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Abstract : This study presents the utility of remote sensing (RS), GIS 
and field observation data to estimate above ground biomass (AGB) and 
stem volume over tropical forest environment. Application of those data 
for the modeling of forest properties is site specific and highly uncertain, 
thus further study is encouraged. In this study we used 1460 sampling 
plots collected in 16 transects measuring tree diameter (DBH) and other 
forest properties which were useful for the biomass assessment. The 
study was carried out in tropical forest region in East Kalimantan, Indo-
nesia. The AGB density was estimated applying an existing DBH – bio-
mass equation. The estimate was superimposed over the modified GIS 
map of the study area, and the biomass density of each land cover was 
calculated. The RS approach was performed using a subset of sample 
data to develop the AGB and stem volume linear equation models. Pear-
son correlation statistics test was conducted using ETM bands reflectance, 
vegetation indices, image transform layers, Principal Component Analy-
sis (PCA) bands, Tasseled Cap (TC), Grey Level Co-Occurrence Matrix 
(GLCM) texture features and DEM data as the predictors. Two linear 
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models were generated from the significant RS data. To analyze total 
biomass and stem volume of each land cover, Landsat ETM images from 
2000 and 2003 were preprocessed, classified using maximum likelihood 
method, and filtered with the majority analysis. We found 158±16 
m3·ha-1 of stem volume and 168±15 t·ha-1 of AGB estimated from RS 
approach, whereas the field measurement and GIS estimated 157±92 
m3·ha-1 and 167±94 t·ha-1 of stem volume and AGB, respectively. The 
dynamics of biomass abundance from 2000 to 2003 were assessed from 
multi temporal ETM data and we found a slightly declining trend of total 
biomass over these periods. Remote sensing approach estimated lower 
biomass abundance than did the GIS and field measurement data. The 
earlier approach predicted 10.5 Gt and 10.3 Gt of total biomasses in 2000 
and 2003, while the later estimated 11.9 Gt and 11.6 Gt of total bio-
masses, respectively. We found that GLCM mean texture features 
showed markedly strong correlations with stem volume and biomass. 

Keywords: above ground biomass, stem volume, remote sensing, GIS, 
field observation data 
 
 
Introduction 
 
Current information on above ground biomass (AGB) is impor-
tant to estimate carbon accumulation over a forest region and it is 
required to study the impacts of forest disturbance on total bio-
mass. The AGB can be estimated using different data and ap-
proaches, namely using field observation data (Brown and Lugo 
1984; Brown, Gillespie et al. 1989; Brown and Lugo 1992), re-
mote sensing (RS) data (Roy and Ravan 1996; Barbosa et al. 
1999; Steininger 2000; Foody 2003; Thenkabail et al. 2004), and 
GIS (Brown, Iverson et al. 1994; Brown and Gaston 1995). Field 
observation approach is known to be the best and the most accu-
rate method, but it is costly and time-consuming as destructive 
sampling data is required (De Gier 2003; Lu 2006). RS and GIS 
approaches recently become more popular as huge areas can be 
covered with less efforts and time, with regard to different sensor 
characteristics and limitations (Houghton et al. 2001; Lu 2005; 
Lu 2006). Estimation of AGB is still a challenging task since the 
utility of RS and GIS for the biomass modeling is site specific 
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and is highly uncertain (Houghton et al. 2001; Foody et al. 2003). 
Performance of RS data and combination of field data – GIS in 
estimating the AGB is presented in this work. 

