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Abstract:  We investigated a strategy to improve predicting capacity of 

plot-scale above-ground biomass (AGB) by fusion of LiDAR and Land-

sat5 TM derived biophysical variables for subtropical rainforest and 

eucalypts dominated forest in topographically complex landscapes in 

North-eastern Australia. Investigation was carried out in two study areas 

separately and in combination. From each plot of both study areas, LiDAR 

derived structural parameters of vegetation and reflectance of all Landsat 

bands, vegetation indices were employed. The regression analysis was 

carried out separately for LiDAR and Landsat derived variables indi-

vidually and in combination. Strong relationships were found with LiDAR 

alone for eucalypts dominated forest and combined sites compared to the 

accuracy of AGB estimates by Landsat data. Fusing LiDAR with Landsat5 

TM derived variables increased overall performance for the eucalypt 

forest and combined sites data by describing extra variation (3% for 

eucalypt forest and 2% combined sites) of field estimated plot-scale 

above-ground biomass. In contrast, separate LiDAR and imagery data, and 
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fusion of LiDAR and Landsat data performed poorly across structurally 

complex closed canopy subtropical rainforest. These findings reinforced 

that obtaining accurate estimates of above ground biomass using remotely 

sensed data is a function of the complexity of horizontal and vertical 

structural diversity of vegetation. 

 

Keywords: Fusion, above-ground biomass, LiDAR, multispectral data, 

subtropical plant communities 
 
 
Introduction 
 
Forest ecosystems exert considerable influence on global carbon 
cycles through the flux and storage of carbon in plant biomass 
(Chave et al. 2005). Plant biomass in forests is distributed above 
and below ground, and is the total amount of biological material 
present above the soil surface in a specified area. Tree biomass is 
useful, for example, in assessing forest structure and condition 
(Westman et al. 1977; Specht et al. 1999), to estimate forest 
productivity and carbon fluxes based on sequential changes in 
biomass (Chambers et al. 2001) to provide a means of assessing 
sequestration of carbon in wood, leaves, and roots (Specht and 
West 2003), and also as an indicator of both the biological and 
economic value of a forest ecosystem. Thus, estimation of forest 
biomass at different geographical scales (from local to global) 
becomes significant in reducing uncertainty of carbon emission 
and sequestration, understanding its role in influencing soil fer-
tility, measures of land degradation or restoration, and under-
standing the roles a forest plays in environmental processes and 
sustainability (Foody et al. 2003).  

Remotely sensed data such as Light Detection and Ranging 
(LiDAR) and multispectral satellite data can be effectively used to 
estimate above-ground biomass (AGB) of forested landscapes. 
With the increasing availability of multispectral space-borne high 
resolution systems in recent years interest rose on estimation of 
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forest biomass in small scale and landscape scale in natural and 
plantation forests (Foody et al. 2001, Lu and Batistella 2005 ). 
Additionally, LiDAR has proven to have potential to estimate 
AGB at individual tree level (Bortolot et al. 2005; Popescu 2007) 
and at plot- scale (Riggins et al. 2009; Latifi et al. 2010). Advan-
tages of estimating biomass using remote sensing include the 
ability to obtain measurements from any location in a forested 
area, the speed with which remotely sensed data can be collected 
and processed, the relatively low cost of various remote sensing 
data, and the ability to collect data easily in extensive areas con-
taining diverse topography. 

In order to estimate AGB of structurally complex subtropical 
rainforest and eucalypt forest in rugged terrain, this study is fo-
cused on both LiDAR and Landsat5 TM data. It is assumed that 
combination of LiDAR and Landsat data gain strength of both 
technologies which will improve predictions of AGB on areas 
influenced by topographic and microclimatic variations in com-
plex forests. LiDAR represents one of the best sources of infor-
mation for investigating vegetation structural parameters (e.g. tree 
height, crown area, foliage cover) and provides detailed informa-
tion on vertical profiles of vegetation. Landsat-data is a powerful 
source of data on spectral information of land use and landcover, 
allowing the detection of vegetation structure and structural 
changes in the vegetation. There have been a number of studies 
examining the fusion technique to estimate plot-scale forest 
volume and biomass integrating small foot print LIDAR with 
multispectral satellite data in deciduous and pine forests (Popescu 
et al. 2004). Similarly Latifi et al. (2010) estimated timber volume 
and biomass using a non-parametric method in a temperate forest 
combining LiDAR and Landsat data. Tonolli et al. (2011) com-
bined LiDAR with IRS 1C LISS III derived biophysical variables 
to estimate plot-scale timber volume in the Southern Alps. Hudak 
et al. (2006) integrated LiDAR and multispectral data to model 
and map basal area and tree density across two diverse coniferous 
forests. Additionally, Jensen et al. (2008) improved LiDAR based 
plot-scale Leaf Area Index (LAI) quantifying capacity by adding 
SPOT derived vegetation indices.  
In general, estimation of AGB in structurally complex tropical and 
subtropical forests, much uncertainty remains regarding estima-
tion accuracy (Lu et al. 2012). Furthermore, estimation of the 
plot-scale AGB of tropical and subtropical forests in topographi-
cally complex terrain has been poorly investigated. We assumed 
that employment of data fusion would improve estimation of plot- 
scale AGB as it comprises vertical and horizontal information of 
vegetation structure derived from LiDAR and multispectral data 
even in areas such as structurally complex vegetation on rugged 
topography. The purpose of this study is to improve the capacity 
of estimating plot-scale AGB for eucalypt dominated forest and 
subtropical rainforest by fusion of small footprint LiDAR and 
Landsat5 TM multispectral data. The study translates into two 
more targeted objectives: (1) the capability of LiDAR derived 
structural parameters of vegetation (LiDAR variables)  and 
Landsat5 TM variables to estimate measured plot-scale AGB, and 
(2) the extent to which combining of Landsat5 TM and LiDAR 
derived variables may improve estimates of AGB in 
topographically dissected landscape. A unique characteristic of 

