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Abstract Biochar-based bioenergy production and sub-

sequent land application of biochar can reduce greenhouse

gas emissions by fixing atmospheric carbon into the soil for

a long period of time. A thorough life cycle assessment of

biochar-based bioenergy production and biochar land

application in Northwestern Ontario is conducted using

SimaPro� Ver. 8.1. The results of energy consumption and

potential environmental impact of biochar-based bioenergy

production system are compared with those of conven-

tional coal-based system. Results show that biochar land

application consumes 4847.61 MJ per tonne dry feedstock

more energy than conventional system, but reduces the

GHG emissions by 68.19 kg CO2e per tonne of dry feed-

stock in its life cycle. Biochar land application improves

ecosystem quality by 18 %, reduces climate change by

15 %, and resource use by 13 % but may adversely impact

on human health by increasing disability adjusted life years

by 1.7 % if biomass availability is low to medium.

Replacing fossil fuel with woody biomass has a positive

impact on the environment, as one tonne of dry biomass

feedstock when converted to biochar reduces up to 38 kg

CO2e with biochar land application despite using more

energy. These results will help understand a comprehensive

picture of the new interventions in forestry businesses,

which are promoting biochar-based bioenergy production.

Keywords Woody biomass � Carbon sequestration �
Environmental impact assessment � Greenhouse gas

emissions � Life cycle analysis � Soil amendment

Introduction

Biochar is a highly porous and stable carbon-rich co-pro-

duct of pyrolysis that has many uses including soil

amendments and long term carbon sequestration (Lehmann

et al. 2006). Pyrolysis is defined as a thermochemical

decomposition process occurring in the absence of oxygen

(Spokas et al. 2012). Although chemically similar, Biochar

differs from charcoal in the sense that it is not used as fuel

(Lehmann and Joseph 2009). In this paper we deal with

biochar produced from woody biomass in a bioenergy plant

using the slow pyrolysis technique, a process that maxi-

mizes production, at 300–500 �C with a vapour residence

time of 5–30 min (Boateng et al. 2010; Bruun et al. 2012;

Sohi et al. 2010). Co-production of bioenergy with biochar,

with the latter’s subsequent application to the soil, has been

suggested as one possible method to reduce atmospheric

carbon-dioxide (CO2) concentration (Lehmann et al. 2006;

Fowles 2007; Laird 2008; Lehmann 2007), thereby miti-

gating the problem of global warming in the long term

(Campbell et al. 2008). However, very few studies have

been conducted to assess the comprehensive environmental

impacts of biochar-based bioenergy production (IBI 2013).
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A comparison of a pyrolysis biochar system (PBS) with

other bioenergy production systems for carbon abatement

found that PBS is 33 % more efficient than direct com-

bustion, even if the soil amendment benefits of biochar are

ignored (Hammond et al. 2011). There are also many

environmental, economic and legal concerns about the

production of biochar and the incorporation of this manu-

factured material into soils on farms, in forests and else-

where in the environment (Kookana et al. 2011). Although

PBS can be a net GHG emitter (Roberts et al. 2010), bio-

char produced from forest residue can significantly reduce

GHG emissions if biochar is used in land application

(Dutta and Raghavan 2014).

Power generation is one of the significant contributors to

current GHG emissions (IEA 2013). As of 2009, the

electricity and heat generation sectors alone contributed

about 9 % of total GHG emissions in the province of

Ontario (OPG 2012). Ontario enacted its green energy act

(MOE 2010) in 2009 with a major milestone of achieving

significant reduction of GHG emissions related to power

production. The province has banned the use of coal in

electricity production by replacing its coal-generating

plants with biomass as feedstock by the end of 2014 (MOE

2010). Accordingly, Ontario Power Generation’s (OPG)

two coal-fired generating stations (Thunder Bay and Ati-

kokan) are being converted to use wood pellets, from

Ontario-sourced forest biomass, as feedstock. The Ati-

kokan station (AGS), with an installed capacity of 230

megawatts (OPG 2012), is now one of the largest 100 %

biomass fuelled power plant in North America (Basso et al.

