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Abstract The purpose of this study was to determine a

suitable model for investigating the effects of climate

factors on the area burned by forest fire in the Tahe forest

region, Daxing’an Mountains, in northeast China. The

response variables were the area burned by lightning-

caused fire, human-caused fire, and total burned area. The

predictor variables were nine climate variables collected

from the local weather station. Three regression models

were utilized, including multiple linear regression, log-

linear model (log-transformation on both response and

predictor variables), and gamma-generalized linear model.

The goodness-of-fit of the models were compared based on

model fitting statistics such as R2, AIC, and RMSE. The

results revealed that the gamma-generalized linear model

was generally superior to both multiple linear regression

model and log-linear model for fitting the fire data. Further,

the best models were selected based on the criteria that the

climate variables were statistically significant at a = 0.05.

The gamma best models indicated that maximum wind

speed, precipitation, and days that rainfall greater than

0.1 mm had significant impacts on the area burned by the

lightning-caused fire, while the mean temperature and

minimum relative humidity were the main drivers of the

burned area caused by human activities. Overall, the total

burned area by forest fire was significantly influenced by

days that rainfall greater than 0.1 mm and minimum rela-

tive humidity, indicating that the moisture condition of

forest stands determine the burned area by forest fire.

Keywords Lightning-caused fire � Human-caused fire �
Multiple linear regression � Log-linear model � Daxing’an
mountains

Introduction

Fire is an important disturbance factor in forest ecosystems.

It has significant impacts on the balance of carbon and

energy, regeneration, and forest succession (Johnstone

et al. 2010; Kasischke et al. 2010). The area burned

annually by forest fire causes enormous costs and losses,

and strongly influences decision-making and land-use

planning of the public agencies of natural resources man-

agement in China and in the World. On the other hand,

climate changes and variables have been a well-known

driver of forest fires under various spatial and temporal

scales (Flannigan and van Wagner 1991; Johnson and

Wowchuk 1993; Duff et al. 2005). Thus, a number of

studies regarding the area burned by forest fires and climate

variables have been conducted in the past decades (e.g.,
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Flannigan and van Wagner 1991; Skinner et al. 2002; Duff

et al. 2005; Flannigan et al. 2005; McCoy and Burn 2005).

To date, linear regression models are the most common

approach for modeling the relationships between the area

burned by forest fires and climate changes/variables (e.g.,

Balling et al. 1992; Flannigan et al. 2005; Tymstra et al.

2005). However, some researchers indicated that there were

no significant linear relationships between the fire burned

area and climate variables such as fuel moisture, precipita-

tion, and temperature. Instead, thresholds occurred when the

burned area varied with time based on the changes of tem-

perature and precipitation. The relationships between the

burned area and temperature and precipitation contrasted

with what they were when their thresholds were exceeded

(Schoenberg et al. 2003). Alternatively, researchers applied

logarithmic transformation to fire data, namely log-linear

models, in order to deal with the situations where non-linear

relationships existed between the fire burned area and cli-

mate variables (e.g., Littell et al. 2009). However, a log-

linear model has limited flexibility to linearize non-linear

relationships between variables, because (1) it assumes that

the frequency distribution of the response variable follows a

log-normal distribution, and (2) the relationships between

variables are either exponential (when applying log-trans-

formation on the response variable only) or power (when

applying log-transformation on both response and predictor

variables). It may not be the best choice for modeling the

highly skewed frequency distributions of the response vari-

ables like the area burned by forest fire. Thus, a more flexible

regression model is desirable to investigate the relationships

between the area burned by forest fires and climate variables.

In recent years, generalized linear models (GLIM) have

proved to be a better and more effective approach dealing

with the frequency distributions of response variables that are

grossly departed from normal. GLIM is designed to model

response variables that may follow a general distribution

called the exponential family, which includes normal, log-

normal, binomial, Poisson, beta, gamma, etc. (Myers et al.

2002).GLIM is viewed as a unification of linear and nonlinear

regression models and has three components: a response

variable distribution, a linear predictor that involves a number

of independent or regressor variables, and a link function that

connects the linear predictor to the natural mean of the

response variable. In the situations where the distributions of

response variables are assumed to follow a beta or gamma

distribution, a natural log link function is commonly used to

link the mean of the response variable to the linear predictors.