this vegetation is the floristic variation in relation to the changes in 
topography by distributing sclerophyll forests (eucalypt domi-
nated), particularly on the ridges or upper slopes, and subtropical 
rainforests restricted to the gullies or lower slopes (Florence 1996). 
Therefore, data were analysed in both plant communities sepa-
rately and in combination. 
 
 
Material and methods 
 
Study areas 

 
Two study areas were located in New South Wales (NSW), Aus-
tralia (Fig. 1) including the Richmond Range National Park 
(RRNP) (28.69º S, 152.72º E) and the Border Ranges National 
Park (BRNP) (28.36º S, 152.86º E). The elevation of RRNP 
study area ranges from approximately 150 m to 750 m above 
mean sea level with an average slope of 27º. Annual rainfall is 
approximately 1200 mm and the average temperature ranges in 
the winter is 12–21 °C and 25–31 °C in the summer (Bureau of 
Meteorology 2010).  

 
Fig. 1: Location map of the Border Range National Park and the Rich-

mond Range National Park plots and LiDAR acquisition areas, New South 

Wale 

 

The RRNP is an open canopy eucalypt-dominated forest with 
30%–70% Foliage Projective Cover (FPC). The Foliage Projec-
tive Cover is defined as the vertically projected percentage cover 
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of photosynthetic foliage of all strata (Specht et al. 1999). In order 
of dominance by per cent basal area eucalypts species found in the 
RRNP, include Corymbia maculata, Eucalyptus propinqua, E. 
siderophloia, and Lophostemon confertus. The understorey is 
mainly covered by native grass and shrub species. The elevation 
of the BRNP study area ranges from approximately 600 m to 1200 
m above mean sea level with an average slope of 36°. Annual 
rainfall is approximately 3000 mm, and the average temperature 
ranges 3–19 °C in the winter and 15–31 °C in the summer (Bureau 
of Meteorology 2010). The BRNP is a tall closed canopy sub-
tropical rainforest with 70%–100% FPC (Specht et al. 1999). The 
most common species based on proportional basal area are 
Planchonella australis, Heritiera actinophylla, Sloanea woollsii, 
Geissois benthamiana and Syzygium crebrinerve (Smith et al. 
2005). Both study areas are managed by the NSW Office of En-
vironment and Heritage. 

 

Field data collection  
 
Field sampling was conducted between July and December 2010. 
There were 50 sample plots representing 25 plots of 50 m × 50 m 
(0.25 ha) for each study area were randomly selected within each 
LiDAR transect across the two forested areas. A random sampling 
method was adopted to assure that sampling measurements ac-
quired all possible variability of forests conditions. The centre of 
each plot was determined by using a GPS unit (GARMIN 
GPSMAP (R) 62stc). Five GPS points were collected in the centre 
of each plot over a 20 minute period and then averaged. The 
accuracy of the GPS varied with the density of overstorey with 
standard deviation of the five measurements ranging from 5 m to 8 
m in the closed canopy BRNP and from 3 m to 6 m in the open 
canopy RRNP.  

Dbh (1.3 m height) was measured for all trees in each plot in 
both study areas using a diameter tape with diameters for but-
tressed trees measured immediately above the buttress. Tree 
height and crown width for all trees which were larger than 10 cm 
dbh were separately measured in selected five plots of each study 
area. Tree heights were measured using a Nikon Forestry 550 
Laser Rangefinder/ Heightmeter. A SUUNTO clinometer was 
used to delineate tree crowns by vertically upward sighting and 
taking averages value of four perpendicular crown radii meas-
urements with a distance tape from the tree trunk towards the plot 
centre, away from it, to the right and to the left. 
   