The application of remote sensing data and techniques for 
AGB prediction have been widely studied, employing optical 
sensor (Lu 2005), SAR data (Hajnsek et al. 2005) or LIDAR data 
(Lefsky et al. 2002). These studies found that state of the art 
LIDAR data could provide the most accurate result as it allows a 
deep penetration through forest canopy (Lu 2006). The utility of 
polarimetric interferometry SAR data (PolinSAR) for biomass 
estimation is also widely studied (Hajnsek et al. 2005). This data 
provides useful information on digital surface model, which can 
easily be converted into biomass using some inversion models 
(Isola and Cloude 2001; Hajnsek et al. 2005; Cloude et al. 2008). 
Unfortunately, the potential of these data cannot be demonstrated 
here due to data unavailability. Alternatively, moderate resolu-
tion of Landsat ETM data coupled with vegetation indices, image 
transform layers, PCA, Tasseled caps, Grey Level Co-occurrence 
Matrix (GLCM) texture features and SRTM DEM were consid-
ered.  

Different forest disturbance and harvesting regimes could have 
occurred over a forest area. Once these disturbances were over, 
forest regenerating processes are started. The intensity of these 
processes is different for each forest region depending on climate, 
terrain conditions, soil fertility and nutrient contents, characteris-
tics of pioneer vegetation species, etc. In natural secondary for-

ests, a mixture of different forest physiognomy, e.g. young forest, 
regenerating forest, old secondary forest, etc., is easily noticed. 
This study has objectives to estimate AGB and stem volume over 
different forest succession stages. Because recent studies arrived 
at different conclusions on the biomass assessment when RS data 
were applied (Ketterings et al. 2001; Foody et al. 2003; Rahman, 
et al. 2005), thus it is important to conduct further study on this 
topic.  
 
 
Study area descriptions 

 
This study was carried out in Labanan concession forest, Berau 
municipality, East Kalimantan Province, Indonesia. The forest 
area is geographically situated along equator at the coordinate of 
1º45' to 2º10' N, and 116º55' to 117º20' E and has a size of 
83 000 ha (Fig. 1). The study area is mainly situated on inland of 
coastal swamps and formed by undulating to rolling plains with 
isolated masses of high hills and mountains. The topographical 
landscape of the Labanan forest is categorized into flat land, 
sloping land, steep land, and complex landforms, while the forest 
type is called as lowland mixed dipterocarp forest (Mantel 1998). 
The elevation ranges from 50 to 650 m and this forest is classi-
fied as tropical moist forest enjoying annual precipitation of over 
2000 mm (Sist and Nguyen-Thé 2002). 

 

 
Fig. 1 The Study area in Borneo Island, Central Indonesia (left) and the boundary of Labanan concession forest (right) 

 
 
Data and methods 
 
Field Observation Data 
 
This work used 1 460 sampling plots allocated to 16 transects, 
and the size of each plot was approximately 225 m2. In total, 

13 048 trees with diameters from 10–210 cm were measured and 
used to calculate basal area per hectare and stem volume per 
hectare using the allometric models adjusted for specific tree 
species (Table 1). Above ground biomass (AGB) was estimated 
subsequently using diameter at breast height (DBH) – biomass 
conversion model developed for low dipterocarp forests (Samal-
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ca 2007).  
The stem volume varied from 1.73–628.62 m3·ha-1 and the 

mean volume was 156±92 m3·ha-1. Similar with stem volume, the 
AGB also showed highly variable values and the mean AGB was 
167±94 t·ha-1. These variations are common for natural forests 
especially those which are occupied by secondary and regener-

ating forests. Tree regenerating processes take place following 
the completion of forest harvesting, forest burning, and other 
types of forest disturbance. These processes which can continue 
for over 30 years are affected by various dependent and inde-
pendent aspects, e.g. anthropogenic factors, drought, disease, etc. 

