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Abstract Weused principal component analysis (PCA) and

compressed sensing to detect wood defects from wood plate

images. PCAmakes it possible to reduce data redundancy and

feature dimensions and compressed sensing, used as a clas-

sifier, improves identification accuracy. We extracted 25

features, including geometry and regional features, gray-scale

texture features, and invariant moment features, from wood

board images and then integrated them using PCA, and se-

lected eight principal components to express defects.After the

fusion process, we used the features to construct a data dic-

tionary, and realized the classificationof defects bycomputing

the optimal solution of the data dictionary in l1 norm using the

least square method. We tested 50 Xylosma samples of live

knots, dead knots, and cracks. The average detection timewith

PCA feature fusion and without were 0.2015 and 0.7125 ms,

respectively. The original detection accuracy by SOM neural

networkwas 87 %, but after compressed sensing, itwas 92 %.

Keywords Principal component analysis � Compressed

sensing � Wood board classification � Defect detection

Introduction

Wood defect detection is an important process in wood

board manufacture, and its results directly influence the

quality of wood products. Wood-defect detection includes

image acquisition, image segmentation, feature extraction,

and defect classification (Ruz et al. 2009). In the process of

image acquisition, surface information about the wood

board (Estévez et al. 2003) was collected by an industrial

camera. Pham and Alcock (1998) summarized 32 feature

vectors of four types, including windows, shapes, statistical

value and gray-scale. Ruz et al. (2009) proposed three

methods for feature selection: statistical method, ‘‘leave

one out’’ method, and genetic algorithms. The results

showed that the genetic algorithm has the best effect. Our

previous experiments showed that the following features,

including gray-scale, texture, invariant moment, and ge-

ometry region, could give a complete representation of the

defects (Zhang et al. 2013). However, as various features

lead to complex computation and affect detection speed,

the application of feature fusion becomes necessary.

Classification is a critical process in defect detection

using the MLP neuron network classifier, Pham and Alcock

(1999) analyzed the precision of the classification and

found that the number of neurons in hidden layers had no

obvious influences on the results, yet the final results were

greatly affected by the learning rate. Castellani and Row-

lands (2009) experimented with decoration board classifi-

cation, using a neuron network together with a genetic

algorithm, but it was only effective in recognizing wood

board with a single defect on its surface. When there were

two or more types of defects in the same image, this

method was even less effective.

Gu et al. (2008) proposed a support-vector machine to

classify four kinds of defect, used B-spline to identify the

boundary and area of the defects, and chose internal color,

edge color, and the external color as defect features in

classifying. As the accuracy of the B-spline boundary is

questionable, the speed and accuracy of recognition were

affected. Zhang et al. (2013) proposed defect detection
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based on a SOM (self-organizing map) neural network that

requires fewer training samples.

For improving the accuracy of wood-board defect de-

tection and overcoming the disadvantages of multi-di-

mension and computation complexity, we focused on

feature fusion and classifier design. Through linear trans-

formation, the PCA method could discover data variety

from multi-dimension and reduce the data dimension by

preserving features with the biggest contribution in vari-

ance. Compressed sensing is a signal processing method

proposed by Donoho (2006) and Candes (2006). Signals

are compressed or made sparse through proper transfor-

mation. By calculating the optimized feature matrix, defect

samples are detected. Because complicated training pro-

cesses are unnecessary for the compressed sensing method,

takes less computation time and produces better classifi-

cation results.

Materials and methods

Materials

We focused on three wood board defects: dead knots, live

knots, and wood cracks. The size of the board in our ex-

periment was 40 9 20 9 2 cm. The wood species was

Xylosma. The experiment was conducted in MatlabR2012,

a platform with a 64-bit PC (Corei3, Double-core,

2.25 GHz), and an Oscar F810C IRF camera was used to

obtain experiment images. To make the images clearer, two

parallel LEDs were used for illumination. In addition, 50

8-bit gray levels images of 128 9 128 pixels were used for

training (20 live knots, 20 dead knots and 10 cracks).

Feature extraction and fusion of wood defects

Feature extraction and fusion is the first step in wood defect

identification. The features should include as much defect

information as possible and require less calculation work at

the same time. First, we extracted 25 features of three types

including geometry features, regional features, texture

features, and invariant moment. Then, we conducted fea-

tures normalization, used principal component analysis

(PCA) for feature fusion, and selected features with greater

contribution for defect identification. The extraction and

fusion process is shown in Fig. 1.