Above-ground biomass estimation 
 
Above-ground biomass was estimated based on previously de-
veloped allometric equations of plant communities in Australia. 
Two general allometric equations were considered (Keith et al. 
2000) as equations at finer taxonomic resolution were not avail-
able for the specific vegetation types found in the study area.   
 
For subtropical rainforest: 
 

XY ln3698.28957.1ln +−=                        (1) 

 

For open canopy eucalypts forest: 
 

XY ln4885.23267.2ln +−=                        (2) 

 
where Y = AGB (kg), X = dbh (cm).  
 
Table 1 shows a summary of statistics of the estimated AGB of 
both study areas using allometirc equations.  
 
Table 1: Basic statistics of the estimated AGB (t/ha) of both study areas 

Study area Mean AGB SD AGB Min AGB Max AGB

BRNP (N=25) 340 72 223 478 

RRNP (N=25) 171 57 98 353 

Combined sites (N=50) 255 107 98 478 

* N–number of plots 

 
 
LiDAR data 
 
LiDAR data were collected during July and August 2010 using a 
Leica ALS50-II LiDAR system at a flying height of 2000 m. The 
laser pulse repetition frequency was 109 kHz. The laser scanner 
was configured to record up to four returns per laser pulse. The 
average point density (i.e. number of LiDAR points collected 
within a square meter) was 1.3 points per square meter, and the 
footprint diameter was 0.5 m. The average range varied between 
524 m and 1018 m (mean 800 m) for the BRNP and 157 m and 
460 m (mean 256 m) for the RRNP. The mean rates of penetration 
(the percentage of laser beams penetrating to a specific height 
class is defined with the rate of laser beam penetration) through 
the vegetation vary from 4.3% in the closed canopy of BRNP and 
19% open canopy of RRNP. The LiDAR data were documented 
as 0.07 m for vertical accuracy and 0.17 m for horizontal accuracy 
by the data provider. The LiDAR data were classified into ground 
and non-ground points using proprietary software by the NSW 
Land and Property Information (LPI) and were delivered in LAS 
1.2 file format.  
  
Multispectral data 
 
Cloud and haze free Landsat5 TM data were captured on 15 
October 2011 under high sun angle conditions (54.6o). Landsat5 
TM (Level 1 G), product (Path/Row– 89/80) was acquired from 
the United States Geological Survey (USGS). The Landsat5 TM 
image was obtained from the USGS as rectified data in universal 
transverse mercator projection at 30 m resolution. Radiometric 
calibration of the Landsat5 TM image was a procedure containing 
multi-steps. Firstly, the 8-bit satellite digital numbers (DN) in 
Landsat5 TM image were converted to at-satellite radiance using 
the most recent calibration coefficients (Markham et al. 2012). 
Next the top-of-atmosphere radiance was converted to surface 
reflectance. The Second Simulation of the Satellite Single in the 
Solar Spectrum atmospheric radiative transfer modelling (6S), a 
generic model (Vermote et al. 1997) was used to predict the direct 
and diffuse irradiance from clear sky onto horizontal surfaces with 
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an Aerosol Optical Depth (AOD) of 0.05 for this study. A 
bi-directional reflectance model correction was applied to remove 
the effects of angular variation in reflectance due to varying sun 
and view angles (Flood et al. 2012). The processing scheme for 
standardised surface reflectance was employed to minimise the 
topographically induced illumination.  

 
Data processing 
  
Fig. 2 shows a flowchart of the processing steps carried out in this 
study. A detailed description of the steps is presented in the fol-
lowing section.  

 

 
 

Fig. 2: Flowchart of the model building method 

 
LiDAR data pre-processing  
All returns were considered for subsequent analysis for both study 
areas. Ground and non-ground returns were separated and a 1m 
Digital Terrain Model (DTM) was produced using ground returns 
via Kriging interpolation to the nearest 6 data points. The accu-
racy of LiDAR-derived DTM was evaluated using seventy and 
fifty five post-processed differential GPS points (dGPS) for the 
BRNP and RRNP respectively. The GPS points collected using a 
MobileMapper from Thales Navigation (TM) systems and in-
cluded 4 transects for the BRNP and 3 for the RRNP. Collected 
GPS points were distributed over flat to slope terrain in open 
ground (park roads) and under forest canopies in different densi-
ties. The calculated root mean square errors (RMSE) were 5.7 m 

and 1.9 m for the closed canopy BRNP and open canopy RRNP 
respectively.  
 
Computation of LiDAR metrics 
LiDAR metrics were calculated from separated non-ground laser 
returns. Observations with height values <2 m for the RRNP and 
<0.5 m for the BRNP were discarded from existing non-ground 
data in order to remove undulation of the terrain and other objects 
(herbaceous vegetation, fallen logs etc.). Thus, most reflectance 
would correspond to understorey and overstorey vegetation.  The 
non-ground returns was used to extract co-located 50 m x 50 m 
field sample plots of each study area and subsequently a series of 
LiDAR metrics were computed. 
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(1) The calculated height related LiDAR metric for individual 
sampling plots include maximum, mean, median and relative 
median canopy height and from 10th to 90th height percentiles.  