 
Table 1.  Descriptions of sampling plots describing parameters of different forest physiognomies 

Forest physi-
ognomies 

Number of 
Stems  
(stems·ha-1) 

DBH 
(cm) 

Basal Area 
(m2·ha-1) 

Stem Volume
 (m3·ha-1) 

Biomass 
(t·ha-1)

Number of 
plots 
 (n = 1460) 

Descriptions 

Shrub (Sh) 219.2 25.7 8.9 92.4 105.4 58 Mixture of pioneer species, low to medium tree size and shrubs, 
canopy cover < 50%, currently disturbed, shows noticeable marks 
of forest burning and clearing 

Riparian forest 
(RF) 

290.6 26.7 11.8 121.5 139.0 24 Sparse forest dominated with slim and tall vegetation, canopy 
cover < 50%, located adjacent to the streams 

Dense forest 
(DF) 

224.5 34.1 12.3 142.5 152.4 885 Dense forest (canopy cover 50%−70%), logged over < 10 years, 
located in flat and moderate slope 

Very dense 
forest (VDF) 

319.3 32.7 16.6 189.4 200.4 455 Very dense forest (canopy cover 70%−80%), logged over between 
10 - 20 years, located in moderate and highly steep regions 

Mature forest 
(MF) 

262.2 54.1 18.2 221.1 234.2 38 Advanced forest stucture, closed canopy (over 80%), logged over 
> 20 years, located mostly in highly steep region 

 
 
Images Acquisition and Preprocessing 
 
Two sets of Landsat 7 ETM+ images with 30 meter spatial reso-
lution were used. The first Landsat image was acquired on Au-
gust 26, 2000 under hazy and cloud conditions, and the second 
image, acquired on May 31, 2003, showed clear atmospheric 
conditions with no apparent clouds. The satellite data were or-
thorectified into WGS 84 datum and projected on Zone 50N 
using Universal Transverse Mercator (UTM) projection. Pre-
processing of ETM images were conducted for correcting the 
atmospheric and topographic effects to minimize the artifacts 
caused by the atmospheric attenuations, e.g. haze and irradiance 
scattering, and the terrain effects. Moreover, calculation of vege-
tation indices required the surface reflectance rather than digital 
number (DN) values or top of atmosphere reflectance, thus the 
corrections on the images were required. 

Atmospheric corrections were applied on the ETM data using 
dark object substraction (DOS) method proposed by Chavez 
(Chavez Jr. 1988). According to a study conducted by Song et al. 
(2001), different variations of DOS technique are available. We 
experienced the COST-DOS technique offered more preferable 
results with regard to the spectral responses of vegetated areas. 
Topographic corrections were implemented using C-Correction 
procedure assuming Lambertian effects on the earth surface 
(Riaño et al. 2003). Hereafter, we refer the satellite images to the 
corrected ETM data. 

Digital Elevation Model (DEM) of the area was obtained from 
the Shuttle Radar Topography Mission (SRTM) data. The DEM 
originally 90 meter resolution was orthorectified with the ETM 
data and resampled using nearest neighborhood method into 30 
meter spatial resolution to fit with the resolution of the ETM 
image.  Slope angle and aspect were computed from the resam-
pled DEM and applied as ancillary input for AGB and stand 

volume modeling. 
 
Methods 
 
Generally, this study approached the above ground biomass 
(AGB) and stem volume using RS data and synergy of GIS – 
field observation data (Fig. 2). To estimate AGB using field 
observation approach and GIS, we used a stem diameter (DBH) 
– AGB allometric equation developed for tropical lowland dip-
terocarp forest (Eq. 1). The following equation was generated by 
destructively measuring 40 sampling trees (Samalca 2007).  
 

)ln(3109.22495.1exp( dbhAGB ×+−=         (1) 

 
The AGB estimated from Eq. 1 was superimposed over the mod-
ified GIS land cover map provided by the forest management 
unit to analyze the AGB density of particular land cover type. 

The corrected ETM images were classified using Maximum 
likelihood method, and post-classification processing was carried 
out implementing majority analysis for removing minor spurious 
pixels within a large single class. In the majority analysis, we set 
up a parameter of kernel size, using which the center pixel in the 
kernel was replaced with the class label that was dominant within 
this kernel. This process was iterated for the entire image result-
ing in a more homogenous classified image. Principal Compo-
nent Analysis (PCA) bands were also estimated and used for the 
classification alternatively. The classification accuracy was as-
sessed using confusion matrices and the associated kappa statis-
tics. 

