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Abstract The occurrence of lightning-induced forest fires

during a time period is count data featuring over-dispersion

(i.e., variance is larger than mean) and a high frequency of

zero counts. In this study, we used six generalized linear

models to examine the relationship between the occurrence

of lightning-induced forest fires and meteorological factors

in the Northern Daxing’an Mountains of China. The six

models included Poisson, negative binomial (NB), zero-

inflated Poisson (ZIP), zero-inflated negative binomial

(ZINB), Poisson hurdle (PH), and negative binomial hurdle

(NBH) models. Goodness-of-fit was compared and tested

among the six models using Akaike information criterion

(AIC), sum of squared errors, likelihood ratio test, and

Vuong test. The predictive performance of the models was

assessed and compared using independent validation data

by the data-splitting method. Based on the model AIC, the

ZINB model best fitted the fire occurrence data, followed

by (in order of smaller AIC) NBH, ZIP, NB, PH, and

Poisson models. The ZINB model was also best for pre-

dicting either zero counts or positive counts (C1). The two

Hurdle models (PH and NBH) were better than ZIP,

Poisson, and NB models for predicting positive counts, but

worse than these three models for predicting zero counts.

Thus, the ZINB model was the first choice for modeling the

occurrence of lightning-induced forest fires in this study,

which implied that the excessive zero counts of lightning-

induced fires came from both structure and sampling zeros.

Keywords Poisson � Negative binomial (NB) � Zero-
inflated Poisson (ZIP) � Zero-inflated negative binomial

(ZINB) � Poisson hurdle (PH) � Negative binomial hurdle

(NBH) � Likelihood ratio test (LRT) � Vuong test

Introduction

Over-dispersed count data are common in ecological

research. Similarly, the occurrence of forest fires is char-

acterized by over-dispersion and a high frequency of zeros.

These features of fire occurrence data present challenges

for better understanding the ecological processes of forest

fires and effectively modeling the future scenarios of forest

fires using climate variables. Therefore, selecting an

appropriate model or models to address both over-disper-

sion and excessive zeros is crucial for developing realistic

prediction systems of forest fires in order to provide reli-

able information for fire prevention, land-use planning, and

decision-making in natural resources management in China

(Guo et al. 2010a; Xu 2014).
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In past decades, forest researchers devoted considerable

time and effort to model the ignition and occurrence of

forest fires. In the literature, logistic regression models

have been used to estimate the ignition probability of forest

fires, while Poisson regression models have been applied to

predict numbers of fire occurrences (Martell et al. 1987;

Chou et al. 1993; Poulin-Costello 1993; Vega-Garcia et al.

1995; Mandallaz and Ye 1997; Garcı́a Diez et al. 1999;

Preisler et al. 2004; Griffith and Haining 2006; Liu and

Cela 2008; Podur et al. 2009). However, the Poisson model

is criticized for its restrictive assumption of equality

between the sample mean and variance. It has been noted

in various applications that the observed dispersion of

count data is commonly underestimated by Poisson mod-

els. As an alternative, negative binomial (NB) models have

been adopted for count data when the sample variance

exceeds the sample mean (i.e., over-dispersion) (Cameron

and Trivedi 1998).

In reality, forest fire occurrence data not only exhibit over-

dispersion, but also include excessive numbers of zero

counts. Zero-inflated models (Lambert 1992) and hurdle

models (Mullahy 1986) have been utilized to address these

situations. Both zero-inflated and hurdle models assume that

count data are a mixture of two separate data generation

processes: one generates only zeros, and the other is either a

Poisson or an NB data-generating process. However, these

two types of models are distinct in their interpretation and

analysis of zero counts. Zero-inflated models allow for two

separate processes. Conceptually, the first step is to model

the structural zeros using a logistic regression and the second

step is to model the Poisson distribution conditional on the

structural zeros; i.e., a Poisson or NB model is used for the

sampling zeros and positive counts. In contrast, hurdle

models are interpreted as two-partmodels, inwhich a logistic

regression model governs the binary outcome of whether a

count variable has a zero or a positive realization. If the

realization is positive, ‘‘the hurdle’’ is crossed, and the

conditional distribution of the positive counts is then deter-

mined by a truncated-at-zero Poisson or NB model

(Cameron and Trivedi 1998; Rose et al. 2006). In summary,

Zero-inflated models assume that zero counts have two dif-

ferent origins-structure and sampling, whereas Hurdle

models assume that all zero counts are from one structural

source (Erdman et al. 2008; Hu et al. 2011).