(2) LiDAR fractional cover is defined one minus the gap frac-
tion probability at a zenith of zero (Lovell et al. 2003) which 
corresponds to the photosynthetic and non-photosynthetic com-
ponents of canopy. Fractional cover was calculated by aggregat-
ing all points into 50 m spatial bins using equation 1 
 

GV

V
gap CC

zC
P

+
=−

)0(

)(
1                      (1) 

 
where Cv(z) is the number of first returns counts above Z meters, 
Cv(0) is the number of first returns above the ground and CG was 
the number of first return points from the ground level.    

(3) Tree crown diameter was estimated on the LiDAR derived 1 
m resolution canopy height models (CHM) using non-ground 
laser returns by TreeVaw 1.1 software (Popescu et al. 2003). The 
derivation of the appropriate window size to search for tree tops is 
based on the relationship between the height of the trees and their 
crown size (Popescu et al. 2003). In order to derive the appropriate 
window size to search for tree tops, field measured tree heights 
and crown widths were separately used to develop a relationship 
for both forest types. As Popescu et al. (2003) explained CHM 
based tree crown diameter estimation is more appropriate to 
measure crown diameter for dominant and co-dominant trees that 
have individualized crowns on the CHM surface. Average crown 
diameters of each sample plot were estimated at several canopy 
heights; 15 m, 20 m, and 30 m for RRNP and 15 m, 20 m and 35 m 
for BRNP. LiDAR derived heights, fractional cover and crown 
diameter variables corresponding to the sampling sites are sum-

marised in Table 2.  

 

Table 2: Variables computed from LiDAR returns in each study area 

Variable ID Description of variable 

     Canopy height related variables 

ht_m Mean height values 

ht_mx Maximum height values 

ht_med median height values 

ht_rmed 100
_max

median_
(%) ht_rmed ×=

ht

ht  

The median height is expressed in percent, is derived 

by maximum laser heights (ht_max) multiplied by 

100. 

hp_10th - hp_90th height percentiles from 10th to hp_90th 

      Canopy structure related variables 

CD_15m,CD_20m, 

CD_30m, CD_35m 

Average crown diameter at 15 m, 20 m, 30 m and 35 

m height  

Fraccov LiDAR fractional cover  

 
Computation of Landsat5 TM variables  
Signatures for Landsat5 TM bands were extracted for the 2 × 2 
pixel mean surrounding the field site location. The 2 × 2 block 
average provided the best match to the spatial extent of field 
measurements and also minimized the effects of geometric mis-
registration between imagery of different dates. It was assumed 
that any increase in vegetation structure between the date of site 
measurement and the image acquisition date was less than meas-
urement error, as sites were generally located in mature vegetation. 
Proposed Landsat5 TM variables included: (1) normal band val-
ues, (2) simple band ratios, (3) normalized band rations, and (4) 
high order transformed greenness indices (Table 3).   

 
Table 3: Summary of Landsat TM derived variables  

Variable ID  Formula / description 

Landsat5 TM bands 
Band1- 7 

Normal TM bands 

SR NIR/Red (Birth et al. 1968) 

SRc 
minmax

min-1Red/
MIRMIR

MIRMIR
NIR

−
−×   (Brown et al. 2000) 

MSI TM5/TM4 (Vogelmann 1990) 

Simple band ratios 

MSR ((NIR/Red) − 1)/√((NIR/R) + 1 (Chen 1996) 

NDVI NIR − Red/NIR +Red  (Rouse et al. 1974) 

NDVI c 
]1[RedRed/

minmax

min

MIRMIR

MIRMIR
NIRNIR

−
−−×+−  (Nemani et al. 1993) 

Normalized band ratios 

SLAVI NIR/(Red +MIR2) (Lymburner et al. 2000) 

High order transformed greenness indices 

Principal polar spectral greenness 

PPSG 

PPSG =tan-1((PC1 – SF1)/(PC2 – SF2))  

PC1 and PC2 are the first two principal components scores 

SF1, SF2 = -0.25, -0.25 (Moffiet et al. 2010) 

 
Statistical analysis 

 
Most allometric equations for calculating field-based AGB are 
power models (Zianis et al. 2004), hence AGB and LiDAR de-

rived variables are generally log transformed when developing 
regression models (Patenaude et al. 2005, Lu et al. 2012). In this 
study, the ground measured AGB, LiDAR derived variables and 
Landsat derived variables were log transformed. The BRNP and 
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the RRNP sites were analysed separately, and then again as a 
combined data set within a Multiple Linear Regression (MLR) 
framework. The statistical software (IBM SPSS 20) was em-
ployed to model average AGB using the best subsets regression 
procedure. Stepwise selection was performed to select inde-
pendent variables to be included in final models. No independent 
variable was left in models with a partial F statistic with a sig-
nificance level greater than 0.1 and included separately for each 
the study areas and the combined site. The variance inflation 
factors (VIF) greater than 10 was used to detect the multicollin-
earity of independent variables. 

