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Abstract We used a spatio-temporal shot-noise Cox

process to study the distribution of forest fires reported

between 2006 and 2010 in the Mazandaran Province’s

forests. The fitted model shows that daily temperature,

altitude, and slope-exposure impacted fire occurrence.

Forest fire occurred in the region had an aggregated

behavior, which increased in radius below 1-km away from

fired areas; a periodic pattern of fire occurrence in the

region was verified. The risk of forest fire is significantly

higher for areas with southern exposure and slope between

30� and 50�, northern exposure and slope between 0� and
50�, and eastern exposure and slope between 0� and 30�.
The risk of fire was also significantly higher at altitudes

between 1350 and 3000 m asl. Human causes were the

main ignition source for forest fires in the region. The fire

occurrence rate stayed above average during the drought

period from September 2008 to September 2009. Our

findings could lead to the development of fire-response and

fire-suppression strategies appropriate to specific regions.

Keywords Forest fire � Spatio-temporal shot-noise Cox

processes � Spatial point process

Introduction

Most of Iran is covered in desert and it ranks as the 56th

lowest jungle country in the world. Iranian land cover from

forests is less than 0.25 ha ind-1, considerably less than

international standard 0.8 ha ind-1 (Khosroshahi and

Ghavami 2005). Northern Iran borders the southern shore

of the Caspian Sea, and the regional climate supports a

considerable amount of temperate and dense forest (2.1

million ha out of 14.2 million ha across the country) with

broad leaf trees from the third geological age, which play a

vital role in Iranian ecosystems. Mazandaran Province is

located beside the Caspian Sea (Fig. 1). The forests of

Mazandaran extend to about 1.5 million ha and are the

most significant forests in northern Iran.

Mazandaran forests are mostly located at high altitude

(more than 2500 m asl. in some parts) and as such are low

touched forests. Unfortunately, hundreds of hectares of

these forests are burned every year [about 300–400 ha

(BanjShafieia et al. 2010; HassanNayebi 2003)]. Many

researchers indicate that human activity is the main cause

of fire ignition in the area. The U. N. Food and Agriculture

Organization’s (FAO) reports in 2002 and 2010 stated that

approximately 0.06 % of Iran’s forest burns every year.

Forest fires are an extremely complex phenomenon and

occur naturally from events such as lightning strike, but

there are other causes such as human negligence, accidents

and intentional human activity; for example, arson (illegal

fires started deliberately with malicious intent). Research

into forest fires has been done for many countries including

Iran. Such research has mostly focused on modeling forest
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fires to minimize the impact of expected and unexpected

fires on forests. The spatial pattern of fire occurrence is a

major focus of studies on the dynamics of forest fires and

their role in determining landscape structure and compo-

sition of vegetation species within a forest environment

(Turner and Romme 1994; Guyette et al. 2002; Ryan 2002;

Larjavaara et al. 2005; Mermoz et al. 2005). There are

many inherent stochastic factors that contribute to fire

occurrence; therefore researchers have applied stochastic

models. Moreover, several searches in the U.S. have shown

that fires caused by arson (which accounted for up to 80 %

of all fires reported in the U.S.) cluster in dimensions of

time (Prestemon and Butry 2005), space and space–time

(Gralewicz et al. 2011). This has contributed to the

increasing popularity of spatio-temporal point process

models as an alternative to more computationally

demanding deterministic models.

Studies evaluating histories of fire occurrences began

early in the twentieth century, mostly in the U.S. and

Canada. These early studies analyzed the extent of fire

occurrences (for an excellent review see McKenzie et al.

2000). A large number of studies on forest fires apply a

static analysis rather than attempting a dynamic approach

that takes into account the stochastic spatial distribution of

forest fires. Some of most influential dynamic attempts to

study forest fires include statistical modeling of forest fires

initiated by Dayananda (1977), which introduced stochastic

modeling of the pattern of fire occurrence in a given forest.