The applications of Zero-inflated and hurdle models can

be found in different study fields (e.g., Yau and Lee 2001;

Ridout et al. 2001; Affleck 2006; Lee et al. 2011), but only

few have been related to the prediction of forest fire occur-

rence (e.g., Krawchuk et al. 2009).Most studies that assessed

the relationship between forest fire occurrence and meteo-

rological conditions either emphasized the prediction func-

tion of the models or focused on the selection of independent

variables in order to improvemodel performance. Only a few

studies undertook comprehensive analysis of the process of

model selection based on the principles of statistics (Man-

dallaz and Ye 1997; Guo et al. 2010b).

In this study, we used six generalized linear models, viz.

Poisson, NB, zero-inflated Poisson (ZIP), zero-inflated

negative binomial (ZINB), Poisson hurdle (PH), and neg-

ative binomial hurdle (NBH) models, to fit the occurrence

of lightning-induced fires (count data) to examine the

relationship between forest fires and corresponding mete-

orological factors in the northern Daxing’an Mountains,

China. The objective of this study was to provide com-

parative assessment for researchers to deal with the chal-

lenges of analyzing and modeling forest fire occurrence

(count data) with over-dispersion and excessive zeros.

Materials and methods

Study site description

The study site is located in high-latitude boreal forest

regions of the Daxing’an Mountains (50�100–53�330N,
121�12–127�000E) with a total area of 8.46 9 106 ha in

northeast China (Fig. 1). The Daxing’an Mountains sup-

port the largest natural forests in China. Dominant tree

species include Daurian larch (Larix gmelinii Rupr.), White

birch (Betula platyphylla Suk.), Mongolian pine (Pinus

sylvestris L. var. mongolica Litv.), and Mongolian oak

(Quercus mongolica Fischer ex Ledebour) (Xu 1998).

Mean annual temperature is -2 to 4 �C, with extremes

ranging from –52.3 to 39.0 �C. Total annual precipitation is
350–500 mm and most is received in winter and early

spring as snow. Elevation ranges from 300 to 1400 m. The

Daxing’an Mountains consist of seven sub-administrative

regions (Xu 1998). Our study area was located in the

northern Daxing’an Mountains, and included three sub-

administrative regions (namely Mohe, Huzhong, and

Tahe), covering an area of about 42 9 105 ha (Fig. 1).

Fire frequency data

The Daxing’an Mountains have an extremely high fire risk

and the highest average area burned annually in China. The

fire occurrence data used in this study were collected from

1980 to 2005. According to the records, there were over

1000 forest fires and nearly 1.3 9 105 ha burned area

during this 26-year time period. Our fire data, including

location, ignition dates and total burned area, were pro-

vided by the Fire Prevention Office of Heilongjiang Pro-

vince (FPOHP). We chose to focus on the Mohe, Huzhong,

and Tahe sub-administrative regions in the Northern Dax-

ing’an Mountains because the records of fire occurrence

were relatively complete compared to the other sub-
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administrative regions. We addressed only lightning-in-

duced fires in this study due to the completeness of the data

records and the significant relationship between lightning

fires and meteorological factors (Yu et al. 2007; Guo et al.

2010a, b; Chang et al. 2013). The fire frequency or count

was calculated on a monthly scale from January to

December of each year. Hence, the dependent variable was

the monthly occurrence (count) of lightning-induced fires

over the 26-year time period (1980–2005).

Meteorological variables

We focused on five meteorological variables, viz. average

monthlywind speed (AMWS), averagemonthly temperature

(AMT), average monthly precipitation (AMP), average

monthly relative humidity (AMRH), and average monthly

evaporation (AME). These variables significantly impact

forest fire occurrence in the Daxing’an Mountains (Yu et al.

2007; Guo et al. 2010a, b; Chang et al. 2013). The meteo-

rological data were provided by the China Meteorological

Data and Sharing Network (http://cdc.cma.gov.cn/), which

included more than seven hundred national meteorological

stations across China. Three nationalmeteorological stations

were located in our study area, one in each sub-administra-

tive region (Mohe, Huzhong, and Tahe).