We got a complete representation of the defects from 25

features of three types in the wood board images. By ex-

tracting and observing these features, the same type of

defects had similar feature values and different kinds of

defects had different feature values. However, 25 features

contained a large number of repeat information with a

duplicate expression, when feature numbers increased and

the amount of computation work increased. PCA was im-

plemented to exchange and fuse these features and reduce

the number of feature dimensions. Each new feature was

obtained by linear combination and transformation of the

original features which ensured information preserving of

the image. The steps of PCA feature fusion are as follows:

Build the standardize sample matrix X in Eq. 1, where, p

is the feature dimension, and n is the sample number

(n[ p).

Xn�p ¼

x1

x2

..

.

xi

..

.

xn

2
666666666664

3
777777777775

¼

x1;1; x1;2; . . .; x1;p

x2;1; x2;2; . . .; x2;p

..

.

xi;1; xi;2; . . .; xi;p

..

.

xn;1; xn;2; . . .; xn;p

2
666666666664

3
777777777775

T

; i ¼ 1; 2; . . .; n

ð1Þ

Use Eq. 2 to standardize transform sample X, and then

obtain standardized matrix Z.

Construct Feature 
Normalization

Obtain covariance matrix

Calculate characteristic
Value and

Characteristic  vector

Calculate contribution rate

Obtain the principle 
component

Obtain features for detection

Feature 
Normalization

Feature Extraction

Defect image

Image segmentation

Geometry and regional 
features

Gray -scale texture features

Invariant moment feature

PCA fusion

The results of feature 
fusion

Fig. 1 Flow diagram of feature extraction and fusion
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zi;j ¼
xi;j � xj

sj
; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; p ð2Þ

xj ¼

Pn
i¼1

xi;j

n
; s2j ¼

Pn
i¼1

xi;j � xj
� �2

n� 1
ð3Þ

Calculate covariance matrix R of standardized matrix Z.

R ¼ ZTZ

n� 1
; and ri;j ¼

Pp
j¼1

Pn
k¼1

zj;k � zk;j

n� 1
; k ¼ 1; 2; . . .; n;

i; j ¼ 1; 2; . . .; p ð4Þ

Calculate eigenvalue k and eigenvector a of character-

istic equation R� kEj j ¼ 0
!

with covariance matrix R.

Rerank the eigenvalue by descending order and obtain k,
calculate the contribution and cumulative contribution of

each principal component by Eqs. 5 and 6.

The contribution of each principal component is Eq. 5:

ni ¼
ki

Pp
j¼1

kj

; i ¼ 1; 2; . . .; p ð5Þ

The cumulative contribution is Eq. 6:

mi ¼

Pi
j¼1

kj

Pp
j¼1

kj

; i ¼ 1; 2; . . .; p ð6Þ

Choose the first k principal components which cumula-

tive contribution can reach the pattern recognition need and

transform matrix E is obtained by Eq. 7:

E ¼ a1; a2; . . .; ak½ � ð7Þ

Calculate final principal components Y, and Y is the final

input of the defect classifier.

Y ¼ E � X ð8Þ

Defect detection based on compressed sensing

In applying compressed sensing to wood classification, we

used optimized feature vectoring as the sample sequence

and training samples to create a data dictionary, and tested

samples linearly by training the samples. When the sparse

representation vector of test samples in the data dictionary

was calculated by solving optimization problem under the

l1 norm, the classification result was obtained.

With compressed sensing, when a signal is sparse in

certain transformation domains, an observation matrix,

which is irrelevant to the transformation basis, will project

the multi-dimensional information obtained by the trans-

formation into low-dimensional space. Then, by solving a

convex optimization problem, an original signal is recon-

structed from these few projections of high probability

(Donoho 2006; Shi et al. 2009).

First, assume x as one-dimension discrete time signal of

a real value with limited length, and can be used as a

sequence vector of n� 1 dimensions. If matrix w and

vector a exists and Eq. 9 is meaningful, then x is sparse in

domain w.

x ¼ wa ð9Þ

where, w is the orthogonal transformation basis called a

sparse matrix, and w 2 Rn�n. The transformation coefficient

of x in domain w, a, is a 2 Rn�1, the number of nonzero

values is far less than the number of signal dimensions.

If the signal is projected onto a matrix of u, which has

no relationship with the transformation basis, the observed

signal y is obtained through Eq. 10.

y ¼ /x ¼ /wa ð10Þ

where, / is the observation matrix, and / 2 Rm�n: y is the

observation vector, and y 2 Rm�1.