Pew and Larsen (2001) analyzed spatial and temporal

patterns of human-caused fires using a GIS dataset. Mar-

tı́nez and Chuvieco (2003) employed a spatial distribution

pattern model to classify Spanish municipalities according

to their actions regarding properties of forest fire. Peng

et al. (2005) used a temporal model to estimate conditional

occurrence of natural fires in a Los Angeles forest. Bril-

linger et al. (2006) evaluated the probability of fires

occurring in some specific points in a Californian forest.

Yang and He (2007) analyzed human-caused fires in a

spatial pattern using the Poisson process model. Amatulli

et al. (2007) reported that fires caused by human activity in

the Arago’n forest were more spatially diffuse than those

caused by lightning. Benavent-Corai et al. (2007) demon-

strated that human impact had important implications in

terms of decreasing inter-event intervals and increasing the

sparking frequency for forest fire modeling. Following the

method introduced by Martı́nez and Chuvieco (2003),

Chas-Amil et al. (2010) employed spatial analysis to

characterize the distribution of causes and motivation for

intentional fire lighting and wild fires in Galicia (north-

western Spain). Couce and Knorr (2010) employed a cel-

lular automata (CA) model to adjust the spatial distribution

of more than 750,000 African wild fires detected in 2003.

Wang and Anderson (2010) used K-function and kernel

estimation methods to determine that annual differences in

spatial patterns of fires caused by humans tended to be

more clustered with more complex spatial patterns than

those caused by lightning. Moreover, the models demon-

strated that human-caused fires in 2003–2007 were highly

concentrated in southern Alberta, Canada, indicating the

existence of an interaction between space and time. Gra-

lewicz et al. (2011) presented a method to identify baseline

expectations and ignition trends between 1980 and 2006

across 1-km spatial units. Jiang et al. (2012) determined

that the traditional Poisson model overestimated fire

occurrence during the fire season (May through August) in

a Canadian forest.

Some interesting research has been done on forest fire

spatial distribution and its impact on Iranian ecology. Azizi

and Yousofi (2009) studied the ecological impact of forest

fires reported between December 16–21, 2005 in forests in

Gilan and Mazandaran Provinces. Mohammadi et al.

(2010) used GIS information with the Analytical Hierarchy

Process (AHP) method to evaluate the impact of vegeta-

tion, physiographic and weather factors, human activity

and distance to rivers and roads on fires in a part of the

Paveh forest. Ardakani et al. (2011) demonstrated that data

generated by the Moderate Resolution Imaging Spectrora-

diometer (MODIS) were a valuable source of data used to

investigate different phases of fire management in Iranian

forests. Following the work of Mohammadi et al. (2010),

Mahdavi et al. (2012) employed the AHP method to study a

forest in Ilam Province.

We employed a spatio-temporal shot-noise Cox process

introduced by Møller and Diaz-Avalos (2010) to: (i) iden-

tify influential and significant factors and covariates that

impact on Mazandaran forest fires; (ii) determine spatial

and temporal structures of fire occurrence in Mazandaran

Fig. 1 Mazandaran Province inside Iranian map
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forests; and (iii) explain spatial and temporal variation in

occurrences of these fires.

In ‘‘Materials and methods’’ section reviews some

concepts of spatial point process modeling, including shot-

noise Cox processes, which play a crucial role in the rest of

this article. In ‘‘Results’’ section gives results from appli-

cation of a spatio-temporal shot-noise Cox process to fires

reported in 2005–2011 in Mazandaran forests, and in

‘‘Conclusion and discussion’’ section presents a discussion

and conclusions based on these findings.