To integrate the remote sensing data in estimating the AGB, 
the ETM data, vegetation indices (VI), simple ratio (SR), image 
transform data (i.e. VIS123, ALBEDO, MID57), tasseled cap 
(TC), three bands of principal component analysis (PCA), 
GLCM texture features, and slope and aspect from the DEM data 
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were statistically correlated with the biomass data following the 
Pearson correlation test procedure. The biomass data was care-
fully selected using GLCM mean texture feature as the reference, 
as we obtained this texture feature had the highest correlation 
coefficient compared to other RS data. The modeling of the AGB 
and stem volume equations was conducted using SPSS version 
11.5 software applying a stepwise multi-linear regression method. 
The modeling used a subset of sample data, and was validated 

with the complete dataset. Biomass density and total biomass of 
each land cover class was predicted overlaying the AGB estimate 
with the land cover maps of 2000 and 2003. Subsequently, the 
total biomass change during this period was calculated. Dynam-
ics of the estimated forest properties assessed from RS and com-
bination of GIS–field observation approaches, and substantial 
correlation between GLCM mean texture and the AGB are dis-
cussed. 
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Fig. 2 Workflow of the study describes two main approaches for estimating the AGB, using remote sensing method (left shaded box) and com-
bination of field data and GIS method (right shaded box). The middle part of the workflow (non shaded area) explains the classification proce-

dure of multi-temporal ETM images (2000 and 2003) performed in this study 
 
 
Vegetation indices generation and land cover Classification 
 
Various vegetation indices may be computed from the satellite 
data. These vegetation indices were proposed for different appli-
cations, such as soil moisture, vegetation monitoring, mineral 
deposits mapping, etc (Jensen 1996). Vegetation indices gener-
ated from certain satellite image bands are sensitive to character-
ize green vegetation/forested regions from other objects on the 
ground. In vegetated regions, the cells in plant leaves are very 
effective scatterers of light because of the high contrast in the 
index of refraction between the water-rich cell contents and the 
intercellular air spaces. Vegetation is very dark in the visible 
bands (400–700 nm) because of the high absorption of pigments 
in leaves (chlorophyll, protochlorophyll, xanthophyll, etc.). 
There is a slight increase in reflectivity around 550 nm (visible 
green band) because the pigments are least absorptive in this 
range. In the spectral range of 700-1300 nm plants are very 
bright because this is a spectral no-man's land between the elec-
tronic transitions, providing absorption in the visible and mo-
lecular vibrations that absorb in longer wavelengths. There is no 
strong absorption in this spectral range, but the plant scatters 

strongly. From 1300 nm to about 2500 nm vegetation is rela-
tively dark, primarily because of the absorption by leaf water. 
Cellulose, lignin, and other plant materials are also absorbed in 
this spectral range (Lillesand and Kiefer 1994).  

This study, moreover, demonstrated the utility of vegetation 
indices, especially those proposed for vegetation monitoring, for 
estimating the AGB and stand volume (Table 2).  

Besides those indices explained above, we also computed 
three bands of principal component analysis (PCA) and three 
bands of tasseled cap (TC), i.e. brightness (TC1), greenness 
(TC2) and wetness (TC3). Another attempt to include more ETM 
features was to calculate the Gray Level Co-Occurrence Matrix 
(GLCM) texture features. Eight GLCM texture computed using 
second derivatives of mean (GLCM_MEAN), variance 
(GLCM_VAR), homogeneity (GLCM_HOMO), contrast 
(GLCM_CONT), dissimilarity (GLCM_DISS), entropy 
(GLCM_ENTR), second moment (GLCM_SECM), and correla-
tion (GLCM_CORR) were generated. We analyzed the variance 
matrix of ETM bands and found substantial variance of forested 
lands from ETM band 5 (Wijaya, Marpu et al. 2008). This band 
was ultimately selected for generating the texture features using 
5×5 moving window. The texture layers were calculated to each 
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direction with single shifting pixel and were quantified into a 64 gray levels. 
 