Finally, by deriving the optimized l0 norm of Eq. 11, we

obtain a1, which is the exact or approximate solution of a.

min a1k k0 s:t: y ¼ /x ¼ /wa ð11Þ

Equation 11 is an undetermined equation. According to

compressed-sensing theory, if the signal is sparse enough,

the question of minimum can be transformed into deriving

the l1 norm of Eq. 12, a process of convex optimization. By

solving the problem of linear programming, the original

signal is reconstructed from N observation values.

min a1k k1 s:t: y ¼ /x ¼ /wa ð12Þ

If f
j
i is the feature vector of image j of wood type i, and

f
j
i is one row of training samples, then Ai ¼ ½f 1i ; f 2i ; . . .;
f mi �;Ai 2 Rn�N represents samples of wood type i. The f

j
i in

this matrix is the feature vector, and f
j
i 2 Rn�1, m is the

number of training samples of wood type i.

The data dictionary matrix composed of three types of

training samples is shown in Eq. 13:

A ¼ ½A1;A2;A3� ð13Þ

If the number of training samples of wood type i is

adequate, then the feature vector of test image y can be

represented by linear combination of training samples Ai

which belong to wood type i, that is:

y ¼ a1i f
1
i þ a2i f

2
i þ � � � þ ami f

m
i ¼ Aiai ð14Þ

where, y is the feature vector of the test image, and

y 2 Rn�1; the ai here is the vector of linear representation

coefficient, and ai 2 Rn�1.

If we apply the above equations to the whole data dic-

tionary matrix A, then:
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y ¼ Aa ð15Þ

where, a is sparse vector, and N is the total amount of

samples.

a ¼ ð0. . .0; . . .; a1i ; a2i ; . . .; ami ; . . .; 0. . .0Þ
T ; a 2 Rn�1 ð16Þ

If the test samples are of type i, except for the only

m data that represent the feature of wood type i, then all

other data in vector a are 0. In other words, as the number

of values which are not 0 in a is much less than the number

of signal dimensions, a is a sparse vector, and the above

process is considered the sparse decomposition of test

samples.

The classification process of unknown test samples is as

follows: put test sample feature y into Eq. 16 in which

y 2 R
n�1

and A 2 Rn�N , and acquire sparse vector a by

solving Eq. 16. Here, Eq. 16 is an undetermined system of

equations, and a vector is a sparse vector. According to

compressed-sensing theory, the exact solution or ap-

proximate solution of a can be obtained by solving the

optimization problem of Eq. 17 of l1 norm. The e in this

Eq. 17 is the error threshold. In actual application, the

sample type is determined by the non-zero item in a1.

a1 ¼ argmin ak k1 s:t: Aa� yk k� e ð17Þ

Results and discussion

Classification steps

The defect classification experiment is shown in Fig. 2,

including image collection, morphology segmentation,

feature extraction, feature fusion, classifier design, and

result assessment.

The defect images are read by Matlab12; for example,

Figs. 3, 4, 5 represent live knot, dead knot, and crack, re-

spectively. To reduce the computation work and increase

the speed of computation, all color images are transferred

into gray-scale images and changed to standard pictures of

128 9 128 pixels.

Mathematical morphology is an image-processing

method based on geometry with the advantages of con-

tinuous image skeleton, fewer breaking points, and rapid,

Image 
Collection

Morphological 
Partition

Feature 
Integration

Classifier 
Design

Result 
Assessment

25 Detailed 
Features of 3 

Types

PCA Principal 
Componet 
Analysis

Classifier Based 
on Compressed 

Sensing

Feature 
Extraction

Fig. 2 The flow diagram of defect classification

Fig. 3 Live knot

Fig. 4 Dead knot
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exact image segmentation (Zhang et al. 2014a, b). Using

this method, the exact defect targets are separated from the

background. The results of segmentation are shown in

Figs. 6, 7, 8.

Calculate 25 features when segmentation is over and

then normalize them. According to Eqs. 1–4, PCA maps

high dimension features to low dimension spaces, and find

eigenvalue k and eigenvector a by covariance matrix R. k
is obtained by re-ranking eigenvalue k in descending order.

The variance of data is reflected by corresponding

eigenvalues. Over different spaces with the same dimen-

sionality, the space spanned by the eigenvectors corre-

sponding to the larger eigenvalues carries the most

variance. From Eqs. 5 and 6, contribution of each principal

component ni and cumulative contribution mi can be ob-

tained (Table 1).

The top eight principal components can reach a

cumulative contribution of more than 95 %; there-

fore, those components are selected as the input of the

classifier.

After the determination of principal components, cal-

culate its means and build the data dictionary A by the 50

training samples. The data dictionary A of three types of

defects is shown as follows:

A ¼

0:0196 �0:0209 0:0026
�0:0554 0:0953 �0:0798
0:1942 0:0494 �0:4873
�0:0310 �0:1350 0:3320
�0:0254 0:0730 �0:0951
0:0469 �0:2613 0:4287
2:1204 �1:3704 �1:5000
0:1216 2:4125 �5:0683

2
66666666664

3
77777777775

ð18Þ

Figures 3, 4 and 5 are employed as testing samples.