Materials and methods

Spatio-temporal shot-noise Cox-processes

Spatial point processes are a form of mathematical model,

which take into account GIS information to identify

observed spatial pattern in terms of them being random,

regular, or cluster patterns of specific objects in a plane or

in a space. Spatio-temporal point processes are an exten-

sion of spatial point processes that take into account time as

well as space in their models and are termed time–space

processes. Standard practice in analysis of spatio-temporal

point processes is the employment of a first step to form an

estimate of the average function k(u, t) for u 2 R2

(u, t), t 2 Z. This average function can then be employed

to study several properties of the spatio-temporal point

process. Then, if the estimated average function is deemed

to be uniform, kðu; tÞ � k; it is used to investigate inter-

point interactions by estimating various summary statistics

such as the F-function (distribution function for distance

between a given point and the nearest event; for example,

empty space) and the L-function (distribution function for

distance between a given event and a nearest event, say,

nearest-neighbor). These statistics are compared with their

expected values for the homogeneous Poisson point pro-

cess that serves as the null hypothesis of complete spatial

randomness (CSR); that is, absence of an interaction (Ri-

pley 1976; Diggle 1983). Therefore, testing the CSR

hypothesis is an important part of exploratory data analysis

in a spatial point process. If the CSR hypothesis is rejected,

then one proceeds to investigate the spatial correlations in a

given pattern and period of time.

We used the Spatstat package (Baddeley and Turner

2005) available in the R statistical software system for

analysis. A spatio-temporal shot-noise Cox process is a

spatial point process which can be viewed as a doubly

stochastic Poisson process. The time dependent average

function of a spatio-temporal shot-noise Cox process can

be restated as:

k u; tð Þ ¼ k1 uð Þk2 tð ÞS u; tð Þ ¼ k1 uð Þk2 tð Þ

¼
X1

i¼�1

X

q2Uu

w u� q; t � ið Þ
x

ð1Þ

where, k1ðuÞ and k2(t) are non-negative deterministic

functions (which usually are determined by regression

methods, see below), Sðu; tÞ is a spatio-temporal process

with unit mean (i.e., EðSðu; tÞÞ ¼ 1), Uu is a stationary

Poisson process with intensity x[ 0 and wð�; �Þ is a joint

density on <2 � Z with respect to the product measure of

Lebesgue measure on <2 and counting measure on Z. The

kernel wð�; �Þ is separable whenever wðu; tÞ ¼ /ðuÞvðtÞ for
all ðu; tÞ 2 <2 � Z where /ð�Þ is a density function on <2

and vðtÞ is a probability density function on Z. See Møller

and Waagepetersen (2007) for more details on the spatio-

temporal shot-noise Cox processes.

Suppose that some related covariate information about

temporal and spatial components of the observed pattern is

given. Moreover, suppose that such covariate information

can be restated into discrete random variables

V ð1ÞðuÞ; . . .;VðpÞðuÞ for spatial information u and

T ð1ÞðtÞ; . . .; TðmÞðtÞ for temporal information t). Using such

covariate variables, one may consider two following

Poisson regression models for spatial intensity function

k1ðuÞ and temporal intensity function k2ðtÞ

ln k1 uð Þð Þ ¼ b0 þ
Xp

j¼1

XIj

i¼1

b jð Þ
i I V jð Þ uð Þ ¼ i

� �
þ Error ð2Þ

ln k2 tð Þð Þ ¼ a0 þ
Xa

i¼1

ai cosðigttÞ þ
Xb

j¼1

aj sinðjgttÞ

þ
Xm

i¼1

ciT
ið Þ tð Þ þ Error ð3Þ

where, Ið�Þ stands for the indicator function, {1,2,… Ij}

represents support of discrete covariate V ðjÞðuÞ; and gt ¼
2p=365 for years with 365 days and gt ¼ 2p=366 for leap

years. For identifiability of regression coefficients, one has

to impose the bounds that RIj
i¼1b

ðjÞ

i ¼ 0 for all j = 1,2,…
p. Regression coefficients b and a are estimated by least

squares, while the constant coefficient m is determined by

examining the Akaike information criterion (AIC).

For simplicity, this article assumes a separable kernel

with form:

w u; tð Þ ¼ / uð Þ � v tð Þ ¼
exp � uj jj2

2d2

���
n o

2pd2
� 2ðt� � tÞ
t�ðt� � 3Þ ;

t ¼ 1; . . .; t� � 1

ð4Þ

where, last significant lag t* is determined by the auto-

correlation function of the stochastic counting process Nt,

Modeling forest fires in Mazandaran Province, Iran 853

123



which represents the number of observed forest fires in an

interval [0,t].