2013). If wood pellets used for power production are

locally produced, these will have much less impact on

ecosystem quality, climate change, and human health as

compared to fossil fuels, whereas transporting wood pellets

over long distances adds to the GHG emissions, as trans-

portation is estimated to consume about 35 % of total

energy (Dwivedi et al. 2011; Pa et al. 2012). However,

conversion from traditional power generation using fossil

fuel to wood pellets may have both short and long term

unknown (positive or negative) environmental impacts.

Ontario has a large forestland base including 26.2 mil-

lion hectares of boreal forest. A significant proportion of

this (about 18.8 million hectares) is available for intensive

forest management activities (MNR 2014). However,

concerns have been raised about sustainable supply of

woody biomass to produce wood pellets for power gener-

ating stations. As the new operations will require more than

a million metric tonnes of wood pellets annually, the har-

vesting of biomass for wood pellets production could

possibly have negative environmental impacts. Studies on

forest based fibre availability suggest that Ontario has

enough surplus biomass available (Wood and Layzell

2003) to meet the demand. There are 18 actively operating

forest management units in Northwestern Ontario, which

can supply about 2.1 million green tonnes (Finnveden et al.

2009) of forest harvest residue and 7.6 million green tonnes

of underutilized woody biomass for bio-energy production,

assuming an average annual forest depletion rate 0.6 % of

the total productive forest area (Alam et al. 2012).

Use of woody biomass in producing biofuel is becoming

a popular practice elsewhere in the world as agriculture

grain based biofuel is facing food security critics (Elbehri

et al. 2013). Production of biofuel as a stand-alone product

from woody biomass is technically viable but financially

may not be sustainable (Stephen 2013). A trade of between

different co-products of biofuel and biochar is widely

considered as one of the GHG emission reduction strategy

as land application of biochar sequesters the carbon rela-

tively in a very long time. Han et al. (2013) conducted a

life cycle (well-to-wheel) assessment of fast pyrolysis

woody biomass based biofuel and found that biofules can

reduce the GHG emission when co-produced biochar is

applied to the soil.

An effective implementation of biochar as a climate-

mitigating tool would require an application of vast quan-

tities of biochar into the environment (Biederman and

Harpole 2013), which may result in its exposure to non-

target terrestrial and aquatic systems, as wind and water

can erode up to 50 % of applied biochar material during

application (Major et al. 2010). Therefore, a comprehen-

sive study of biochar-based bioenergy production and its

subsequent application to land is required to assess its

potential impacts on environmental and economic param-

eters of the region. Ideally, such a study should include

every stage of production and utilization of the product in

its life cycle. Woody biomass can be converted into

bioenergy (heat or electricity) or energy carriers (char, oil

or gas) by different thermochemical and biochemical

conversion technologies (Van-Loo and Koppejan 2008).

Life cycle assessment (LCA, also known as life-cycle

analysis or ecobalance) is a standard technique (ISO

14040: 2006 series) to assess environmental impacts

associated with all stages of a product’s life from cradle-to-

grave (i.e., from raw material extraction through materials

processing, manufacturing, distribution, use, repair and

maintenance, and disposal or recycling) (Afrane and Nti-

amoah 2011). LCA techniques have been widely applied to

study the impacts of biofuel and bioenergy systems

(Roberts et al. 2010; Steele et al. 2012; Rehl and Mueller

2011; Fantozzi and Buratti 2010; Kilpelainen et al. 2011;

Zhang et al. 2010) in different regions including North-

western Ontario. A few studies have also used LCA to

compare GHG mitigation and direct carbon sequestration

potential of biochar produced from different feedstocks

(Hammond et al. 2011; Roberts et al. 2010; Gaunt and

Lehmann 2008; Woolf et al. 2010). Although these studies
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conclude that all biochar systems have GHG mitigation and

direct carbon sequestration potential, there exists an

inherent trade-off between bioenergy and biochar produc-

tion (Fowles 2007). A recent review (Homagain et al.