However, this log transformation of the response mean in

GLIM is fundamentally different from a log transformation

on the observed response variable in a log-linear model. This

is because that log-transforming the mean of the response

variable in GLIM does not alter the error distribution of the

model, whereas log-transforming the values of the response

variable in log-linear models does (Myers et al. 2002). The

two methods of log transformation can lead to quite different

results. In general, log-transforming the response mean

(GLIM) often allows the results to be more easily interpreted,

especially in that mean parameters remain on the same scale

as the measured response variables. It is well known that

gamma distribution is suitable to dealing with heteroskedas-

ticity in non-negative, continuous data, in a way that a log-

linear model cannot do without weighted least squares.

However, gamma modeling remained quite difficult to

conduct until fairly recently when powerful statistical

computing packages became available. The gamma distri-

bution has been applied in many study fields; for example,

it is commonly used in meteorology and climatology to

represent variations in precipitation amount (Wilks 1990).

Littell et al. (2009) analyzed the fire burned area of western

US using gamma-generalized linear regression model.

Their results revealed that both goodness-of-fit and sig-

nificance level of the parameters of gamma model were

superior to those of multiple linear regressions.

The Tahe forest region is located in the boreal forest in

northeast China. This area has experienced high frequencies

of forest fires, resulting in large burned areas annually. To

date, some studies were conducted relating the burned area

in Tahe to climate changes/variables, but all utilized linear

regression models (e.g., Qu and Hu 2007; Zhao et al. 2009;

Yang et al. 2010;Wang et al. 2013). Other regressionmodels

such as GLIM have not been thoroughly compared and

discussed for modeling the fire burned area in the region.

In this study, we applied three regression models to

determine the relationships between climate variables and

the burned area caused by lightning-caused fire, human-

caused fire, and the combination of both. The lighting-

caused fire is induced by lightning strikes. The previous

study showed that the lightning-caused fire of Daxing’an

Mountains mainly occurred in June and distributed in the

elevation of 200–1300 m (Du et al. 2010). The human-

caused fire is that the fire ignitions are directly or indirectly

related to human activities such as smoking, hunting,

fireworks, escaped fire from locomotives and residents’

homes. The three models used in this study were a multiple

linear regression model, a log-linear regression model, and

a gamma-generalized linear model. The model fitting was

evaluated and compared using model statistics such as R2,

AIC and parameter analysis.

Materials and methods

Study area

The study area is the Tahe forest region (52�090–53�230N,
125�190–125�480E) located in northeast China with a total
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forest area of 920,000 ha (Fig. 1). The area belongs to cold

temperate continental monsoon climate. Winter is long,

cold, and dry because of the cold air from Siberia and

Mongolia. The annual sunshine is 2560 h, the annual pre-

cipitation is 428 mm, and the frost-free period is 100 days.

The dominant tree species includes Dahurian larch (Larix

gmelinii Rupr.), accompanied with white birch (Betula

platyphylla Suk.) and Mongolian pine (Pinus sylvestris L.

var. mongolica Litv.). The Tahe forest region has been

suffering high fire disturbances. Thus, the fire prevention is

one of the main responsibilities of the local bureau of forest

management.

Data collection

The Fire Prevention Office of Tahe County (FPOT) is

responsible for collecting and recording wildfire informa-

tion, including fire location, burned area, forest type, cau-

ses, and the dates of forest fires. In this study, the annual

fire burned area of the Tahe region from 1974 to 2009 was

provided by FPOT, which included the area burned by

lightning-caused fire (L-fire), the area burned by human-

caused fire (H-fire), and the total burned area of both causes

(T-fire). We used these three variables as the response

variables in this study.

The corresponding historical climate data of the study

area during the period of 1974–2009 were obtained from

the China Meteorological Data and Sharing Network

(http://cdc.cma.gov.cn/). There is a national weather station

located in the center of the Tahe forest region (Station ID is

50246). The weather data have been recorded continuously

and completely since 1952, except for some missing data

that were caused by accidents such as equipment failures

and natural disasters. In this study, we used the average

meteorological data during the fire season from April to

November. There were about twenty meteorological or

climate variables recorded by the station, and we chose

nine of them in this study, including average precipitation

(PD), average wind speed (WD), average relative humidity

(RH), average temperature (MTE), average maximum

temperature (MAT), days that rainfall exceeded 0.1 mm

(DA), annual hours of sunshine (SH), average maximum

wind speed (MAW), and average minimum relative

humidity (MIRH). The descriptive statistics of the three

response variables and nine independent or predictor

variables were provided in Table 1.