Inhomogeneous K- and L-functions

Møller and Waagepetersen (2004) introduced the following

inhomogeneous K- and L-functions to investigate existence

of random, regular, or cluster patterns for specific objects

in a plane or space, under shot-noise Cox process Xt.

K r; tð Þ ¼ 2p r
r

0

sgðs; tÞds; L r; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K r; tð Þ
=pi

s

ð5Þ

where, r ¼ jju1 � u2jj and t = |t1 - t2| and g(s,t) is the

cross pair correlation function:

g u1; t1ð Þ; u2; t2ð Þð Þ ¼ 1þ dwHŵ u1 � u2; t1 � t2ð Þ ð6Þ

where H denotes convolution and ŵðu; tÞ ¼ wð�u;�tÞ:
Stoyan and Stoyan (2000) and Diggle et al. (2005)

developed a 95 %-inter-quantile envelope for the

L(r) - r function based upon an MCMC simulation study.

Using such a 95 %-inter-quantile envelope one may test

the null hypothesis, H0: the model fits the data, at the 0.05

confidence level. Whenever the observed L(r) - r function

falls into the 95 %-inter-quantile envelope obtained by

simulating points under the fitted process Xt, one fails to

reject the null hypothesis and concludes that the model fit is

adequate.

Annual data for Mazandaran forest fires

This investigation used data on starting locations of 531

forest fires in Mazandaran forests reported from March

2006 to March 2010 (1826 days). The starting locations of

these fires were used as spatio-temporal points. Calcula-

tions were based on the supposition that the stochastic

counting process Nt stands for the number of daily forest

fires reported in the region. Bessie and Johnson (1995), and

Møller and Diaz-Avalos (2010) processed information on

vegetation type, elevation, slope, exposure and temperature

as covariate information that may impact on a forest fire in

a given forest. Unfortunately, for this study information on

vegetation type was not available from the relevant data-

base. Therefore, this article considers altitude, V 1ð Þ uð Þ;
slope-exposure, V 2ð Þ uð Þ; and average daily temperature

(available at: http://www.mazandaranmet.ir/), of the

region, T(t), as covariate information that may affect a

forest fire in the region. Altitude of the region averages

approximately 1340 m asl. (Fig. 2a, b) and can be classi-

fied into 5 classes (Table 1).

Based on frequencies of slope and exposure, the area

was classified into the 20 slope-exposure categories given

in Table 2 and illustrated in Fig. 2c. The spatial pattern of

started forest fires from March 2006 to March 2010 in the

area has been given by Fig. 2d.

Figure 3 represents average daily temperature, T(t), of

the region (Fig. 3a), the square root of the number of daily

reported fires in the region, i.e.,
ffiffiffiffiffi
Nt

p
; for t 2 ½0; 1826�

(Fig. 3b), and autocorrelation of stochastic counting pro-

cess Nt for different lags (Fig. 3c).

Using the above autocorrelation plot for different lags

(Fig. 3, left panel), one cannot observe any significant

autocorrelation after lag 32. Therefore, t* in Model (3) can

be taken equal to 32.

Results

Using the Spatstat package (Baddeley and Turner 2005,

2006) against starting location of such reported fire along

with the above mentioned covariate variables

V ð1ÞðuÞ; V ð2ÞðuÞ, and power of daily temperature T(t), i.e.,

T ðiÞðtÞ � T ðiÞðtÞ, for i = 1,2,…, m. The spatial intensity

function k1ðuÞ and temporal intensity function k2ðtÞ can be

estimated as the following:

ln k̂1 uð Þ
� �

¼
X5

i¼1

b 1ð Þ
i I V 1ð Þ uð Þ ¼ Ei

� �

þ
X20

i¼1

b 2ð Þ
i I V 2ð Þ uð Þ ¼ SEi

� �
þ Error ð7Þ

ln k̂2 tð Þ
� �

¼ �0:838 cos gttð Þ � 0:330 sin gttð Þ
þ 0:643 cos 2gttð Þ � 0:719 sin 2gttð Þ

þ
X6

i¼1

ciT
ið Þ tð Þ þ Error ð8Þ

where, E1; . . .;E5 and SE1; SE2; . . .; SE20, respectively,

represent values of discrete covariate V(1) and V(2), given

above, and other estimated parameters are given by

Table 3.