2014) also suggested a thorough life cycle study of bio-

char-based bioenergy production.

Therefore, the general purpose of this paper is to collect

and analyse background information using standard meth-

ods, and establish the context within which LCA of biochar

and bioenergy co-production in Northwestern Ontario

could be carried out. The specific objectives are: (1) to

conduct a thorough life cycle inventory of biochar-based

bioenergy production with the use of standard local and

related global databases; (2) to calculate net energy and

GHGs emission of the biochar-based bioenergy production

system; (3) to conduct a life cycle environmental impact

assessment for potential damage in different impact cate-

gories; and (4) to compare the potential environmental

impact assessment results for conventional energy pro-

duction with those for biochar based bioenergy production

and its land application in Northwestern Ontario.

Materials and methods

In this paper, we use International Standards Organisation’s

(ISO) 14040 series standard LCA methodology consisting of

four major steps—goal and scope definition, inventory anal-

ysis, impact assessment, and interpretation (SAIC 2006).

Goal and scope definition

The goal and scope of LCA for this study is to assess the net

energy balance, greenhouse gas emissions and associated

environmental impact s of a biochar-based bioenergy system

and its utilization as a soil amendment to sequester carbon.

LCA system boundary and functional unit

Figure 1 illustrates the life cycle study system boundary

within the solid lines. The dotted lines represent the life

cycle cost analysis (LCCA) boundary which is not covered

in this paper. The unit of analysis is one tonne of biochar

(and one megawatt of equivalent electricity that is gener-

ated) produced from woody biomass processed into wood

pellets. The System boundary, depicted by the solid line in

Fig. 1, extends from raw material collection to the appli-

cation of biochar to the forest, and includes different

interdependent phases including collection, transportation,

storage, processing and pyrolysis with and without land

application. The extended system boundary, depicted by

both solid and dotted lines, is used in the life cycle cost

estimation phase and is not part of this paper.

Study location and case assumptions

The study area lies in Northwestern Ontario Canada, where

the Atikokan Generating Station (AGS) has been converted

from coal to biomass (wood pellet) feedstock. Although

AGS plans to use the combustion process for energy gen-

eration, our study uses a scenario where biomass feedstock

will be converted to biochar using the best available

pyrolysis process in order to illustrate the benefits of bio-

char-based bioenergy production. The input–output data

for the system boundary and unit processes were obtained

directly from the regional forest management unit, forest

management plan, and personal communication with har-

vesters, transporters and other professionals.

Inventory analysis

An ISO standard inventory analysis was performed on

material and energy inputs, air emissions (GHGs), and

other environmental factors using SimaPro 8.1 LCA soft-

ware. Inventory data of the built-in database (Ecoinvent

and USLCI) of SimaPro 8.1 LCA software for input

materials, equipment, processes and emissions was used in

this paper (Table 1).

Raw material collection

Forest harvest residue (FHR), sawmill residue (SMR) and

underutilized trees (UTS) are used as feedstock raw

materials, with each source contributing equally in the

feedstock mix. FHR and SMR are mostly composed of

boreal softwoods (especially SPF-Spruce, Pine, Fir),

whereas UTS consists of hardwoods (e.g. Poplars and

Birch) and some Tamarack.

Transportation at different stages

Northern Ontario forest industry standards for transporting

biomass feedstock from the forest management unit to

storage (average 200 km one-way distance), processed

feedstock from storage to the pyrolysis unit (20 km), bio-

char from the pyrolysis unit to land application (100 km

one-way), and biofuels from the pyrolysis unit to markets

(100 km) are used in the study. The average truck size is 40

tonnes (60 m3) (Hammond et al. 2011) with a load factor of

75 %. Regular gasoline is used as standard fuel type.