Regression models

We briefly describe the three regression models used in this

study as follows:

(1) Multiple linear regression model Given a set of n

observations on p independent or predictor variables

(X1, X2, …, Xp), and a dependent or response

variable Y, the relationship between Y and Xs can be

regressed as follows:

Y ¼ Xb ¼ b0 þ b1 � X1 þ b2 � X2 þ � � � þ bp � Xp þ e

ð1Þ

where Y is a n 9 1 vector of the observed response

variable, X is a n 9 (p ? 1) known matrix including

a column of 1 (for intercept) and p predictor vari-

ables, b is a p 9 1 vector of unknown model

parameters (including b0, b1, …, bp) that are esti-

mated from data, and e is a random error term with

assumed distribution N(0, r2I), where I denotes an

identity matrix and r2 represents the common error

variance. The ordinary least squares (OLS) estimate

of b is obtained by

bb ¼ ðXTXÞ�1
XTY ð2Þ

where superscript T denotes the transpose of a

matrix. The relationship represented by equation [1]

is assumed to be universal or constant across the

geographic area (Zhang and Gove 2005). Multiple

linear regression models are the traditional approach

to investigating the relationships between fire burned

area and climate variables.

(2) Log-linear regression model An alternative approach

to modeling relationships among variables is to take

natural logarithmic transformation on both response

variable and predictor variables such that

logY ¼ b0 þ b1 � log (X1Þ þ b2 � logðX2Þ þ � � � þ bp

� logðXpÞ þ e ð3Þ

Fig. 1 Map of the location of the study area, the Tahe forest region,

in northeast China
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where log is natural logarithm. This log–log model is

called a log-linear model because the relationships

between the log-transformed variables are linear. Log-

linear models are commonly used (1) to handle the

situations where the relationships between variables

are nonlinear, (2) to transform a skewed frequency

distribution of the response variable into one that is

more approximately normal (in fact, there is a distri-

bution called log-normal distribution defined as a

distribution whose logarithm is normally distributed –

but whose untransformed scale is skewed), and (3) to

stabilize the heterogeneous variance in data. In this

case, the interpretation of model coefficients is given

as an expected percentage change in Y when X

increases by some percentage. Such relationships,

where both Y and X are log-transformed, are com-

monly referred to as elastic in econometrics, and the

coefficient of logX is referred to as an elasticity.

However, the three response variables (L-fire, H-fire

and T-fire) had some zeros (e.g., no area burned by

forest fire in some years). In order to take logarithmic

transformation we used 0.01 to replace 0 for the three

response variables. The effect of these changes on

modeling was trivial.

(3) Gamma-generalized linear model The gamma dis-

tribution belongs to exponential family and is one of

the commonly used distributions in generalized

linear models (GLIM). The probability density

function of gamma distribution can be expressed as:

f Y; c; kð Þ ¼ 1

C cð Þkc Y
c�1 exp � Y

k

� �

Y � 0; c; k [ 0 ð4Þ

where c and k are called shape and scale parameters,

respectively. It can take on a wide range of shapes,

and provides the link between the mean and the

variance through its two parameters such that

l = E(Y) = c�k and r2 = Var(Y) = c�k2.
One of the link functions for gamma-generalized

linear model is natural log as follows:

g lð Þ ¼ log lð Þ ¼ log E Yð Þð Þ
¼ b0 þ b1 � X1 þ b2 � X2 þ � � � þ bp � Xp ð5Þ

The model coefficients of the gamma-generalized linear

model can be estimated by the maximum likelihood

method (McCullagh and Nelder 1989). It is known that

using a log-link function with gamma-generalized linear

models is different from fitting a log-linear model to log-

transformed data because on the log scale the gamma is left

skew to varying degrees, while the lognormal is symmetric.

This makes the gamma-generalized linear model useful in a

variety of situations (McCullagh and Nelder 1989; Myers

et al. 2002).