The maximum value for the exponent on daily temper-

ature, m = 6, was found by taking the largest value of m

that minimizes the AIC (AIC = 2581.697 for m = 6,

while the AIC equaled 2615.269, 2586.638, and 2581.697

for m = 3, m = 4, and m = 5, respectively). Goodness of

fit of the above spatio-temporal shot-noise Cox process

model in spatial and spatio-temporal approaches was

evaluated using a plot of the L(r) - r function and a 95 %-

inter-quantile envelope obtained from 39 simulations from

the fitted model. Figure 4 illustrates these plots.

Using regression parameters of estimated spatial aver-

age function k1 and temporal average function k2ðtÞ given
by Eq. 2, one can conclude that: (1) risk of forest fire

increased in areas with an altitude between 1350 m to

3000 m above sea level (corresponding to high positive

854 A. T. Payandeh Najafabadi et al.
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values of bð1Þ3 and bð1Þ2 and (2) the risk of forest fire in areas

with a southern exposure and slope gradient of between 30�
and 50�, northern exposure and slope gradient between 0�
and 50� and eastern exposure and slope gradient between

00 and 300 (corresponding to high positive values of

bð2Þ16 ; b
ð2Þ
19 ; b

ð2Þ
3 ; bð2Þ7 ; bð2Þ11 ; b

ð2Þ
1 and bð2Þ6 which are signifi-

cantly higher than other areas.

Figure 4 shows that the L(r) - r function for the spatial

shot-noise Cox model is far away from the edges of its

95 % inter-quantile envelope (Fig. 4a). While the

L(r) - r function for the spatio-temporal shot-noise Cox

model in most regions is close to the center line (red dash

line) of its 95 % inter-quantile envelope (Fig. 4b). There-

fore, one can conclude that the spatio-temporal shot-noise

Cox model provides a more appropriate model compared to

the spatial shot-noise Cox process. Moreover, Fig. 4 also

demonstrates that the pattern of the spatio-temporal shot-

noise Cox model for forest fires in the region is more

aggregated than in an inhomogeneous Poisson process.

Such aggregated spatial distribution dramatically increases

in radiuses below 1 km away from the points for locations

of fires (beginning part of solid line in Fig. 4b). This

specific spatio-temporal and aggregate model verified the

periodic spatial distribution of fire occurrence in the region

and the fact that points close to fire areas have a higher

chance of fire.

Figure 5 is a topographical map and realization graphs

of the above estimated spatial average function k1(u) and
temporal average function k2(u).

Comparing topographic maps of urban and rural regions

in Mazandaran Province (Fig. 1) with the estimated spatial

average function k1(u) (Fig. 5a), it can be concluded that

the risk of forest fire in the eastern half and southwest of

the area (rural and tourist regions) are considerably higher

than the risk in other areas. The rate of occurrence of forest

fires in the period of study can be determined by the esti-

mated temporal average function k2(t) (Fig. 5b). Realiza-
tion of the estimated temporal average function k2(t) is

given by Fig. 5c.

Fig. 2 a Topographic map of urban and rural regions in Mazandaran Province; b elevation map, in meters, above sea level in the area; c the 20
slope-exposure categories; d spatial pattern of started forest fire from March 2006 to 2010

Table 1 Altitude categories classification

Categories Altitude above

sea level (m)

E1 0–1350

E2 1350–2000

E3 2000–3000

E4 3000–4000

E5 4000–5000

Table 2 Slop-exposure categories classification

Topographical

direction

Slop categories

0–15� 15�–30� 30�–50� [50�

Flat SE4 SE8 SE18 SE20

North SE3 SE7 SE11 SE13

South SE5 SE17 SE16 SE19

East SE1 SE6 SE9 SE12

West SE2 SE10 SE14 SE15
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Conclusion and discussion

This article employed a spatio-temporal shot-noise Cox

process to: (i) determine factors that may impact forest fires

and (ii) to identify areas at higher risk of fire in the forests

of Mazandaran Province.