Extract 25 features from the segmented images of Figs. 6,

7, 8, and then calculate the principal components from

defect features by PCA transformation. The principal

components of the three test samples are represented by hT,

sT, and lT, respectively, as follows:

Implement classification in accordance with Eq. 17, and

obtain aTAi
with the least square method:

aTAi
¼

aTh
aTs
aTl

2
64

3
75 ¼

1:2905 0 0

0 1:1643 1:1361
0:2891 0:1522 1:5256

0
@

1
A ð20Þ

Fig. 5 Crack Fig. 6 Segmentation result of live knot

bTi ¼
hT

sT

lT

2
64

3
75 ¼

�0:6562 1:1239 1:3018 0:4471 �1:5050 0:4266 2:2168 �1:3436
0:7192 �0:2315 1:4465 0:3311 3:1868 0:8269 �1:9511 2:0005
0:1405 0:5189 0:0203 1:0183 1:6230 2:1236 �3:9129 �4:8866

2
4

3
5 ð19Þ
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The sample type is determined by the maximum value in

aTAi
. According to aTAi

, we see that the classification results

of Figs. 3, 4, 5 are live knot, dead knot and crack,

respectively.

The effective test of the PCA feature fusion

To verify the necessity of feature selection, we carried out

defect-detection comparison tests between the PCA fea-

ture-fusion and variance selection methods (Peck and

Devore 2005). We used 50 sample images of live knots,

dead knots, and cracks for feature selection and

classification. In the process of variance selection, we

chose features according to their variances for the between-

sample dispersion and divisibility, as determined by feature

variance. The classification results of the variance selection

and PCA methods are shown in Table 2.

In Table 2, the recognition rate without the feature se-

lection step is 68 %, and the time required for recognition

is 0.7125 ms. The PCA method has the best recognition

rate at 92 %, and its recognition time is 0.2015 ms.

Therefore, the feature selection can not only reduce iden-

tification time, but also increase the recognition rate.

Fig. 7 Segmentation result of dead knot

Fig. 8 Segmentation result of crack

Table 1 Contribution of each principal component

No. Individual

contribution rate

Accumulative

contribution rate

1 0.4608 0.4608

2 0.1671 0.6279

3 0.1622 0.7901

4 0.0639 0.8540

5 0.0464 0.9004

6 0.0292 0.9296

7 0.0174 0.9470

8 0.0140 0.9610

9 0.0121 0.9731

10 0.0062 0.9793

11 0.0054 0.9847

12 0.0050 0.9897

13 0.0030 0.9927

14 0.0028 0.9954

15 0.0014 0.9968

16 0.0012 0.9980

17 0.0008 0.9988

18 0.0006 0.9994

19 0.0002 0.9996

20 0.0002 0.9998

21 0.0002 1.0000

22 0.0000 1.0000

23 0.0000 1.0000

24 0.0000 1.0000

25 0.0000 1.0000

Table 2 Result of feature comparison

Feature

selection

method

Correct

recognition

False

recognition

Recognition

rate (%)

Average

classification

time (ms)

Not

selected

34 16 68 0.7125

Deviation

selection

41 9 82 0.0861

PCA fusion 46 4 92 0.2015
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The classification test of compressed sensing

classifier

To test the performance of the classification method pro-

posed in our study, we used the neural network classifier

(Candes 2006). As the SOM neural network requires fewer

training samples with higher classification accuracy, SOM

was compared with compressed sensing in our experiment.

Live knots, dead knots, and cracks for 50 test images were

classified, and the accuracy and time of classification are

shown in Table 3.

As shown in Table 3, step-by-step iterative computation

is necessary in the process of SOM classification: each step

may influence the computation results, so the SOM classifier

has limits on recognition and time consuming. However, the

wood defect recognition based on compressed sensing

doesn’t require complex computation. The time required for

recognition is significantly reduced, while the exactness of

recognition has improved by 5 % over the SOM classifier.

Conclusion

Focusing on the complexity of wood-board surface defect

information, we proposed a new defect feature fusion

method by performing PCA on the high-dimension fea-

tures. Then, we built a compressed sensing classifier to

construct the data dictionary of typical samples, and ob-

tained an optimized solution using the least square method.

The results of simulation experiments reveal that the PCA

fusion method can give a more complete representation of

the defect information. Compared with the SOM neural

network algorithm, the compressed sensing classifier has

several advantages: fewer parameters, better flexibility,

less computation time, and higher classification exactness.

Therefore, the defect classification algorithm based on

PCA fusion and compressed sensing can effectively in-

crease the speed and exactness of wood-defect detection.
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