Biochar production

The standard biochar production process or ‘‘slow pyrol-

ysis’’ occurs at 450 �C with a 5–30 min vapour residence

time (Brown 2009). The process of slow pyrolysis using

standard wood pellets (moisture content less than 12 %) is
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simulated within SimaPro 8.1 LCA software environment

with the help of Ecoinvent and USLCI databases. A pro-

duct yield of bio-oil 35 %, syngas 30 % and biochar 35 %

by weight of dry feedstock was used for this study

(Brownsort 2009; Ronsee et al. 2013).

Storage

Two different storage stages are considered in the LCA:

(i) storage of biomass feedstock before processing and

pelletizing, and (ii) storage of pellets. Storage of biochar is

not considered in this study, assuming that it will be

applied to land immediately after production.

Land application

Land application of biochar is used to sequester carbon,

and a weight loss of 10 % is assumed during transportation

and application. Application loss in could be as high as

30 % depending on the type of biochar (Major 2010).

Impact assessment

Eco indicator 99 model of SimaPro 8.1 LCA software, one

of the most widely used impact assessment methods in LCA

(Cavalett et al. 2013), is used to assess endpoint damage for

each scenario in this study based on its scope (system

boundary) and available life cycle inventory database

(Goedkoop and Spriensma 2001). Impact categories ana-

lyzed in this study include damages to human health,

damages to ecosystem quality, damages to resources and

climate change in global warming potential terms (Afrane

and Ntiamoah 2011). Damages to human health are caused

by emissions of carcinogens, respiratory effects caused by

the emission of organic and inorganic substances, climate

change, ionising radiation and ozone layer depletion.

Impact assessment unit for this category is disability-ad-

justed-life-years (DALY). According to Jolliet et al. (2003)

DALY characterizes the disease severity, accounting for

both mortality (years of life lost due to premature death) and

morbidity (the time of life with lower quality due to an

illness, e.g., at hospital). Default DALY values of 13 and

1.3 (years/incidence) are adopted for most carcinogenic and

non-carcinogenic effects, respectively. For example, a

product having a human health score of 3 DALYs implies

the loss of 3 years of life over the overall population not the

person (Humbert et al. 2012). Damages to ecosystem

quality are caused by ecotoxic emissions, combined effects

of acidification and eutrophication, and land occupation and

conversion. LCA unit for ecosystem quality damage

assessment is Potentially Disappeared Fraction (PDF) of

species over an area during a certain amount of time

(PDF.m2.yr) (Humbert et al. 2012). This represents the

fraction of species disappeared on 1 m2 of earth’s surface

during 1 year. For example, a product having an ecosystem

quality score of 0.2 PDF.m2.yr implies the loss of 20 % of

species on 1 m2 of earth surface during 1 year (Jolliet et al.

2003). Damages to resources are caused by extraction of

minerals and fossil fuels. Climate change impact in this

study was assessed by the global-warming potential (Afrane

and Ntiamoah 2011) which is a relative measure of how

much heat a greenhouse gas traps in the atmosphere. GWP

Fig. 1 System boundary for

LCA of biochar-based

bioenergy production
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compares the amount of heat trapped by a certain mass of

the gas in question to the amount of heat trapped by a

similar mass of CO2. It is calculated over a specific time

interval, e.g. 20, 100 or 500 years. GWP is expressed

as a factor of carbon dioxide (whose GWP is standardized

to 1).

Table 1 Inventory data and general assumptions of study

Category Component Unit and description Remarks

Raw material Forest harvest residue (FHR) 33.3 % (SPF 80 %, others 20 %)

Sawmill residue (SMR) 33.3 % (SPF 80 %, others 20 %)

Underutilized trees (UTS) 33.4 % (HW 80 %, others 20 %)

Collection Standard roadside FHR 33.3 % This study

Average SMR 33.3 % This study

Cut and carry UTS 33.4 % This study

Transport truck 40 tonne (60 m3) Hammond et al. (2011)

Load factor 75 % This study

Emission factor 0.9 kg CO2e DEFRA (2009)