The descriptive statistics for the fire occurrence counts

and meteorological variables are listed in Table 1. The

average monthly fire occurrence was 0.23, while the vari-

ance was 0.80. The ratio of the variance to the mean was

3.45, showing over-dispersion in the fire occurrence data.

Figure 2 shows the frequency distribution of the observed

counts of the lightning-induced fires, illustrating a large

proportion of zero counts. The zero records contain some

Fig. 1 Map of the study area

(shaded) within the Daxing’an

Mountains in northeast China

Table 1 Descriptive statistics for the occurrence of lightning-in-

duced forest fires (dependent variable) and meteorological factors

(independent or predictor variables)

Variable Mean Variance Minimum Maximum

Fire count 0.23 0.80 0.00 9.00

AMWS (m/s) 2.31 0.50 0.50 4.50

AMP (mm) 38.24 2134.52 0.00 266.20

AMT (�C) -2.16 259.82 -34.00 21.20

AMRH (%) 67.89 98.24 7.00 89.00

AME (mm) 82.64 4887.24 1.70 306.60

AMWS is average monthly wind speed; AMP is average monthly

precipitation; AMT is average monthly temperature; AMRH is

average monthly relative humidity; AME is average monthly

evaporation

Fig. 2 Frequency distribution of the monthly occurrence of light-

ning-induced forest fires over the study period (1980–2005). X-axis

represents the category of monthly fire occurrence number. Y-axis

represents frequency of the category over the study period. The total

number of counts (frequency) used was 704 for model fitting
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‘‘structural (or true) zeros’’ due to absence of lightning

strikes during non-fire seasons and some ‘‘sampling zeros’’

recorded during fire seasons when fire was not recorded

due to the combined effects of meteorological factors but

lightning strikes actually occurred.

Statistical models

Poisson model

The Poisson model is used to model counts of events

during a time period as a function of predictor variables

and is based on the assumption that the conditional mean

equals the conditional variance. The probability density

function (pdf) of the Poisson model is:

P Yð Þ ¼ e�l � lY
Y!

¼ e�l � lY
C Y þ 1ð Þ ð1Þ

where P Yð Þ is the probability that the number of events (Y)

occurs during a time period, and l is the parameter rep-

resenting the expected value of Y; i.e., E Yð Þ ¼ l and

Var Yð Þ ¼ l, and C() is gamma function. The set of pre-

dictor variables X impacts the mean of the response vari-

able l via a link function such that g ¼ g lð Þ ¼ ln Xbð Þ, and
the inverse link function (mean function) is

l ¼ g�1 gð Þ ¼ eXb or ln lð Þ ¼ Xb ð2Þ

where b is the model coefficient to be estimated from data.

Thus, Eq. 2 is a regression model relating the natural

logarithm of the response mean or expected number of

events to the explanatory or predictor variables (Cameron

and Trivedi 1998; Osgood 2000).

Negative binomial (NB) model

The NB distribution can be used for count data with over-

dispersion, i.e., when the sample variance exceeds the

sample mean. The NB model addresses over-dispersion by

including a dispersion parameter to accommodate unob-

served heterogeneity in count data. The NB model used in

this study has the following pdf:

P Yð Þ ¼
C Y þ 1

j

� �

C Y þ 1ð ÞC 1
j

� � 1

1þ jl

� �1=j jl
1þ jl

� �Y

ð3Þ

The mean of Y is E Yð Þ ¼ l and the variance of Y is

V Yð Þ ¼ l þ kl2, where j� 0 which is usually referred

to as the dispersion parameter. Equation 3 allows the

variance to exceed the mean. Consequently, the Poisson

model can be regarded as a limiting model of NB model

as the dispersion parameter j approaches 0 (Miaou 1994).

Given a set of predictor variables X, the link function of

the NB model is also g ¼ g lð Þ ¼ ln Xbð Þ

Zero-inflated models: ZIP and ZINB

Observed count data are frequently characterized by over-

dispersion and many zero counts. Zero-inflated models are

powerful in these situations. Zero-inflated models gener-

ate two models as follows: a logistic model is first gen-

erated for the ‘‘certain zero’’ in order to predict whether a

case would happen. Then, a Poisson or NB model is

generated to predict the counts for the case (C0). In other

words, Zero-inflated models consider two sources of zero

observations: ‘‘structural or true zeros’’ which cannot

score anything other than ‘‘0’’, and ‘‘sampling zeros’’

which are part of the underlying sampling distribution

(either a Poisson model (ZIP) or an NB model (ZINB)).