Model assessment

There are several issues that we had to consider in the

modeling process:

(1) Multicollinearity among independent variables may

result in inaccurate estimation of model coefficients

because a high degree of multicollinearity can

prevent the computation of the matrix inversion in

Eq. (3), which is required for solving for the

estimates of regression coefficients. In this study

the variance inflation factor (VIF) was used as a

Table 1 Descriptive statistics

of dependent and independent

variables

Variable Mean Median Std Min Max Coef. of variation

L-fire (ha) 240.98 3.28 786.53 0.01 4522.00 326.39

H-fire (ha) 10198.37 13.07 60158.07 0.01 361112.93 589.88

T-fire (ha) 10439.35 49.84 60125.11 0.05 361116.98 575.95

PA (mm) 414.64 419.43 87.52 158.76 584.36 21.10

WD (m/s) 2.85 2.90 0.42 2.17 3.73 14.88

RH (%) 65.47 65.40 2.30 60.50 69.16 3.52

MTE (�C) 2.07 2.12 0.84 0.29 4.26 40.87

MAT (�C) 9.74 9.73 0.90 7.67 11.64 9.24

DA (days) 101.27 101.66 8.35 85.66 119.00 8.25

SH (hours) 2033.73 2051.52 162.11 1735.37 2332.33 7.97

MAW (m/s) 11.23 11.37 0.90 9.80 13.52 8.02

MIRH (%) 21.90 21.58 2.15 17.33 26.91 9.81

The L-fire, H-fire and T-fire represent the burned area by Lightning-caused fire, the burned area by human-

caused fire and the total burned area, respectively

PD precipitation; WD wind speed; RH relative humidity; MTE mean temperature; MAT maximum tem-

perature; DA days that rainfall greater than 0.1 mm; SH sunshine hours; MAW maximum wind speed;

MIRH minimum relative humidity
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diagnostic measure to detect the multicollinearity

among the nine predictor s. Generally, VIF = 10 is a

threshold or red-flag on possible multicollinearity in

a multiple linear regression model (Rawlings et al.

1998; Hanna 2002).

(2) Temporal autocorrelation may exist in our fire data

because the response variables (the area burned by

L-fire, H-fire and T-fire) and independent variables

(climate variables) were collected over years (from

1974 to 2009). The temporal autocorrelation in

model errors may result in underestimated standard

errors for the model coefficients, consequently

causing inaccurate hypothesis testing on the model

coefficients. In this study the Durbin–Watson (DW)

test was performed on the residuals of the models to

test on the temporal autocorrelation in model

residuals (Rawlings et al. 1998; Hanna 2002).

(3) If a log-linear model (Eq. (3)) is used to fit the log-

transformed fire data, the fitted log-model yields the

prediction of log(Y). To obtain the desired prediction

of Y, anti-log transformation is needed to convert

log(Y) to Y, i.e., Ŷ ¼ exp log Yð Þ. It is well known that
this back-transformation process introduces bias into

the estimation of Y. Consequently, a correction factor

is typically applied to remove or reduce the bias

(Baskerville 1972). However, Madgwick and Satoo

(1975) finds that anti-log transformation tends to

overestimate Y by applying the corrections factor, and

suggests that the correction factor may be ignored if

the bias from anti-log is relatively small compared to

the overall variation in the estimate of Y.

(4) Model fitting is commonly evaluated by model R2

(Rawlings et al. 1998; Hanna 2002). However, using

R2 to compare two models is meaningful and

appropriate only if the response variables are the

same for both models. In this study, the response

variables were in different scales: Y for the multiple

linear regression model (Eq. (1)) and logY for the

log-linear model (Eq. (3)). Therefore, it was inap-

propriate to compare these two models using the

model R2 calculated by any statistical software. On

the other hand, the model R2 can be written as

(Nakagawa and Schielzeth 2013):

R2 ¼ 1� SSE

SST
¼ 1�

Pn
i¼1 Yi � Ŷi

� �2

Pn
i¼1 Yi � �Yð Þ2

¼ 1� Var eið Þ
Var Yið Þ ð6Þ

where SST is the total sum of squares of the response

variable Y, SSE is the residual sum of squares,

Var eið Þ is the variance of the model residuals,

Var Yið Þ is the variance of the observed Y, and Yi, Ŷ

and �Y represent the observed, predicted, and the

mean value of Y, respectively. We used the model

R2 of Eq. (6) as the assessment for model fitting to

the data in this study. For the log-linear model

(Eq. (3)), the predicted response variable, Ŷ , was

computed by taking the exponential to the predicted

logY by Eq. (3), i.e., Ŷ ¼ exp log Yð Þ.
(5) Akaike Information Criterion (AIC). In recent years

AIC is also popular tomeasure the goodness-of-fit of a

regression model by incorporating both the likelihood

of themodel and a penalty for extramodel parameters.

