soil temperature at 3000, 3300 and 3600 m,

respectively (Fig. 2). There was no significant difference in

soil temperature between 3300 and 3600 m, but the tem-

perature of 3000 m was significantly higher than at

3600 m. The patterns in soil temperature among elevations

differed between growing season and non-growing seasons.

For example, over the growing season, soil temperatures

were 9.6, 9.0, and 8.6 �C at 3000, 3300 and 3600 m,

respectively, whereas during the non-growing season they

were 0.8, 1.2 and 0.1 �C, respectively.
Soils were frozen longer at higher elevations (Fig. 2).

During the winter of 2008/2009, the total amount of time

soils remained frozen was 118, 125 and 155 days,

respectively, at 3000, 3300 and 3600 m. Moreover, there

were 7, 15 and 32 freeze-thaw cycles, respectively, at 3000,

3300 and 3600 m during the winter of 2008/2009, whereas

the frequency of freeze-thaw cycles was 44, 22 and 24 over

the winter of 2009/2010.
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Fig. 2 Seasonal transitions of soil temperature along an elevational

gradient (a 3000 m, b 3300 m, and c 3600 m) on the Eastern Tibetan

Plateau, China
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Initial litter chemistry

There were significant differences in initial litter chemistry

among litter types (Table 1). Total C and lignin contents

were significantly higher in the minjiang fir litter than in

the dragon spruce and red birch litter, yet for cellulose the

opposite was true (Table 1). Initial N, P and Ca concen-

trations were highest in red birch litter, followed by the

minjiang fir and dragon spruce litter (Table 1). Initial K

concentration did not differ among litter types. Conversely,

the order of initial Mg concentration was minjiang fir[
red birch[ dragon spruce (Table 1). Red birch litter had

the lowest C:N, C:P and lignin:N ratios relative to the two

needles (Table 1). However, initial N:P ratio was lowest in

the dragon spruce litter compared with the other litter types

(Table 1).

Mass losses of the three litter types

among the elevations

Marked differences in mass loss were observed among the

litter types and sampling dates (Fig. 3; Table 2). In general,

red birch litter decayed more rapidly relative to the two

needle litters over the sampling dates, (Fig. 3; Table 2).

After 2 years of decomposition, the remaining litter mass

was *55 % of the initial in the two needles types, but

\50 % in red birch at each elevation (Fig. 3).

Additionally, effects of litter quality on mass losses

depended on seasons (P\ 0.05). There were no significant

differences in mass losses between elevations in any litter

type (Fig. 3; Table 2). However, repeated ANOVA showed

that the interactive effects of elevation and date were sig-

nificant on mass losses (P\ 0.05). Litter decay process

were well described by exponential model, xt/x0 = e-kt

(values of r2 ranged between 0.88 and 0.97, and P\ 0.01;

Table 2). In general, the values of decay constant, k, of red

birch were significantly higher than those of needle litters

(Table 2).

The litters lost considerable mass during the winter

period (Fig. 3). Over the winter of 2008/2009, 8.3–12.5 %

of mass was lost from the studied forest litters (Fig. 3). The

lost mass contributed 18.3–28.8 % of mass to the net loss

rates of the first year for three litter types (Fig. 3). Com-

pared with the first winter, only slight mass losses were

observed during the winter of 2009/2010 (3.6–3.8 %,

Fig. 3). Additionally, over the 2-year incubation, approxi-

mately 90 % of the mass was lost from the studied litters

during the first year (Fig. 3).

Discussion

On a smaller spatial scale, litter quality is considered as the

most important factor influencing decomposition rate

(Aerts and Caluwe 1997). High quality litters are often

characterized by higher N concentrations and lower C:N

and lignin:N ratios and can decompose faster in compar-

ison with low quality litters (Sanchez 2001). In this study,

the leaf litters of red birch had higher N concentrations and

lower C:N, C:P and lignin:N ratios relative to the two

coniferous needles. As a consequence, red birch leaf litter

decayed faster than dragon spruce and minjiang fir. The

values of decay constant, k, of red birch were significantly

higher than those of both needles in any elevation. These

tendencies are similar to those found in previous studies of

the decomposability of plants in this region (Deng et al.

2009). The significant differences in the rate of litter

decomposition between litter types can, therefore, mainly

be attributed to differences in litter quality. Additionally,

red birch has a more fragile structure, while dragon spruce

and minjiang fir are more fibrous and their physically

resistant cuticular boundary of the needles may be more

difficult for microbes to break down (Rustad and Fernandez

1998). Therefore, the differences in physical structures

between red birch litter and two needles may also partly

contribute to the differences in mass losses.