Regression diagnostics including R2, adjusted R2, relative root 
mean square error RMSE, and residual plots were used to select 
optimal models. Since the ground measured data of all sampling 
plots were used for model development, Predicted Residual Sum 
of Squares (PRESS) statistics was used as a form of cross valida-
tion. For the choice of the best model, one favours the model with 
the lowest PRESS.  
 

 
Results  
 
Results for each study area and the combined dataset (denoted 
‘combined’) were summarised for AGB estimates and the re-
gression-based analysis (i.e. LiDAR, Landsat5 TM, and Li-

DAR+Landsat5 TM estimates models). 
      
LiDAR AGB estimates  
 
The estimates models obtained using LiDAR derived variables of 
the two study areas and combined data are summarised in Table 4.  
The LiDAR derived four height related variables (i.e. ht_m, 
ht_med, ht_60th and ht_rmed), and fractional cover for canopy 
components were most significant for all predictive models of the 
three data sets investigated. These variables performed well with 
models significant at (p <0.0001). In terms of AGB estimates, the 
LiDAR based prediction model for the combined data set was the 
best, explaining 79% (0.79 adjusted R2) variation in measured 
values. Given the similar number of plots for the different plant 
communities, the RRNP AGB prediction models accounted for 
31% more variation than for the BRNP. Fig. 3 shows the observed 
versus the predicted AGB by LiDAR, Landsat5 TM and LiDAR+ 
Landsat5 TM with the respective relative RMSE values in the 
BRNP and RRNP and combined. Fig. 3 indicates that the relative 
RMSE was greatest (18.4%) combined site data and BRNP site 
data, however, a large proportion of variation in ground estimated 
AGB was explained by LiDAR. Relative RMSE among the se-
lected LiDAR based prediction models were lower for the RRNP 
at almost 12.5%. 

 
Table 4: Results for LiDAR, Landsat5 TM and LiDAR+Landsat5 TM based regression analysis of AGB estimates of the BRNP, the RRNP and combined 

data 

Dataset LiDAR model R2 Adj. R2 Relative RMSE (%)

BRNP -0.908 + 2.24x logFraccov + 0.920 x log ht_rmed+ 0.531x log CD_m20 0.53 0.45 17.5 

RRNP 2.505+1.062x logFraccov+1.224x log ht_m − 0.808 x log ht_rmed 0.79 0.76 12.5 

Combined 5.027+ 11.819x log ht_m - 2.831x log hp_60th - 8.44 x log ht_med 0.83 0.79 18.4 

Landsat5 TM model 

BRNP 23.632 + 4.595x log SLAVI − 10.445x log PPSG 0.38 0.31 22.2 

RRNP 2.882 + 2.237x log SR- 1.789x log NDVIc 0.64 0.59 15.8 

Combined 3.079+ 1.247x log SR +3.650 x log SLAVI 0.77 0.75 19 

LiDAR+Landsat5 TM model 

BRNP -0.908 + 2.24x logFraccov + 0.920x log ht_rmed+ 0.531x log CD_m20 0.53 0.45 17.5 

RRNP 2.412+1.087x logFraccov+0.431x log ht_m + 1.365x logNDVIc 0.83 0.79 12 

Combined 3.153+ 5.526x log ht_m – 5.089x ht_med – 2.45 x log SR 0.83 0.81 16.8 

 

Landsat5 TM estimates 

 
Regression of individual Landsat5 TM model covariates resulted 
in the most acceptable model performance for individual sites 
rather than the combined sites, however, the overall performance 
was not as high as the LiDAR based AGB estimates models 
(Table 4 and Fig. 3).  The best model fits were obtained from 
selection of the SR and SLAVI for the combined site data and 
these covariates explained 75% of variation in the ground meas-
ured AGB. For the estimation model of AGB in the RRNP, the SR, 
NDVI47, and SLAVI covariates were selected and the adjusted R2 
of overall predictive models was 0.59. It was found that the re-
gression of Landsat5 TM model covariates for the BRNP sites 
performed poorly; SLAVI and PPSG were enabled to account for 

31% of variation of response data. Fig. 3 shows that the lowest 
relative RMSE (15.8%) was found for the RRNP, and the least 
accurate results were produced for the BRNP (relative RMSE = 
22%). 
 