Zero-inflated Poisson model can be expressed as (Numna

2009):

P Yð Þ ¼
xþ 1� xð Þe�l Y ¼ 0

1� xð Þ e
�llY

Y !
Y � 1 0�x� 1

8
<

:
ð4Þ

The mean and variance of the ZIP model are, respec-

tively, E Yð Þ ¼ 1� xð Þl and V Yð Þ ¼ 1� xð Þ lþ xl2ð Þ,
where x denotes the probability of being an individual

having zero count and l denotes the mean of the under-

lying distribution. Equation 4 shows that the marginal

distribution of Y exhibits over-dispersion if x\ 0, and it

reduces to the standard Poisson model when x ¼ 0

The alternative is that Y has the Zero-inflated NB dis-

tribution, specifically:

P Yð Þ ¼

xþ 1� xð Þ 1

1þ jl

� �1=j

if Y ¼ 0

1� xð Þ
C Y þ 1

j

� �

C Y þ 1ð ÞC 1

j

� �
1

1þ jl

� �1=j jl
1þ jl

� �Y

if Y � 1

8
>>>>>>><

>>>>>>>:

ð5Þ
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where j� 0 is a dispersion parameter that is assumed

independent of covariates. The mean and the variance of

the distribution are E(Y) = 1� xð Þ l and

V(Y) = 1� xð Þ l 1þ ljð Þ þ xl2½ �, respectively. The

ZINB model reduces to the ZIP model in the limit j ! 0

Hurdle models: PH and NBH

Hurdle models, first discussed by Mullahy (1986), are

popular for modeling count data with many zeros. In

contrast to Zero-inflated models, Hurdle models can be

interpreted as two-part models: a logistic model is used to

predict the binary outcome whether a count variable has a

zero or a positive realization. If the realization is positive

(i.e., the hurdle is crossed), a truncated-at-zero Poisson or

NB model is used to predict the conditional distribution of

the positive counts (C1) (Cameron and Trivedi 1998). The

Hurdle model can be expressed as:

P Yð Þ ¼
x Y ¼ 0

1� xð Þ f Y ¼ yð Þ
1� f Y ¼ 0ð Þ Y � 1 0�x� 1

(

ð6Þ

where x is the probability of a zero count and 1� xð Þ is
the probability of overcoming the hurdle. We can define

two Hurdle models by specifying f Yð Þ as a Poisson or an

NB distribution. If we substitute Eq. 1 into Eq. 6 we obtain

the Poisson Hurdle model (PH) as follows:

P Yð Þ ¼
x if Y ¼ 0

1� x½ � e�llY

1� e�lð Þ � C Y þ 1ð Þ if Y � 1

8
<

:
ð7Þ

Alternatively, if we substitute Eq. 3 into Eq. 6 for f Yð Þ
we generate a NBH model as follows:

Model fitting and selection

In this study, the total number of dependent variable

observations was expected to be 936 (12 months 9 3

regions 9 26 years). However, there were some missing

fire records, resulting in 834 observations. A random

sample of 704 observations (84.4 % of the fire occurrence

data) was selected for model development (model

calibration), and the remaining 130 observations (15.6 %)

were reserved for independently testing the model’s pre-

dictive capability (model validation). Five weather vari-

ables were used as the predictor variables, viz. AMWS,

AMT, AMP, AMRH, and AME. The statistical software R

(R Development Core Team, 2005) was used for data

analyses and modeling.

The multicollinearity among the 5 predictor variables

was diagnosed by a variance inflation factor (VIF), with

VIF[ 10 as the threshold or red-flag for multicollinearity

(O’Brien 2007). In addition, we used a stepwise approach

to select significant meteorological factors at the signifi-

cance level of a = 0.05 through the Poisson model. The

theory underlying this approach was that nested models can

be obtained by restricting a parameter to zero in a more

complex model. Because the other five models were all

based on the Poisson model, we were able to use this model

to select significant meteorological factors.