The following rule is commonly accepted: the smaller

AIC is, the better the model fits the data. Again, using

AIC to compare two models is meaningful and

appropriate only if the response variables are the

same for both models. To compare AIC for the MLP

models against the log-linear models, the probability

density function for the transformed data must be

adjusted (Xiao et al. 2011). The likelihood that the

data are generated from a log-normal distribution can

be calculated based on the following formula:

log L ¼
X
n

i¼1

� log Yi �
1

2
log 2pr2

� �

�

� 1

2r2
log Yi � log Ŷi
� �2

�

ð7Þ

Thus, the AIC of the log-linear model can be com-

puted as:

AIC ¼ �2 log Lþ 2p ð8Þ

where p is the number of model coefficients in the

model.

Results

Our fire data showed that the area burned by three types of

fire-causes had a dramatic variance, which was mainly due

to the extreme fire events in the past. For example, the

human-caused fires (H-fire) in 1987 resulted in nearly

360,000 hectares of burned area. Figure 2 demonstrates

that the lightning-caused fire (L-fire) mostly resulted in

small burned areas (1–10 ha) such that its frequency dis-

tribution is strongly skewed to the right, while the area

burned by human activities (H-fire) was mainly distributed

in 1–10 and 11–100 ha. On the other hand, the frequency

distribution of the total burned area (T-fire) followed a

normal distribution (Fig. 2).

Pearson correlations were computed between the area

burned by three types of fire-causes and nine independent

variables (climate variables). The results showed that only

average maximum temperature was significantly correlated
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with the area burned by human-caused fire and the total

burned area. The scatter plots were drawn to show the

relationships between the area burned by three types of

fire-causes and each climate variable (Figs. 3, 4, 5), which

revealed that there was no obvious linear relationships

between three response variables and independent

variables.

We attempted to model the area burned by forest fire

using nine climate variables, and used the variance inflate

factor (VIF) as the diagnostic measure for multicollinearity

among the nine predictors (Rawlings et al. 1998; Hanna

2002). The resulted showed that VIF of each climate

variable in the models was less than 5, indicating there was

basically no serious multicollinearity among them.

Fig. 2 The frequency distribution of the area burned by different

types of forest fire in the period of 1974–2009. The X-axis represents

the different scales of burned area. The Y-axis represents the

frequency of the burned area at a certain scale. L-Fire is lightning-

caused fire, H-fire is human-caused fire, and T-Fire is total amount of

fires

Fig. 3 Scatter plots of the area burned by lightning-caused fire versus each climate variable. L-fire is lightning-caused fire. The abbreviation of

the climate variables on the X-axis is the same as in Table 1

550 F. Guo et al.
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Given that our fire data were collected from 1974 to 2009,

we conducted the Durbin-Watson (DW) test on the temporal

autocorrelations in the model residuals. The result revealed

that the p-values of the DW tests were[0.2 (definitely larger

than the significance level a = 0.05) for all models of the

three response variables. Thus, there was no temporal auto-

correlation in the data. Although our fire data were collected

over 36 years, the area burned by forest fire seemed more

random, rather than dependent from year to year.

We regressed the three response variables (L-fire, H-fire

and T-fire) to the nine climate variables (i.e., full models) by

each of the multiple linear regression model (Eq. (1)), log-

linear model (Eq. (3)), and gamma generalized linear model

(Eq. (5)). The model fitting statistics, R2, AIC and RMSE, of

the three models were listed in Table 2. The result indicated

that, among the three response variables, L-fire was the worst

one fitting to the fire data. The R2 of the three models was

smaller than 0.1. The AICs of the gamma-generalized linear

models were significantly smaller than those ofMLR and log-

linear models for all three response variables, indicating that

the gamma model fitted each fire data much better than the

other two models when all nine predictor variables were

included (full model). On the other hand, log-linearmodel did

not show any obvious advantages compared to MLR in the

three model fitting statistics (Table 2). In addition, most

predictor variables were statistically insignificant at the sig-

nificance level a = 0.05 in both MLR and log-linear models.