Litter decomposition is a complex ecological process

that is strongly influenced by environmental factors (Aerts

1997, 2006; Zhang et al. 2008). Temperature is a key factor

that governs litter decomposition (Ruark 1993; Aerts

1997). To get a better insight into mechanisms underlying

litter responses, some direct techniques (e.g., open-top

chambers, heating cables and infrared heaters) have been

used to manipulate temperature experimentally (Aerts

Table 1 Initial leaf litter chemistry of dragon spruce (DS), red birch (RB) and minjiang fir (MF) from the typical subalpine forests of eastern

Tibetan Plateau, China

Litter type C N P K Ca Mg Lignin Cellulose C/N C/P N/P Lig/N

(g/kg) (g/kg) (g/kg) (g/kg) (g/kg) (g/kg) (g/kg)) (g/kg)

DS 527.3a 12.1a 1.4a 7.2a 3.5a 0.1a 283.2a 255.8a 43.6a 376.6a 8.6a 23.4a

RB 526.0a 14.6b 1.5b 7.1a 7.5b 0.3b 284.4a 257.7a 36.0b 350.7b 9.7b 19.5b

MF 545.8b 13.8c 1.3c 7.0a 4.9c 0.6c 328.2b 248.5b 39.6c 419.8c 10.6c 23.8a

Values within the same column with different letters are significantly different at P\ 0.05
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2006; Luo et al. 2009; Su et al. 2010). In addition to this

approach, patterns along present-day natural gradients can

be included. Altitudinal gradients can be considered as

natural, long-term analogues for climate change. At pre-

sent, warming effects on litter decomposition have widely

been reported in various terrestrial ecosystems (Aerts

2006), but no consistent patterns have been observed. For

example, increases in litter mass loss in response to

warming were reported in arctic dwarf shrub, subalpine

meadow and boreal forest (Robinson et al. 1995; Rustad

and Fernandez 1998; Verburg et al. 1999; Shaw and Harte

2001). Nevertheless, in a forest–tundra ecotone, experi-

mental warming did not affect or sometimes even

decreased litter decay rates (Sjögersten and Wookey 2004).

Aerts (2006) found that litter decay is hierarchically con-

trolled by the triad climate[ litter quality[ soil organ-

isms, and warming effects on litter mass loss were strongly

dependent on the method used. Open top chambers (OTCs)

declined mass losses (Sjögersten and Wookey 2004),

whereas heating cables increased mass loss (e.g., Robinson

et al. 1995; Verburg et al. 1999).

In the present case, contrary to our initial hypothesis that

relatively higher temperature at lower elevations would be

correlated with increased rates of litter decomposition, we

did not observe significant differences between elevations

in mass losses in any of the litter types. Along an eleva-

tional gradient, climate factors can covary with edaphic

factors (Murphy et al. 1998; Scowcroft et al. 2000). The

low responsiveness noted in some studies was mainly due

to moisture-limited mass losses in warming treatments,

especially at mesic and xeric sites (Aerts 2006). At the

regional scale, litter mass loss as mediated by temperature

and moisture has been corroborated by latitudinal gradient

studies (Berg et al. 1993; Zhou et al. 2008). Additionally,

previous altitudinal gradient studies have found that the

importance of temperature was overridden by soil moisture

or other site factors (i.e., soil fertility) (Murphy et al. 1998;

Scowcroft et al. 2000). In an alpine meadow, an elevational

gradient from 3200 to 3800 m was accompanied by a

3.0 �C temperature difference, which resulted in significant

differences in litter decomposition rates between elevations

(Luo et al. 2009; Su et al. 2010). However, in our study,

there was only approximately 0.9 �C difference from 3000

to 3600 m, and forest litters were less decomposable

compared with the alpine grassland. In addition, in another

study, short-term warming (3.2 �C increment in soil tem-

perature by heating cable) accelerated the mass loss of red

birch litter but did not affect the mass loss of dragon spruce

needle (Xu et al. 2012). Thus, low temperature sensitivity

of litter decomposition might, to some extent, be

attributable to a small increase in soil temperature and low

quality of forest litters. However, during the winter, sea-

sonal snow cover associated with freeze-thaw cycles may

promote mass loss by fragmenting litter and causing

release of soluble compounds that are either respired or

leached (Taylor and Jones 1990; Hobbie and Chapin 1996).

The snow cover was deeper and snow cover lasted longer

at upper elevations than at lower elevations. In addition, the

frequency of freeze-thaw cycles increased with elevation.

Therefore, the patterns of freeze-thaw cycles during the

wintertime may partly mask the effect of temperature

induced by elevation.