Model assessment and evaluation

(1) The Akaike information criterion was used to evaluate

the goodness of fit of the six models and is defined as

follows:

AIC ¼ �2 log Lþ 2p ð9Þ

where logL is the maximum of the likelihood function for a

fitted model and p is the number of parameters in the fitted

model. The preferred model is the one with the minimum

AIC value (Burnham and Anderson 2004).

(2) While AIC enables comparison of models for

goodness-of-fit, it does not reveal anything about how well

a model fits the data in an absolute sense (Burnham and

Anderson 2004). Thus, we also computed the sum of

squared errors (SSE) to assess the general goodness-of-fit

of each model as follows:

SSE ¼
XN

i¼1

ðYi � ŶiÞ2 ð10Þ

where Yi is the observed count and Ŷi is the predicted count

from the models.

P Yð Þ ¼

x if Y ¼ 0

1� x½ �
C Y þ 1

j

� �

1� 1

1þ jl

� �1=j
" #

C Y þ 1ð ÞC 1

j

� �
1

1þ jl

� �1=j jl
1þ jl

� �Y

if Y � 1

8
>>>>><

>>>>>:

ð8Þ
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(3) A likelihood ratio test (LRT) was used to compare

nested models (i.e., NB vs. Poisson, ZINB vs. ZIP, and NBH

vs. PH) in order to test whether the over-dispersion param-

eter would be necessary. In LRT, the null hypothesis is for

the restricted or constrainedmodel (null model) with the log-

likelihood logLR and degrees of freedom dfR, and the alter-

native hypothesis is for the unrestricted or unconstrained

model (alternative model) with log-likelihood logLU and

degrees of freedom dfU. Then, LRT follows a v2 distribution
such that

D ¼ �2 log
LR

LU

� �

¼ �2 logLR � log LUð Þ � v2;with df¼ dfU � dfR

ð11Þ

(4) The Vuong test is a likelihood ratio based test for

model selection using the Kullback–Leibler information

criterion (Vuong 1989). This statistic makes probabilistic

statements about two models. It tests the null hypothesis

that two models equally approximate the actual model

against the alternative hypothesis that one model more

accurately represents the actual model (i.e., is preferred). It

cannot make the decision that the ‘‘more accurate’’ model

is the true model. Suppose we attempt to test between a

model f YjX; ĥ
� �

(e.g., ZIP) against a model g Y jZ; ĉð Þ (e.g.,
Poisson) Under the null hypothesis that these two models

are indistinguishable, and the test statistic is asymptotically

distributed standard normal, the formula is:

V ¼ 1
ffiffiffi
n

p
logLf YjX; ĥ

� �
� logLg Y jZ; ĉð Þ
-

� N 0;1ð Þ ð12Þ

where -2 ¼ 1
n

Pn

i¼1

log
f Y jX;ĥð Þ
g Y jZ;ĉð Þ

	 
2
� 1

n

Pn

i¼1

log
f Y jX;ĥð Þ
g Y jZ;ĉð Þ

	 
2
;

If V[ 1.648, reject the null hypothesis and conclude that

f YjX; ĥ
� �

is better than g Y jZ; ĉð Þ; if V\-1.648, reject

the null hypothesis and conclude that g YjZ; ĉð Þ is better

than f Y jX; ĥ
� �

; and if |V| B 1.648, we cannot reject the

null hypothesis and conclude that the two models are the

same (Vuong 1989). Thus, the Vuong test can be used to

test between pairs of non-nested models (i.e., ZIP vs.

Poisson, ZINB vs. NB, PH vs. Poisson, NBH vs. NB, ZIP

vs. PH, and ZINB vs. NBH). Using the Vuong test for ZIP

versus Poisson and ZINB versus NB pairings also enables

testing whether the over-dispersion in count data is

attributable to high frequencies of zero counts.

Results

Using the recorded fire occurrence data, the Poisson model

was used as a benchmark model for screening the predictor

variables, with the result that AMWS was not significant at

a = 0.05, while four other meteorological factors (AMT,

AMP, AMRH, and AME) were statistically significant. In

addition, the VIF values of the four predictor factors were all

less than 10, indicating that there was no serious multi-

collinearity among these predictor variables. Thus, we fitted

the other five models (i.e., NB, ZIP, ZINB, PH and NBH)

using these four meteorological factors. The model fitting

results are listed in Tables 2, 3, 4. According to the AIC and

SSE of the six models, the zero-inflated models fitted the fire

occurrence data better than other models. The ZINB model

had the smallest AIC, and the Poisson model had the largest

AIC. The rank order of the model AICs was

ZINB\NBH\ZIP\NB\ PH\ Poisson (Tables 2, 3,

4)