Table 2. Various simple ratios, different NDVIs, complex vegetation indices and image transform layers computed in this study to generate the 
biomass and stem volume equations 

Index under study Formula Description Reference 

Simple band ratios   
ETM 4/3 3/4 ETMETM  Measure of green vegetation and chlorophyll 

absorption bands (ETM+mid: 660nm; 830nm) 
(Rouse, Haas et al. 1973)

ETM 5/3 3/5 ETMETM  Modified simple ratio (ETM+mid: 660nm; 
1650nm) 

(Lu, Mausel et al. 2004)

ETM 5/4 4/5 ETMETM  Modified simple ratio (ETM+mid: 830nm; 
1650nm) 

(Lu, Mausel et al. 2004)

ETM 5/7 7/5 ETMETM   Modified simple ratio (ETM+mid: 1650nm; 
2215nm) 

(Lu, Mausel et al. 2004)

ETM 7/3 3/7 ETMETM   Modified simple ratio (ETM+mid: 660nm; 
2215nm) 

(Lu, Mausel et al. 2004)

Traditional vegetation indices   
NDVI ( ) ( )3434 ETMETMETMETM +−  Measure of green vegetation cover (ETM+mid: 

660nm; 830nm) 
(Rouse, Haas et al. 1973)

ND53 ( ) ( )3535 ETMETMETMETM +−  Modified vegetation indices (ETM+mid: 
660nm; 1650nm) 

(Lu, Mausel et al. 2004)

ND54 ( ) ( )4545 ETMETMETMETM +−  Modified vegetation indices (ETM+mid: 
830nm; 1650nm) 

(Lu, Mausel et al. 2004)

ND57 ( ) ( )7575 ETMETMETMETM +−  Modified vegetation indices (ETM+mid: 
1650nm; 2215nm) 

(Lu, Mausel et al. 2004)

ND32 ( ) ( )2323 ETMETMETMETM +−  Modified vegetation indices (ETM+mid: 
560nm; 660nm) 

(Lu, Mausel et al. 2004)

Complex vegetation indices   
ARVI ( ) ( )BLUEREDNIRBLUEREDNIR −+++ 22  Enhancement of NDVI that is relatively resis-

tant to atmospheric factors (ETM+mid: 485nm; 
660nm; 830nm) 

(Kaufman and Tanre 
1996) 

EVI ( ) ( )15.765.2 +−−−× BLUEREDNIRREDNIR  Reduce the atmospheric influence and opti-
mize the vegetation signal (ETM+mid: 485nm; 
660nm; 830nm) 

(Huete, Liu et al. 1997) 

SAVI ( ) ( ) ( )LREDNIRLREDNIR +++×− 1  Modified green vegetation index with an ad-
justment factor (ETM+mid: 660nm; 830nm) 

(Huete 1988) 

MSAVI2 ( ) 2)2(8)12(12 2 ⎟
⎠
⎞⎜

⎝
⎛ −−+−+ REDNIRNIRNIR  Measure of vegetation that is less sensitive to 

atmosphere and soils (ETM+mid: 660nm; 
830nm) 

(Qi, Kerr et al. 1994) 

GEMI ( ) ( ) ( )REDRED −−−− 1125.025.01 εε  

where ε =(2(NIR2–RED2)+1.5NIR+0.5RED)/(NIR+RED+0.5)  

Global environmental monitoring index  that 
is insensitive to empirical atmosphere 
(ETM+mid: 660nm; 830nm) 

(Pinty and Verstraete 
1991) 

Image transform indices   
VIS123 321 ETMETMETM ++  (ETM+mid: 485nm; 560nm; 660nm) (Lu, Mausel et al. 2004)

MID57 75 ETMETM +  (ETM+mid: 1650nm; 2215nm) (Lu, Mausel et al. 2004)