Fuel type Standard gasoline This study

Transportation distance for biomass

feedstock

200 km Logging road and standard

highway

Transportation distance for land application 100 km Forest road and standard highway

Storage Standard shed Not heated This study

Moisture loss 33 % This study

Processing Grinding and chipping Standard MC 20 % This study

Drying and pelletizing Standard MC 10–12 % This study

Emissions from construction of pyrolysis

plant

0.22 tonne CO2/tonne of dry

feedstock

Elsayed and Mortimer (2001)

Biochar to land transport vehicle 60 m3 capacity truck Mortimer et al. (2009)

Transportation distance 100 km This study

Biochar mean residence time (yrs) 500 Expert judgement

Biochar yield from pyrolysis 33.5 % Brownsort (2009)

Syngas yield from pyrolysis 31.9 % Brownsort (2009)

Oil yield from pyrolysis 34.6 % Brownsort (2009)

Syngas carbon content 30 % Brownsort (2009)

Syngas calorific value 11 MJ/t Brownsort (2009)

Pyrolysis oil carbon content 45 % Brownsort (2009)

Pyrolysis oil calorific value 16 MJ/t Brownsort (2009)

Biochar carbon content 75 % Brownsort (2009)

Biochar calorific value (if burnt) 26 MJ/t Brownsort (2009)

Conversion of C to CO2 44/12 Scientific knowledge

GWP CH4 25 IPCC (2007)

GWP N2O 298 IPCC (2007)

Conversion of N to N2O 44/28 Scientific knowledge

Electrical offsets Coal 939 kg CO2/MWh StatsCan (2012)

Natural gas 405 kg CO2/MWh StatsCan (2012)

Grid average 501 kg CO2/MWh StatsCan (2012)

Kg of CO2/liter of diesel 2.63 StatsCan (2012)

MJ/liter of diesel 38.6 Hammond et al. (2011)

Biomass

availability

High Within 100 km distance This study

Medium Within 200 km distance This study

Low Within 300 km distance This study

SPF Spruce, Pine, Fir HW Hardwood, MC moisture content
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Interpretation

The results from SimaPro 8.1 LCA software were nor-

malized, weighted and interpreted in terms of defined

impact categories within production stages of the System

boundary. In order to understand the effect of changes in

the availability of biomass raw material in future, a sen-

sitivity analysis was carried out. It is likely that biomass

feedstock for wood pellets will experience competition

from other conventional uses. Therefore, the sensitivity

analysis is designed to assess the overall impacts of low,

medium and high availability of biomass feedstock.

Life cycle net energy analysis

Net energy of the system was calculated by deducting the

energy output from the total energy input. Similar previous

studies in different areas of biomass and bioenergy production

(Hammond et al. 2011; Zhang et al. 2010; Papong and

Malakul 2010)were followed to calculate thenet energyof the

system in each stages of production within system boundary.

Results

Life-cycle inventory

Selected key environmental flows for the production stages

of biochar, including land application, are presented in

Table 2. Processing, pyrolysis and transportation, in that

order, utilize the highest total amounts of primary fossil fuel

inputs. Storage and land application account for less than half

these amounts with collection at about 5 % of processing.

With respect to emissions, the order of the largest contributor

changes to pyrolysis, transportation and processing with the

other three stages accounting for less than 10 % of the

amount associated with pyrolysis. Of these emissions, nearly

100 % are accounted for by CO2, SO2, SOx, NMVOC, COD

and phosphate for all stages but pyrolysis. Pyrolysis, which

consists of several internal thermochemical processes con-

verting biomass to char, gas and bio-oil, also results in the

highest levels of CH4, N2O, NOx and nitrate emissions.

Net energy and GHG emissions

Values for net energy and GHG missions for the production

stages of biochar do not differ based on the addition of land

application. Net energy and GHG emissions per tonne dry

feedstock with and without land application of biochar are

therefore presented in Table 3 for comparison. Energy

balance results show that about 1 GJ more energy is con-

sumed when biochar is applied to the land however,

emissions change from a source (-215 kg CO2e) to a sink

(68 kg CO2e) when land application is included.