The LRT was used to compare nested models (i.e., NB

vs. Poisson, ZINB vs. ZIP, and NBH vs. PH) and to test if

the over-dispersion parameter in the NB-type models was

necessary. All LRT tests were highly significant (p\ 0.01)

for differences in the three pairs (Table 5). It was evident

Table 2 Parameter estimates,

standard errors (S.E.), and

model goodness of fit statistics

for Poisson and negative

binomial (NB) models

Predictor Poisson model NB model

Parameter estimate S.E. Parameter estimate S.E.

Intercept -1.9960** 0.73991 -0.58104 1.19793

AMP (mm) -0.01228*** 0.00304 -0.01200** 0.00463

AMT (�C) 0.13095*** 0.02255 0.14523*** 0.03400

AMRH (%) -0.02222* 0.01087 -0.04577** 0.01727

AME (mm) 0.00973*** 0.00198 0.009296** 0.00353

Model goodness of fit statistics

SSE 437.65 508.18

AIC 639 538

AMP is average monthly precipitation; AMT is average monthly temperature; AMRH is average monthly

relative humidity; AME is average monthly evaporation; SSE is sum of squares of error; AIC is Akaike

information criterion (the smaller, the better)

* denotes p\ 0.05; ** denotes p\ 0.01; and *** denotes p\ 0.001
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Table 3 Parameter estimates, standard errors (S.E.) and model goodness of fit statistics for the zero-inflated Poisson (ZIP) and zero-inflated

negative binomial (ZINB) models

Predictor ZIP model ZINB model

Zero-inflated portion Count portion Zero-inflated portion Count portion

Parameter estimate S.E. Parameter estimate S.E. Parameter estimate S.E. Parameter estimate S.E.

Intercept -9.2782 5.28,745 -5.6118*** 1.60074 -3391.17 5023.86 -4.46012** 1.49516

AMP (mm) -0.00097 0.00701 -0.01408** 0.00449 -0.6231 0.9278 -0.00803 0.00496

AMT (�C) -0.21864** 0.08344 0.00073 0.03435 -16.703 25.164 0.11247*** 0.03320

AMRH (%) 0.17915* 0.07169 0.07324** 0.02226 45.1346 66.893 0.01791 0.02190

AME(mm) 0.00579 0.53292 0.01209*** 0.00303 2.1863 3.2645 0.01174** 0.00359

Model goodness of fit statistics

SSE 411.06 389.30

AIC 536 487

AMP is average monthly precipitation; AMT is average monthly temperature; AMRH is average monthly relative humidity; AME is average

monthly evaporation; SSE is sum of squares of error; AIC is Akaike information criterion (the smaller, the better)

* denotes p\ 0.05; ** denotes p\ 0.01; and *** denotes p\ 0.001

Table 4 Parameter estimates, standard errors (S.E.) and model goodness of fit statistics for the Poisson hurdle (PH) and negative binomial hurdle

(NBH) models

Predictor PH model NBH model

Hurdle portion Count portion Hurdle portion Count portion

Parameter estimate S.E. Parameter estimate S.E. Parameter estimate S.E. Parameter estimate S.E.

Intercept -1.18491 1.31917 -2.9002* 1.47209 -1.18491 1.31917 -3.55228 2.31646

AMP (mm) -0.00785 0.00483 -0.01375** 0.00461 -0.007850 0.00483 -0.01482* 0.00678

AMT (�C) 0.10417** 0.03534 0.03799 0.03859 0.10417** 0.03534 0.05341 0.05831

AMRH (%) -0.04389* 0.01873 0.03676 0.02285 -0.04389* 0.01873 0.03732 0.03559

AME (mm) 0.01178** 0.00399 0.00746* 0.00314 0.01178** 0.00399 0.00853 0.00500

Model goodness of fit statistics

SSE 425.90 425.53

AIC 542 535

AMP is average monthly precipitation; AMT is average monthly temperature; AMRH is average monthly relative humidity; AME is average

monthly evaporation; SSE is sum of squares of error; AIC is Akaike information criterion (the smaller, the better)