ALBEDO 754321 ETMETMETMETMETMETM +++++ (ETM+mid: 485nm; 560nm; 660nm; 830nm; 
1650nm; 2215nm) 

(Lu, Mausel et al. 2004)

 
 
Results  
 
Biomass Mapping using Field Data and GIS 
 
The estimated biomass, stem volume and count of stems were 
plotted against DBH classes (Fig. 3), and the result show that 
small and medium tree diameters (10 - 60 cm), although contrib-

uting to large number of trees, represented small amounts of 
stem volume and biomass. These DBH’s were dominant for 
young- and regenerating forests, which were mostly occupied by 
small and fast growing pioneer species, complemented with me-
dium size of non-pioneer species. Old secondary- and mature 
forests on the other hand, were characterized by non-pioneer 
species from medium to large tree size. The pioneer species and 
small light demanding species disappeared during the regenerat-
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ing process due to natural thinning effects caused by species 
competition in pursuing limited nutrient contents and light inten-
sities. Therefore, the old secondary- and mature forests contrib-
uted to higher AGB and stem volume. 
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Fig. 3 Plot of Stem volume/biomass and number of stems/ha vs. tree 
diameter (DBH)  
 

The AGB was exponentially increased with DBH following 
the forest regenerating processes. This is because the biomass 
has an exponential relationship with DBH, and stem volume is 

basically a square function of DBH. Assuming other conditions 
are constant, stem volume is linearly related to AGB. Besides 
that, biomass of a single tree is equal to the product of the wood 
density and the volume (Ketterings et al. 2001). Many large trees 
in our study area comprise of hardwood trees, such as teak (Tec-
tona grandis), mahogany (Swietenia sp.), ebony (Diospyros sp.), 
keruing (Dipterocarpus sp.), and meranti (Shorea sp.). The 
hardwoods are mostly broad-leaved, and in the tropics and sub-
tropics these trees are usually evergreen. On average, hardwood 
has higher wood density and hardness than softwood, although 
there is an enormous variation in actual wood hardness in both 
groups, with the range in density in hardwoods completely in-
cluding that of softwoods.  

Based on the interpretation of the Landsat image and DEM 
data in 2001, eleven land cover classes were identified in the 
concession area. The forest management unit digitized GIS land 
cover map and used it as the reference in managing the conces-
sion area (Fig. 4). Mature forest was defined as an old forest 
comprising large growing trees and some patches of primary 
forest. Very dense forests was explained as old secondary forest, 
which were logged >20 years ago and comprised of more large 
trees rather than the regenerating ones. Dense forests were de-
scribed as current regenerating forests with the age of <20 years 
old. Riparian forests were situated along the main rivers that 
flow over the study area from NE – SW to west directions.  

 
 

 
Fig. 4 Landsat ETM of the study area with ETM bands 453 as RGB combination (left), and modified GIS land cover map of 2001 (right) 

 
Using GIS land cover map as a reference, the stem volume, 

AGB and number of stems per hectare were plotted (Fig. 5). The 
mean AGB of mature forest was 287.9 t·ha-1, almost double than 
in dense forests (149.8 t·ha-1). The stem number in mature forest 
was extremely high, mainly due to the presence of undisturbed 
forests within this class which mostly situated in the protection 
forest. Riparian forest on the other hand, represented higher stem 
number but contributed to low biomass. This was because most 
riparian forests were characterized with tall and very slim trees, 

thus contributed to less biomass. The presence of riparian forest 
was usually mixed with shrubs which may become a problem for 
RS data to classify both forest classes. Similarly, number of 
shrubs was also found along the rivers indicating the presence of 
former slash and burn practice and opening of agricultural lands.  