Further, we selected the best models for each response

variable by removing the non-significant predictor variables

one by one at the significance level a = 0.05. For L-fire there

was no bestmodel selected for eitherMLRor log-linearmodels

(i.e., none of the predictor variables was statistically signifi-

cant). Among the best models the AICs of the gamma-gener-

alized linear models were also significantly smaller than those

of MLR and log-linear models for H-fire and T-fire (Table 2).

The details of the gamma-generalized linear best models for

the three response variables (L-fire, H-fire and T-fire) were

examined by the parameter analysis (Littell et al. 2009).

Table 3 provided the sign and significance of the predictor

variables in the gamma full models. Table 4 listed the model

Fig. 4 Scatter plots of the area burned by human-caused fire versus

each climate variable. H-fire is human-caused fire. The abbreviation

of the climate variables on the X-axis is the same as in Table 1.

Because there was a huge inter-annual variation in the fire burned

area, mainly due to an outlier of H-fire in 1987, we reduced the area

burned by H-fire by 100 times, just for plotting purpose (i.e., not did

so in modeling processes). The outlier was represented by triangles
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coefficient estimate and p-values of the predictor variables for

the gamma best models. The indicated that precipitation (PA)

and maximum wind speed (MAW) were negatively related to

the area burned area by lightning-caused fire (L-fire), while the

days that rainfall greater than 0.1 mm (DA) was positively

impacted the L-fire. The mean temperature (MTE) was posi-

tively associated with the area burned caused by human activ-

ities (H-fire), whereas the minimum relative humidity (MIRH)

and days that rainfall greater than 0.1 mm (DA) negatively

impacted the human-caused burned area. For the total area

burned by forest fire, the days that rainfall greater than 0.1 mm

(DA) and minimum relative humidity (MIRH) were the

important climate variables for the fire burned area (Table 4).

Discussion

Our study revealed that the gamma-generalized regression

models were more suitable for analyzing the area burned by

forest fires, especially the human-caused and total burned

area, in the Tahe forest region. Our results were partly in

accordance with the finding by Littell et al. (2009), which

indicated that the gamma-generalized linear models were

generally superior in the southwestern ecoprovinces of

USA, whereas log-linear models fitted data better in the

cooler ecoprovinces. However, we did not find the advan-

tage of log-linear model for fitting our fire data. However,

we did not investigate the applicability of different models

on different ecozones in this study, due to the relatively

small forest region and unique forest type of the study area.

According to other relevant studies in the literature, the

relative humidity is a good indicator of the area burned by

forest fire (Skvarenina et al. 2004; Holsten et al. 2013). In

this study, the similar result was found in the gamma model

on the total burned area and the area burned by human-

caused fire, but not by lightning-caused fire. We also iden-

tified that the average temperature (MTE) of fire seasons was

significantly correlated with the area burned by human-

caused fire, which was supported by Larsen (1996). Some

fire-climate researches in the boreal forest ecosystems

Fig. 5 Scatter plots of the total area burned versus each climate

variable. T-fire is the total burned area. The abbreviation of the

climate variables on the X-axis is the same as in Table 1. Because

there was a huge inter-annual variation in the fire burned area, mainly

due to an outlier of H-fire in 1987, we reduced the area burned by

T-fire by 100 times, just for plotting purpose (i.e., not did so in

modeling processes). The outlier was represented by squares
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around theWorld indicated that the precipitation (PA) was a

significant impact factor on the area burned by forest fire

(e.g., Larsen 1996; Bergeron et al. 2001; Carcaillet et al.

2001; Anderson et al. 2006). Our results showed that the

days that rainfall greater than 0.1 mm (DA) was an impor-

tant factor for the total burn area and the area burned by

human-caused fire, which provided a collateral proof for the

influence of the precipitation. It is worth noting that the

gamma best model showed an opposite influence of DA on

the area burned by lightning-caused fire and human-caused

fire. One possible explanation is that the DA may be a factor

causing more lightning strikes (thus more lightning-caused

fire), but DA may decrease human activities (thus less

human-caused fire occurrence).