* denotes p\ 0.05; ** denotes p\ 0.01; and *** denotes p\ 0.001

Table 5 The likelihood ratio test (LRT) and Vuong test among the six models, Poisson, negative binomial (NB), zero-inflated Poisson (ZIP),

zero-inflated negative binomial (ZINB), Poisson hurdle (PH) and negative binomial hurdle (NBH) models

LRT

(v2)
NB vs. Poisson 103.4 (p\ 0.0001) ZINB vs. ZIP 50.585 (p\ 0.0001) NBH vs. PH 9.061 (p = 0.0026)

Vuong Poisson versus ZIP NB versus ZINB ZIP versus PH ZINB versus

NBH

Poisson versus PH NB versus NBH

-3.876 (p = 0.00005) -5.519 (p\ 0.0001) 0.995

(p = 0.1598)

4.249

(p\ 0.0001)

-3.708 (p\ 0.0001) -1.781 (p = 0.037)

For the Vuong tests, in each pair of model comparison (model 1 vs. model 2), the positive testing statistic indicated that the model 1 was

preferred over the model 2, while the negative testing statistic indicated that the model 2 was preferred over the model 1
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that the NB-type models (i.e., NB, ZINB, and NBH) were

more suitable than Poisson-type models (i.e., Poisson, ZIP,

and PH) to handle the over-dispersion of the fire occur-

rence data in this study (Table 5).

The Vuong test was used to test between the pairs of non-

nestedmodels. In this study,we comparedZIPversusPoisson,

ZINB versus NB, PH versus Poisson, and NBH versus NB to

test if the over-dispersion in the fire occurrence data was

attributable to high frequencies of zero counts (excessive

zeros). We also compared ZIP versus PH and ZINB versus

NBH to investigate if the excessive zeros were due to two

sources (structure and sampling) or only one source (struc-

ture). The ZIP model was preferred over the Poisson model,

and the ZINB model was preferred over the NB model, indi-

cating that the Zero-inflated models were effective to handle

the excessive zero counts. Similarly, the PH model was pre-

ferred over the Poisson model, and the NBH model was pre-

ferred over the NB model, meaning that the Hurdle models

were also better than the Poisson and NB models at handling

excessive zero counts. There was no difference between ZIP

and PH models, indicating both Zero-inflated Poisson and

hurdle Poisson handled the excessive zeros equally well,

without accounting for over-dispersion. In contrast, the ZINB

model was definitely preferred over the NBHmodel, meaning

that when the over-dispersion was accounted for by the NB-

type models, the ZINB model was a better choice than the

NBH model (Table 5).

Furthermore, the four meteorological factors in the six

models showed some differences (Tables 2, 3, 4). For the

Poisson and NB models, the estimated parameters of four

meteorological factors (AMP, AMT, AMRH, and AME)

were all statistically significant (p\ 0.05) (Table 2). In

these two models, AMP (precipitation) and AMRH (relative

humidity) were negatively related to lightning-induced fire

occurrence, while AMT (temperature) and AME (evapora-

tion) were positively related to fire occurrence. In contrast,

the four meteorological factors behaved differently between

Zero-inflated and hurdle models, as well as between the two

components (i.e., logistic models and count models) of these

models. For example, AMP, AMRH and AME were statis-

tically significant (p\ 0.05) for the count portion of the ZIP

model, while only AMT and AMRH were significant

(p value\ 0.05) for the logistic model (Table 3).

In order to assess the predictive capacity of the six

models, the independent validation data (130 observations)

were used to compare the observed fire counts against the

predictions from the six models. The prediction error was

defined as the difference between observed count and

predicted count. We computed the mean prediction errors

(MPE) for predicting the zero counts and for predicting the

positive counts (C1) for each of the six models (Table 6).