Over the last few decades, considerable research has

focused on quantifying litter decomposition during the

growing season; comparatively little effort has focused on

litter decomposition under snow-covered or frozen soils

(Uchida et al. 2005). This lack is partly because forest

40

60

80

100

S
-0

8
D

-0
8

M
-0

9

J-
09

O
-0

9
J-

10
M

-1
0

A
-1

0
N

-1
0

F
-1

1

Spruce (b)

40

60

80

100

S
-0

8
D

-0
8

M
-0

9
J-

09
O

-0
9

J-
10

M
-1

0
A

-1
0

N
-1

0
F

-1
1

Fir (c)

40

60

80

100

S
-0

8

D
-0

8

M
-0

9
J-

09

O
-0

9

J-
10

M
-1

0
A

-1
0

N
-1

0

F
-1

1

M
as

s 
re

m
ai

ni
ng

(%
)

3000
3300
3600

Birch (a)

2009 2010 2009 2010 2009 20102008 2008 2008

Fig. 3 Mean mass loss (± SD)

of three litter types (red birch,

dragon spruce and minjiang fir)

incubated at different elevations

(3000, 3300 and 3600 m)

Table 2 Decay constant (k, year-1, r2 range 0.88–0.97, P\ 0.05) for

litters of dragon spruce, minjiang fir and red birch along an eleva-

tional gradient of eastern Tibetan Plateau, China

Litter type 3000 m 3300 m 3600 m

Dragon spruce 0.38aA 0.42aA 0.40aA

Red birch 0.46aB 0.50aB 0.49aB

Minjiang fir 0.37aA 0.41aA 0.43aAB

Uppercase letter within same column indicates significant differences

between the litter types. Lowercase letter for same litter type repre-

sents significant differences between the elevations (1 and 2 years) at

P\ 0.05
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ecosystems at high altitudes or latitudes were once thought

to be dormant during the long winter, but a growing number

of studies have convincingly demonstrated that winter soil

respiration is a pronounced component of the annual carbon

budget in these ecosystems (Monson et al. 2002; Suzuki

et al. 2006; Wang et al. 2010). However, the sources of this

CO2 efflux in alpine forests during the winter remain

unclear. A large percentage of the annual leaf litter is sup-

plied to the forest floor during autumn months. Therefore,

microbial activity and physical processes (e.g., fragmenta-

tion or leaching) in the litter layer may contribute signifi-

cantly to the CO2 efflux in winter. Recent studies have also

found that significant CO2 effluxes were emitted from the

snow-cover soils and that litter decomposition contributed

significantly to winter soil respiration in the subalpine

coniferous forests (Zhou et al. 2009; Xiong et al. 2015).

This study found that mass losses from the three species

over the winter constitute 18.3–28.8 % of total first-year

mass losses. This result was consistent with the estimated

values (26 %) in a cool-temperate broad-leaved deciduous

forest ecosystem (Uchida et al. 2005). Nevertheless, nearly

all mass loss of tundra litter occurred during the winter

when soils were mostly frozen (Hobbie and Chapin 1996)

because snow cover in arctic and subarctic tundra ecosys-

tems is significantly deeper and lasts longer than in tem-

perate alpine forest ecosystems.

In our study region, red birch is a fast-growing, early-

successional species, while dragon spruce and minjiang fir

are two slow-growing, late-successional species. Corre-

spondingly, red birch, dragon spruce and minjiang fir forest

are three dominant forest types. Several models predict that

future warming may dramatically enhance vegetation pro-

ductivity (Cramer 2001; Saleska 2002). Increased produc-

tivity will probably increase litter production, leaves being

the predominant source of annual aboveground litter pro-

duction (Cornelissen et al. 2007). Additionally, experi-

mental warming could, to some degree, reduce the litter

quality of the subalpine coniferous forests of eastern Tibe-

tan Plateau (Liu and Lin 2009). In the present study, a small

increase in soil temperature did not affect the mass losses of

the three litters, and the temperature sensitivity of litter

decomposition may not be as high as expected in the sub-

alpine forests. If this is true, future warming, at least at an

early stage, may not influence the amount of CO2 released

to the atmosphere from litters in this area. On the other

hand, considerable litter decayed in the winter in the sub-

alpine forests although the underlying mechanisms were

unknown. In general, climate models predict the greatest

increases in temperatures will occur during the autumn and

winter months (IPCC 2007), which will likely lead to

associated decreases in the duration of snow cover in winter

and increases in the frequency of freeze-thaw events

(Sjursen et al. 2005). Thus, predictions of the impact of

climate change on litter decomposition in montane

ecosystems and other cold biomes should take such factors

into account.
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