Transportation and pyrolysis are the largest consumers

of energy while pyrolysis and collection are the largest

generators of energy.

Environmental impacts

SimaPro results for biochar-based bioenergy production

using pyrolysis with and without land application for

Table 2 Life-cycle inventory

for production of 1 tonne

biochar from forest biomass

feedstock

Inventory Collection Transportation Storage Processing Pyrolysis Land application

Primary fossil inputs

Gasoline (GJ) 0.1253 2.0326 0.0015 0.9547 0.5633 1.0327

Natural gas (GJ) 0.0026 0.0195 1.2001 0.9862 1.7960 0.0022

Crude oil (GJ) 0.0025 0 0.0146 0.5630 0.0015 0.0001

Emissions

CO2 (kg) 7.50 118.03 69.94 194.02 135.78 59.52

CH4 (kg) 0.47 0.28 0.58 0.54 12.24 0.06

N2O (g) 0.01 0.05 0.03 0.03 25.36 0.96

NOx (g) 0.05 0.56 0.01 0.02 10.23 0.86

SO2 (g) 5.56 0.19 0.02 1.89 120.23 1.12

SOx (g) 1.26 101.22 0.96 0.56 98.63 0.99

NMVOC (g) 20.36 121.03 11.95 25.33 124.01 10.23

BOD (kg) 0.001 0.001 0.002 2.22 101.65 0.026

COD (kg) 0.001 0.001 0.001 1.22 186.44 0.025

Nitrate (g) 0.001 0.22 0.002 0.96 2.23 0.001

Phosphate (g) 0.001 0.011 0.002 0.88 90.23 0.002

* NMVOC Non-methane volatile organic carbon, BOD biological oxygen demand, COD chemical oxygen

demand
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potential environmental impacts and impact reduction by

each impact category are compared with a conventional

coal-based system and presented in Table 4. Negative

percent variations indicate reductions from the reference

scenario which means that there is a positive environmental

impact. With or without land application, the biochar

production scenario adversely impacts respiratory organics

and inorganics, ionizing radiations, and aquatic acidifica-

tion. However, the impact on aquatic acidification with

land application scenario is less severe than in the pyrolysis

alone scenario. Similarly, aquatic eutrophication changes

with land application improving the situation substantially.

The pyrolysis scenario alone leads to reductions in the

impacts of 9 categories; inclusion of land application

actually reduces this number to 8 with terrestrial ecotoxi-

city and acidification increasing while aquatic eutrophica-

tion declines. The negative impacts of global warming and

non-renewable energy, respectively, are reduced from 18 to

21 % and from 4 to 7 % with land application.

Damage assessment and total impact single scores per

tonne of biochar production within the system boundary

are presented in Table 5. Both scenarios resulted in

reduced impacts on all scores except DALY. Land

application nearly doubles the positive impacts on

ecosystem quality and climate change while improving

resource use by approximately 30 %. DALY increases by

1.69 and 3.39 % with and without land application,

respectively.

Table 3 Net energy and GHG

emissions per tonne dry

feedstock with and without land

application of biochar as

compared to coal based energy

production system

LCA stages Energy (MJ per unit) GHGs (kg CO2e per unit)

Consumption Generation Emitted Reduced*

Collection 1120.26 5015.36 196 201

Transportation 8236.23 -100.23 300 102.02

Storage 1269.23 -56.36 25.1 100.23

Processing 2153.36 123.23 150.32 25.4

Pyrolysis 5623.25 9623.25 96.01 123.98

Without Land Application Net gain/loss -3797.08 Emission change -214.8

Land application 592.36 -458.15 13.32 296.32

With land application Net gain/loss -4847.61 Emission change 68.19

Gain if (?ve) Emitted if (-ve)

* when compared to coal

Table 4 Comparative environmental impact potential per tonne of biochar produced as compared to coal based energy production system