Using the fitted model, one may conclude that: (1) daily

temperature (with polynomial order 6), altitude and slope-

exposure impacted occurrence of forest fires in the region;

(2) forest fire occurrence had an aggregated spatial distri-

bution, which means that points close to areas of fire had

more chance of fire occurrence compared to other areas.

Moreover, fire chance dramatically increased in radiuses

below 1 km away from areas of fire; (3) the risk of forest

fire in the east and southwest of the area (rural and tourist

regions) was considerably higher than the risk in other

areas. These two observations were also reported in other

research by HassanNayebi (2003) and, in a different con-

text by Majidi et al. (2011); (4) fire occurrence was con-

siderably higher in southwest Mazandaran Province (where

elevation was lower than average in the province, at

1340 m above sea level), similar findings were reported in

Ardakani et al. (2011); (5) the rate of forest fire occurrence

stayed above average during drought periods (September

Fig. 3 a Average of daily temperature T(1)(t), for t [ [0, 1826]; b squared root of number of daily reported fire, i.e.,
ffiffiffiffiffi
Nt

p
; for 2 [0, 1826]; and

c autocorrelation stochastic counting process Nt for different lags

Table 3 Estimated parameters

i bi
(1) ci bi

(2)

1 -0.33748 -0.965570 0.48043

2 0.730622 -0.313965 0.87760

3 0.74201 0.1824225 0.84845

4 -0.44034 -0.549500 0.32017

5 -0.64430 -0.480520 0.18730

6 0.122520 0.92247

7 0.65450

8 0.19523

9 0.23502

10 0.76201

11 0.92678

12 -0.19400

13 -0.24170

14 -0.26698

15 0.19775

16 1.13200

17 0.73175

18 0.28710

19 0.94681

20 0.00001
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2008 and September 2009, Tirandaz and Eslami 2012); (6)

the periodic spatial distribution of fire occurrence in the

region has also been reported by the U.N. FAO (2002,

2010); (7) risk of forest fire is significantly decreased in

areas with an altitude higher than 3000 m above sea level.

The Model (7) provides useful spatial and temporal

information that is not obvious or cannot be inferred from

visual examination of raw data. Such quantitative knowl-

edge could lead to the development of fire-response and

fire-suppression strategies appropriate to specific regions

within the province. The fitted model can be improved by

using other general information on fires such as evaluations

for area burned, date and time of ignition, weather condi-

tions, causes and motivation, fire fighting measures and

vegetation type as well as detailed information on the forest

land affected (e.g., ownership, forest biomass of the area

and estimated losses). Unfortunately, such covariate

information was not available in the Iranian forest fire

database. More information would improve statistical for-

est fire models and consequently facilitate better fire

management. Certainly, effective management practice

requires an understanding of the role of biological and

physical factors in patterns of fire occurrence in space and

over time. Moreover, high quality information about

space–time dynamics of fires can be developed by statis-

tical models, which can be applied for long-term resource

management of forest ecosystems and human property

(McKenzie et al. 2000).
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Fig. 4 Observed L(r) - r (solid line indicated by ‘obs’) along with

their 95 % inter-quantile envelopes (grey region indicated by ‘lo’ and

‘hi’) obtained from 39 simulated observations from the fitted shot-

noise-Cox model. Part a shows such L(r) - r from spatial model,

while part b represents such estimations from spatio-temporal model

Fig. 5 a Topographic map of estimated spatial intensity function k1(u); b realization of estimated spatial intensity function k1(u); and

c realization of estimated temporal intensity function k2(u)
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