LiDAR+Landsat estimates 

 
Table 4 shows the results of AGB estimate models by combining 
both LiDAR and Landsat5 TM derived variables. The RRNP and 
combined sites models using both sensors derived variables 
showed an enhancement of accuracy of prediction of AGB. The 
best model in terms of adjusted R2 (0.81) was obtained from 
selection of both LiDAR and Landsat TM derived variables for 
the combined site data; respective relative RMSE (16.8%) was 
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greater than the relative RMSE (12%) obtained for RRNP (see Fig. 
3). However, Table 4 and Fig. 3 depicted that no improvement 
was evident for the AGB prediction model for the BRNP using a 
combination of variables of both sensors.   

Overall, the combination of Landsat5 TM and LiDAR derived 
variables increased adjusted R2 and decreased relative RMSE for 
the RRNP, and combined sites (Table 4 and Fig. 3), and the im-

provement for both cases was not much higher. For example, the 
RRNP integrated AGB prediction model improved adjusted R2 
from 0.76 to 0.79 and decreased relative RMSE by from 12.5 to 12 
%. For all cases, the BRNP, the RRNP, and the combined AGB 
were free from multicollinearity (i.e. VIF < 10), and all developed 
equations were parsimonious models that containing four or less 
than four independent variables. 

 

 
Fig. 3: Ground measured (X axis) versus predicted (Y axis) AGB for the models based on study area division: The solid lines show 1:1 relationship  

 
 
Validation of the regression models prediction 
 
Table 5 shows the cross-validation results of all candidate models. 
For the RRNP, and combined sites data, the cross-validation 
showed that integration of LiDAR and Landsat5 TM derived 
variables improved the prediction of AGB, revealing overall 

smaller PRESS statistics and standard deviation of PRESS re-
siduals. The LiDAR derived variables based prediction models 
consistently gave satisfactory results for each data set as indicated 
by PRESS statistics. For each data set, the highest overall PRESS 
statistics and standard deviation of PRESS residuals were ob-
served for Landsat5 TM derived variables based AGB prediction 
models.  

  
Table 5: PRESS statistics for predicting AGB for the BRNP, the RRNP and the combined sites data 

Range of PRESS residuals 
Dataset  Method PRESS 

Min Max 

Mean of PRESS 

residuals 

SD of PRESS 

residuals 

BRNP LiDAR 62080.7 -118.54 103.25 -5.15 56.92 

Landsat5 TM 77788.25 -112.57 87.25 -8.83 63.34  

LiDAR+ Landsat5 TM 62080.7 -118.54 103.25 -5.15 56.92 

RRNP LiDAR 52863.89 -131.63 74.19 -5.57 52.44 

 Landsat5 TM 60950.56 -129.52 80.66 5.34 56.36 

 LiDAR+ Landsat5 TM 33003.45 -111.4 56.62 4.41 41.43 

Combined LiDAR 102340.81 -102.69 105.45 -0.01 51.23 

 Landsat5 TM 122745.94 -102.63 108.64 -0.19 56.1 

 LiDAR+ Landsat5 TM 83277.63 -107.36 82.17 1.76 46.18 
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In conclusion, the most accurate estimation results were ob-

tained for LiDAR and Landsat5 TM derived variables integrated 
AGB prediction models for the RRNP, and this is followed by the 
combined sites data sets. The AGB estimation in the BRNP was 
less accurate, and the combination of LiDAR and Landsat5 TM 
covariates did not improve model performance.  
 

 
Discussion 
 
This study sought to improve the predicting capacity of plot-scale 
AGB estimation by combining LiDAR and Landsat5 TM derived 
variables for eucalypt dominated forest and subtropical rainforest. 
We anticipated that combining LiDAR derived variables with 
various Landsat5 TM derived vegetation indices would signifi-
cantly improve accuracy of plot-scale AGB in the subtropical 
rainforest with complex terrain of the BRNP site. The findings 
revealed that fusing LiDAR and Landsat5 TM derived variables 
did not improve estimation of plot-scale AGB in the BRNP.  
However, estimation of plot-scale AGB by fusing LiDAR and 
Landsat5 TM enhanced the accuracy of prediction by improving 
adjusted R2 and decreasing the RMSE for the open canopy RRNP, 
and combined sites data. This result conforms the expected find-
ings for estimation of forest biomass (Popescu et al. 2004; Latifi et 
al. 2010) and other structural parameters of vegetation (Hudak et 
al. 2006; Tonolli et al. 2011). The most important and informative 
variables (e.g. tree height, LiDAR fractional cover, crown di-
ameter) derived by LiDAR explained the largest proportion of 
variation in plot-scale AGB estimates among the three datasets. 
The accuracy of LiDAR based models improved the AGB esti-
mation by 3% in the RRNP and 2% in the combined sites after 
integration of the Landsat5 TM derived variables. Although the 
accuracy of AGB prediction models for combined sites improved, 
its relative RMSE values were higher compared to all AGB pre-
diction models developed by LiDAR, Landsat5 TM, and fusing 
both data. This is probably due to the increase in standard devia-
tion of plot-scale ground measured AGB after combining indi-
vidual sites data (Table 1).  