LCA Impact category Unit Conventional

(reference case)

Biochar w/o

land application

Differencea Rank Biochar w/land

application

Differencea Rank

Global warming kg CO2 eq 1.08E ? 00 8.85E - 01 -18.02 1 8.53E - 01 -21.06 1

Aquatic ecotoxicity kg TEG water eqb 4.31E ? 01 4.07E ? 01 -5.49 2 4.16E ? 01 -3.40 5

Mineral extraction MJ surplus 1.08E - 03 1.02E - 03 -5.48 3 1.02E - 03 -5.21 4

Non-renewable energy MJ primary 1.03E ? 01 9.90E ? 00 -3.89 4 9.57E ? 00 -7.11 3

Terrestrial ecotoxicity kg TEG soil eqb 9.44E ? 00 9.17E ? 00 -2.89 5 9.78E ? 00 3.56 9

Terrestrial acidification kg SO2 eq 1.60E - 02 1.56E - 02 -2.76 6 1.67E - 02 4.23 11

Carcinogens kg C2H3Cl eq 2.72E - 03 2.65E - 03 -2.54 7 2.65E - 03 -2.63 6

Non-carcinogens kg C2H3Cl eq 1.53E - 02 1.50E - 02 -1.90 8 1.51E - 02 -1.02 7

Ozone layer depletion kg CFC-11 eq 8.16E - 09 8.07E - 09 -1.06 9 8.16E - 09 -0.03 8

Respiratory inorganics kg PM2.5 eq 6.02E - 04 6.10E - 04 1.40 10 6.31E - 04 4.81 13

Respiratory organics kg C2H4 eq 5.76E - 05 5.95E - 05 3.26 11 5.98E - 05 3.89 10

Aquatic eutrophication kg PO4 P-lim
c 3.16E - 06 3.32E - 06 5.01 12 2.87E - 06 -9.02 2

Aquatic acidification kg SO2 eq 4.22E - 03 4.44E - 03 5.21 13 4.41E - 03 4.62 12

Ionizing radiations Bq C-14 eq 1.25E ? 00 1.34E ? 00 7.00 14 1.34E ? 00 7.20 14

a Percentage change in per unit of environmental impact compared with the conventional (reference) system (Huang et al. 2013)
b TEG water/soil: triethylene glycol into water/soil
c P-lim: into a phosphorus-limited land

Numbers in bold indicates the negative numbers which mean those impact categorieshave less environmental impact as compared to reference

system
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Sensitivity analysis

Sensitivity analysis based on biomass availability was done

to assess the damage for each impact category (Fig. 2).

Impacts decline as biomass availability increases and land

application improves all impacts over pyrolysis alone.

Discussion

Use of woody biomass for biochar-based bioenergy pro-

duction is a relatively new initiative in Northwestern

Ontario. Life cycle assessment inventory and impact

assessment results presented in this paper are based on

Table 5 Life cycle impact points of biochar-based bioenergy per tonne of biochar produced

Impact category Unit Conventional

(reference system)

Pyrolysis Differencea Land application Differencea

Human health DALYb 4.72E - 07 4.88E - 07 3.39 4.80E - 07 1.69

Ecosystem quality PDF*m2*yrc 9.78E - 02 8.90E - 02 -9.00 7.97E - 02 -18.51

Climate change kg CO2 eq 1.08E ? 00 9.91E - 01 -8.24 9.09E - 01 -15.83

Resources MJ primary 1.03E ? 01 9.20E ? 00 -10.68 8.90E ? 00 -13.59

Total pointsd pt 2.51E - 04 2.23E - 04 -11.28 2.14E - 04 -14.92

a Percentage change in per unit of environmental impact compared with reference system (conventional electricity)
b DALY: disability adjusted life years
c PDF: potentially disappeared fraction of plant species
d The total impact single scores of the normalized and weighted damage assessments
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Fig. 2 Sensitivity analysis of biomass feedstock availability for different impact categories. (Horizontal line is the reference case)
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system boundary and the model assumptions made during

the run. Production of biochar-based bioenergy and replac-

ing it with conventional (Faaij et al. 1998) energy production

system adds several activities that may not have been

accounted for in our analysis. We have only accounted for

collection of raw materials (woody biomass), transportation

in different stages, storage, processing (drying, grinding and

pelletization), pyrolysis and land application of biochar in

the system boundary defined for our analysis.