We found that: (1) all models over-predicted (MPE\ 0)

zero counts and the ZINB model was the best (smallest

MPE), followed by the Poisson, ZIP, NB, NBH models,

and the PH model was the worst (largest MPE); and (2) all

models under-predicted positive counts (MPE[ 0) and the

ZINB model was still the best (smallest MPE), followed by

the NBH, PH, ZIP, Poisson models, and the NB model was

the worst (largest MPE). Figure 3 illustrates the observed

frequency of fire occurrence in the 130 validation data

points (bar chart) and predicted frequencies of fire occur-

rence from each of the six models. It was clear that the

Table 6 The mean prediction

error (MPE) of the six models

using the model validation data

(130 observations)

Models

Poisson NB ZIP ZINB PH NBH

MPE for zero counts -0.118 -0.122 -0.119 -0.102 -0.188 -0.182

MPE for count C 1 0.904 0.921 0.758 0.340 0.646 0.593

The mean prediction error is defined as the difference between observed count–predicted count

Fig. 3 The observed and predicted frequencies of fire occurrence for

Poisson, Negative Binomial (NB), Zero-inflated Poisson (ZIP), Zero-

inflated NB (ZINB), Poisson hurdle (PH), NB hurdle (NBH) models

using the 130 validation data
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ZINB model yielded better predictions for both zero counts

and positive counts than did the other five models.

Discussion

The fire season of Daxing’an Mountains usually runs from

April to October every year, and can be extended or

shortened due to the specific meteorological conditions of

the year, as well as the specific geographical areas. In

contrast, forest fire is rare during winter months (e.g.,

November to March), resulting in many zero counts when

we calculated the number of lightning-induced fires for

each month in every annual fire cycle. To avoid dealing

with the zero counts during non-fire seasons, some studies

limited their fire data to active fire seasons (e.g., Mandallaz

and Ye 1997; Martell et al. 1987). In this study, we ana-

lyzed fire occurrence over the full year rather than during

the fire season only, because the fire seasons in the study

area had various lengths from year to year. We anticipated

that analysis of fire occurrence data for the entire year

would be beneficial to capturing the impacts of meteoro-

logical factors on forest fire occurrence.

As described inMethods, the zero-inflatedmodels treat the

zero counts from two sources: the structural zeros that cannot

score anything other than zero, and the sampling zeros that are

a part of the underlying sampling distribution (Poisson or

NB). In this study, we considered that all zero records con-

tained some structural zeros due to no lightning strikes during

non-fire seasons, and some sampling zeros because zero fire

was recorded due to the combined effects of meteorological

factors when lightning strikes actually occurred during active

fire seasons. The zero-inflated models assume that some

lightning strikesmaynot cause a forest fire due to unfavorable

weather conditions, while the Hurdle models presume that

each lightning strike would cause a measurable forest fire.

Consequently, the zero-inflatedmodels performed better than

the Hurdle models in this study.

The ZINBmodel proved to be themost suitable model for

fitting the monthly occurrence of lightning-induced forest

fire in the Northern Daxing’an Mountains. However, rather

than propose a new approach to forest fire prediction, we

attempted to provide comparative assessment and evaluation

so that researchers can effectively deal with the challenges of

analyzing and modeling count data characterized by over-

dispersion and excessive zero counts. Generally speaking, to

some extent the data structure decides themodel application.

Hence, themost suitablemodel can differ if the data structure

of fire occurrence changes. In this study, for example, if we

collected fire occurrence data based on a daily scale instead

of monthly. As a result, the fire occurrence data were more

over-dispersed and zero-inflated. Had we increased the time

scale to a yearly basis, the fire occurrence data would likely

be less over-dispersed and have fewer zero counts. In addi-

tion, more appropriate explanation variables may also affect

the modeling of fire occurrence data. Beside the meteoro-

logical factors used in this study, other factors such as

topography and fuel types and conditions might also be

important. Thus, other useful explanation variables and

various time scales should be taken into account when forest

fire managers and researchers use our results to predict forest

fire occurrence in the future.

Conclusions

Our results showed that, based on the model AIC, the

ZINB model best fitted the fire occurrence data, followed

by (in an order of declining AIC) NBH, ZIP, NB, PH, and

Poisson models. It was possible that excessive zeros

impacted model fitting more than over-dispersion, because

the improvement of model fitting for Poisson vs. ZIP was

more than that for Poisson vs. NB (Tables 2, 3). The ZINB

model proved best for fitting the fire occurrence data and

for predicting either zero counts or positive counts (C1).

The two Hurdle models (PH and NBH) were better than

ZIP, Poisson and NB models for predicting positive counts,

but worse than these three models for predicting zero

counts. The performance of the ZINB model in this study

implied that the excessive zero counts arose from both

structural and sampling sources, i.e., some lightning strikes

occurred, but other environment factors prevented the fire

ignition from developing into a measurable forest fire.
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