This study fitted LiDAR derived variables in AGB estimation 
models that differed due to the number of variables and the 
structural component of vegetation between the study data sets.  
The results showed that that LiDAR derived overstorey height 
related variables tend to be those which have incorporated LiDAR 
based AGB estimation model for each data set investigated. The 
LiDAR metrics comprised of vertical and horizontal information 
about vegetation structure (i.e. tree height and canopy structure) 
are more likely to detect the structural components which are 
contained in the high biomass. For most forest types the bulk of 
AGB is located in tree stems, thus, inclusion of LiDAR derived 
height variables to estimate AGB results in more accurate pre-
dictions similar to findings by Bortolot et al. (2005) and  Popescu 
(2007) who estimated AGB at individual tree scale, and Drake et 
al. (2002) and Drake et al. (2003) who estimated AGB at plot 
scale. LiDAR fractional cover was also instrumental in predicting 
significant amounts of plot-scale AGB in both plant communities. 

LiDAR fractional cover measures total photosynthetic and 
non-photosynthetic components of forest canopy (Weller et al. 
2003), thus, it is possible to consider it as the second largest pool 
of accumulated AGB in vegetation. This is consistent with find-
ings of previous studies (Li et al. 2008; Krasnow et al. 2009; 
Erdody et al. 2010) which have used similar information about 
canopy cover density and found this to be a key predictor of AGB.  
Estimating individual tree, or plot-scale AGB using LiDAR de-
rived height variable is not new, however, this study is unique in 
its improvement of AGB estimation by incorporating a canopy 
component related variable such as LiDAR fractional cover. 
Ediriweera et al. (2014 accepted) revealed that inclusion of can-
opy attributes related to the LiDAR fractional cover with tree 
height for BA estimates prove that FPC is a key component for 
estimating basal area for Australian woody vegetation. Similarly 
Armston et al. (2009) found a strong allometric relationship be-
tween the FPC and stand basal area for Australian woody plant 
communities. In addition to that LiDAR fractional cover can 
improve the prediction ability of models as it lowers the vulner-
ability to errors created by variations in topography when com-
pared to LiDAR derived tree height variable. The LiDAR esti-
mated crown diameter moderately correlated with AGB estimates, 
however, the relationship was not as high as the height and Li-
DAR fractional cover parameters in all sites. This finding is in-
consistent with Popescu (2007) who showed that plot level tree 
crown diameter calculated from individual tree LiDAR meas-
urements were particularly important in prediction of forest bio-
mass in temperate forests. This is likely a failure to accurately 
delineate the tree crowns of broad leaf trees due to the complexity 
of the irregular shaped overlapped tree crowns, and the spatial 
organization of tree crowns within the canopy and inadequate 
LiDAR point density.   

Landsat5 TM visible bands, and Landsat derived vegetation 
indices have potential to estimate AGB in forest areas.  However, 
this study did not show any strong relationships for Landsat5 TM 
spectral signatures with ground measured AGB for either plant 
community. This finding is inconsistent with previous studies that 
have shown spectral signatures are highly related to biomass 
(Franklin 1986; Jakubauskas et al. 1997). This is probably due to 
the plots being located on different slopes and aspects in both 
study areas, thus, this seems to be a topographic effect which has 
not been effectively compensated for at the pixel and sub-pixel 
scale. Similarly, surface radiance is influenced by canopy height, 
however Landsat imagery is much more sensitive to the spectral 
properties of the surface materials than to their height (Hudak et al. 
1999). Additionally, the utilised band ratios and vegetation indi-
ces showed varying degrees of success in estimating AGB of the 
testing data for both study areas. Vegetation indices are sensitive 
to internal factors (i.e canopy geometry, terrain factors, species 
composition), and external factors (i.e. sun elevation angle effect, 
atmospheric condition) that influence vegetation reflectance 
(Treitz et al. 1999) in topographically complex landscape. It was 
noted that specific leaf area vegetation index (SLAVI) (uses 
Landsat5 TM band 3, 4, and 7), and high order (6) dimensional set 
of Landsat5 TM derived principal polar spectral greenness (PPSG) 
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only correlated with ground estimated AGB of the structurally 
complex BRNP. SLAVI was used to estimate the important 
ecophysiological characteristics of foliage, such as, specific leaf 
area which has a direct relationship with net photosynthesis 
(Reich et al. 1988; Reich et al. 1997) and above ground net pri-
mary productivity (Fassnacht et al. 1997). PPSG is assumed to be 
associated with spectral profile variations related to the projected 
aerial proportions of green photosynthetic material and substrate 
(Moffiet et al. 2010).  