Our assumption of biochar-based bioenergy production

is based on conventional forest biomass transportation,

storage, processing and burning in a modern pyrolysis

plant. Each of these operations requires major consumption

of fossil fuel and has related GHG emissions (Pa et al.

2011; Magelli et al. 2009). The additional GHG emissions

may be reduced by land application of biochar, which is

stable for many years, and also by using bio-oil and syngas

produced in the pyrolysis process to replace fossil fuel in

power generation.

Net energy consumption warrants that the biochar-based

bioenergy system is a net energy consumer, which uses

more energy than it generates. But it will reduce GHG

emissions significantly within the life cycle if biochar is

applied to the land. Xu et al. (2011) also concluded that the

thermal self-sustainability of lab based biochar production

by pyrolysis can be energy negative but with the alternation

in the system and use of advanced technology these losses

can be reduced in the future. Our results of consumption of

3.7 GJ of more energy to sequester 214 kg of equivalent

CO2 is consistent with other studies (Hammond et al. 2011;

Zhang et al. 2010).

Both positive and adverse environmental impacts of

biomass burning are eminent. Among the different kind of

biomass available for burning, forest based woody biomass

are considered environmentally cleaner as they claim that

they are being burned for the power generation instead of

letting them decompose in the nature and they use less

energy input in production. In our results, we found that

most of the impact categories are positively impacted by

biochar production and land application. The most notable

advantage is reduction of global warming potential by 18

and 21 % with either scenario. Some notable adverse

effects are mostly related to human health by exposing to

carcinogenic emissions, respiratory organics and land

pollution but which are pretty low in scale as compared to

similar other disadvantages of burning coal. This adverse

impact is mainly due to the new wood burning scenario and

added biomass transportation in the system boundary

which in the future might be reduced by proper personal

protection instruments and improving pyrolysis plant and

improving transportation efficiency. The damage assess-

ment of the unit process as indicated by LCA and inventory

is mostly positive for each impact category except in

human health. With the improvement of ecosystem quality

by 18 % reducing climate impact by up to 15 % and

reducing non-renewable resource dependency by 15 % in

the life cycle of biochar can easily contribute to compen-

sate this human health impact of 2–3 % DALY. Similar

increase of DALY was also reported by Huang et al.

(2013). Our sensitivity analysis of availability of biomass

also resulted in best performance when availability of

biomass is high in the close area to the pyrolysis plant. It

reflects directly with the reduced transportation and low

loss of energy. It also supports the local use of biomass

resource.

Conclusions

Life cycle assessment of biochar-based bioenergy produc-

tion system with land application of biochar is conducted

within a defined system boundary in Northwestern Ontario.

It is found that (i) biomass collection, transportation and

pyrolysis processes are most energy intensive and account

for about 75 % of the total GHG emissions of the system;

(ii) the net energy of the biochar-based bioenergy system is

negative but it can reduce and GHG emissions with land

application of biochar; (iii) biochar-based bioenergy can

have some adverse impact on human health but it signifi-

cantly reduces the impact of climate change by improving

ecosystem quality and reduction of dependence on non-

renewable resources; and (iv) pyrolysis and land applica-

tion of biochar have most promising positive environ-

mental impacts as compared with conventional coal based

power generation system, if biomass availability is high. In

this paper, we have only accounted for the environmental

impact side of biochar-based bioenergy production, and did

not consider the cost of production and GHG emissions

reduction. Further research should focus on life cycle cost

analysis of the biochar-based bioenergy system, as its

economics are fundamental to the financial sustainability of

the system.
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