In this study, the R2 of all models, including full models

and best models, were less than 0.4, meaning that these

models can only explain limited percent of the total vari-

ations in the three response variables. In other words, these

nine climate variables may not be sufficient to predict the

area burned by forest fire. Other factors such as forest type,

topography, infrastructures or human-activities, may also

significantly influence the fire burned area. On the other

hand, the major tasks of local forest fire management are

actively eliminating forest fires; hence the fire burned area

Table 2 Comparison of full

models and best models of

multiple linear regression model

(MLR), log-linear model and

gamma-generalized linear

model

Response variable Model Full model Best model

R2 AIC RMSE R2 AIC RMSE

L-fire MLR 0.08 496 875 N/A N/A N/A

Log-linear N/A 499 916 N/A N/A N/A

Gamma N/A 263 5046 N/A 255 5030

H-fire MLR 0.38 793 54777 0.30 799 58478

Log-linear 0.08 808 66820 0.003 811 69701

Gamma 0.32 365 57424 0.30 360 58389

T-fire MLR 0.38 793 54771 0.30 799 58465

Log-linear 0.05 809 68127 0.001 811 69711

Gamma 0.24 474 61006 0.20 469 62403

The full model includes all nine independent variables. The best model includes independent variables

statistically significant at a = 0.05

Table 3 Parameter analysis of gamma full model by different response variables

Response variable Model

Type Predictors

L-fire Full model (-)PA**, (-)WD, (?)RH, (-)MIT, (?)MAT, (?)DA**, (?)SH, (-)MAW***, (-)MIRH*

H-fire Full model (-)PA, (-)WD, (?)RH, (?)MTE*, (-)MAT**, (-)DA**, (?)SH, (-)MAW, (-)MIRH**

T-fire Full model (-)PA, (?)WD, (?)RH, (?)MTE, (-)MAT, (-)DA, (?)SH, (-)MAW*, (-)MIRH*

The full model includes all nine independent variables. The best model includes independent variables that are statistically significant at

a = 0.10 (*), or a = 0.05 (**), or a = 0.01 (***). The negative sign (-) and positive sign (?) represent the sign of each model coefficient in the

model. The abbreviation for the predictors is the same as in Table 1

Table 4 Parameter estimates of

the gamma best models by

different response variables

Response variable Predictor variable Coefficient estimate p value

L-fire PA -0.0224 \0.001

DA 0.2428 \0.001

MAW -1.9331 0.003

H-fire MTE 1.7912 0.035

DA -1.9123 \0.001

MIRH -0.2171 0.017

T-fire DA -0.1337 0.005

MIRH -0.5245 \0.0001

The abbreviation for the predictors is the same as in Table 1
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may vary dramatically along with the fire suppression

efficiency.

Besides, there are considerable studies on the association

between climate change and forest fire in the past decade. The

results of these studies almost all revealed the significant

influence of Atlantic Multidecadal Oscillation (AMO),

PacificDecadalOscillation (PDO)/ElNiño (EINino Southern

Oscillation, ENSO) and Palmer’s Drought Severity Index

(PDSI) on the fire frequency and burned area (e.g., Fauria and

Johnson 2008; Collins et al. 2006; Littell et al. 2009; Gillett

et al. 2004; Hess et al. 2001; Hessl et al. 2004). We did not

take the above climate indices into account in this study

because our study areawas relatively small compared to other

studies which were either conducted in North American

(Fauria and Johnson 2008) or western US (Littell et al. 2009).

In our case, the local climate/weather factors can impact local

fire regime more significantly and directly in the study area.

Conclusions

We applied multiple linear regression, log-linear regression

and gamma-generalized linear regression models to

investigate the relationships between the area burned by

forest fire and local climate variables. The results showed

that gamma-generalized linear model was superior to both

multiple linear regression and log-linear regression models

on different causes of forest fires according to the model

fitting statistic tests such as AIC.

Moreover, the best models of the gamma-generalized

linear regression revealed that the maximum wind speed

(MAW), precipitation (PA) and days that rainfall greater

than 0.1 mm (DA) were significantly impacting the area

burned by the lightning-caused fire. The mean temperature

(MTE), minimum relative humidity (MIRH) and days that

rainfall greater than 0.1 mm (DA) were the main drivers of

the area burned by human-caused fire. Overall, the total

burned area by forest fire was significantly influenced by

the days that rainfall greater than 0.1 mm and minimum

relative humidity, meaning the moisture condition of forest

stand will determine the burned area.
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