For the open forest in a dissected topography, the relationship 
between AGB and Landsat derived variables can be affected by 
background effect, and site factors such as topography and aspect. 
The relationship is sensitive to background, atmosphere, and 
bidirectional effects (Myneni et al. 1994).  However, for the open 
canopy RRNP, NDVIc together with SR proved to be good pre-
dictors in estimating the AGB. The NDVIc is derived from mul-
tispectral remotely sensed data including red, NIR, and MIR 
bands (Nemani et al. 1993), and may be useful in accounting for 
understory effects in more open canopy forest and woodlands 
(Spanner et al. 1990; Nemani et al. 1993; Zheng et al. 2004). The 
RRNP study area was classified as eucalypts dominated open 
forest with mesic understorey (i.e. mixed grass, shrubs), which is 
more likely to be disturbed by tree felling and canopy dieback. 
 
Sources of error and limitations 
 
There are three main sources of error and limitations: (1) the field 
data collection and ABG estimation, (2) remotely sensed data 
processing, and (3) the influence of vegetation structure and 
topography.  

Most re-growth stems were damaged by fire and heavily 
sprouted. Standing dead trees were found in most of the sample 
plots in the RRNP and were included in the dbh measurement, 
potentially influencing the accuracy of LiDAR information. 
Heurich et al. (2008) described that dead trees alter the distribu-
tion of laser readings, and can influence the accuracy of results. 
Additionally, dbh measurements for trees along the plot border-
lines were problematic, particularly for groups of large trees in the 
BRNP. Due to the lack of allometric equations at the finest tax-
onomic resolution for the targeted plant communities, two general 
allometric equations were used. These equations adds potential 
error as the allometric relationships vary in response to climatic 
conditions, nutrient availability, genotype, age, and growth form 
of trees (Keith et al. 2000). 

Topographically complex terrain results in topographic distor-
tion, and vertical structure creates self-shadowing by overstorey 
trees thereby decreasing the amount of visible reflectance. It is 
likely the applied topographic correction method has not been 
effectively minimised for topographically induced illumination. 
Furthermore, Landsat5 TM with broad wavelength data are sus-
ceptible to saturation due to similar canopy structure and the 
impact of shadowing (Lu 2006).   

The LiDAR sensor configuration and specification of LiDAR 
data acquisition have a strong influence on the accuracy of data 
due to the high flying altitude (2 km) reduced energy per pulse, 
and reduced strength of reflected signal. Due to dense foliage at 

the BRNP there were more LiDAR first returns from the over-
storey, prohibiting high accuracy of LiDAR derived height in-
formation of lower strata. For instance Ediriweera et al. (2014 
accepted) showed a significant error in estimation of mean and 
dominant canopy height (i.e. Adj. R2 0.40 and 0.61 for mean and 
dominant height respectively) using LiDAR metrics in the same 
study area. In contrast, the estimation of dominant and mean 
canopy height from LiDAR data achieved a high level of accuracy 
(error <3%) and explained over 80% of total variation in dominant 
height for open canopy eucalypts forest of the RRNP. Further-
more, laser pulses cannot discriminate small canopy holes from 
canopy attributes in dense foliage, consequently over estimating 
LiDAR fractional cover by measuring the collective mean of 
canopy components, and small holes in clumps of leaves.  Large 
overstorey trees on sloping terrain extend their branches or whole 
tree crown down slope, thereby borderline trees influenced the 
extraction of LiDAR fractional cover that contained unnecessary 
information from outside the plot.   

In conclusion, this study provides an analysis on the fusion of 
LiDAR and LiDAR and Landsat5 TM data for the estimation of 
AGB. Analysis indicated that LiDAR derived vegetation struc-
tural variables were able to describe significant amounts of vari-
ation on plot-scale AGB. Variables were most accurate for the 
open canopy RRNP, followed by the combined sites, and were 
least able to account for plot-scale AGB in the closed canopy 
BRNP. Several studies demonstrated that fusion of sensors have 
improved the accuracy of estimating AGB as well as timber 
volume, tree height, species identification, and fuel mapping 
(McCombs et al. 2003; Popescu et al. 2004, Mutlu et al. 2008; 
Erdody et al. 2010; Tonolli et al. 2011). This study reinforced that 
Landsat5 TM derived variables fused with LiDAR derived models 
increased overall performance for open canopy forest and com-
bined sites by accounting for extra variation of field estimated 
plot-scale AGB. However, fusion LiDAR derived variables with 
Landsat5 TM derived spectral information data did not improve 
AGB estimation in closed canopy subtropical rainforest in to-
pographically complex terrain. Both data missions employed a 
Leica ALS50-II LiDAR sensor and similar acquisition parameters 
(e.g. wave length, flight height, foot print size etc.). This study has 
demonstrated the potential for LiDAR datasets with similar ac-
quisition parameters to be merged for regionwide estimates of 
AGB. Fusion LiDAR derived variables with Landsat5 TM de-
rived spectral information data allows to improve accuracy of 
AGB prediction (3% for eucalypt forest and 2% combined sites) 
of hilly vegetation. However, this improvement was not signifi-
cant when compared with data processing and computation cost.  
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