During field work, we observed more disturbance on forests 
occurred with the declining slope. These disturbances were 
mainly caused by anthropogenic factors, such as illegal forest 
harvesting, forest burning and opening of agricultural farms 
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(Wijaya 2006). This condition was similar with the finding of 
this study which predicted lower AGB and stem volume in lower 
slope areas (Fig. 5). For example, the biomass density in very 
dense forest-hilly (225.9 t·ha-1) was significantly higher than in 
very dense forest-flat (182.5 t·ha-1), while the AGB in dense 
forests under moderate (155.2 t·ha-1) and under hilly terrains 
(168.4 t·ha-1) was slightly different. 

Our ground observation also found that vegetation complexity 
and canopy cover in mature forests and very dense forests were 
similar (Fig. 5), given the fact that the estimated AGB in mature 
forests (234.2 t·ha-1) was slightly higher than in very dense for-
ests (204.2 t·ha-1). As mentioned earlier, mature forests indicate 
the presence of pristine forests which mostly are undisturbed, 
whereas very dense forests were assumed as old secondary for-
ests that were harvested more than 20 years ago. The similarity 
in vegetation structures for both forests occurred because these 
forests were selectively logged over, depending on tree species 
(i.e. commercial timber) and size (i.e. DBH > 50 cm), and the 
gaps of forest canopy were rapidly recovered just one year after 
the completion of forest harvesting. However, the density of 
large trees (DBH > 80 cm) in secondary forests (i.e. very dense 
forests) was not as high as in primary forests (i.e. mature forests), 
so that lower biomass was found in the secondary forests even 
after 20 years of forest harvesting, as indicated by number of 
stems per hectare in both forest regimes (Fig. 5). 
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Prediction and dynamics of biomass and stem volume using 
remote sensing 
 
Model generation 
Analysis of Pearson correlation test showed that GLCM mean 
texture explained the stem volume (r = −0.669) and AGB (r = 
−0.544) better than other remote sensing data, including ETM 
band 4, 5 and 7, NDVI, SAVI, and PC1, which were usually 
among the ‘favorite bands’ used for vegetation assessment (Ta-
ble 3). This high correlation between GLCM mean texture and 
AGB and stem volume was probably due to the smoothing ef-

fects of the texture feature calculating second derivatives mean 
values of particular pixels based on the values of neighboring 
pixels. The utility of GLCM texture features was useful to re-
move the shadow effects of broadleaf and/or large trees (Lu 
2005). This evidence was confirmed by Lu (2005) who found 
higher correlation between the GLCM entropy and AGB in ma-
ture tropical forests of the Amazon. That study explained the 
combination of texture features and ETM spectral data could 
improve the predictive ability of multi-linear regression method 
in estimating the AGB. Another study carried out in the regener-
ating tropical forest of Brazilian Amazon described that GLCM 
contrast improved the correlation between radar backscatter and 
the AGB (Kuplich et al. 2005). Our study area, in fact, was a 
secondary forest that mostly classified as moderate  – late re-
generating forest stages and mature forest (as shown in Fig. 6). 
With relatively complex vegetation structure, the GLCM texture 
features were more sensitive to AGB than ETM spectral data and 
vegetation indices.  
 
Table 3. Correlations between Remote Sensing Data, Stem Volume 
and Above Ground Biomass (AGB) 

 
Stem 
Volume  

AGB   
Stem 
Volume  

AGB  

B1 -.250(**) -.246(**) SAVI -.101 -.076 

B2 -.278(**) -.275(**) MSAVI2 -.075 -.052 

B3 -.211(**) -.194(**) GEMI .368(**) .313(**)

B4 -.395(**) -.336(**) VIS123 -.276(**) -.267(**)

B5 -.418(**) -.375(**) MID57 -.425(**) -.382(**)

B7 -.390(**) -.349(**) ALBEDO -.443(**) -.394(**)

ELEV -.009 -.160(**) PC1 -.426(**) -.383(**)

SLOPE .082 .082 PC2 .399(**) .340(**)

SR -.137(*) -.109(*) PC3 -.077 -.085 

SR53 -.177(**) -.160(**) TC1_BR -.427(**) -.374(**)

SR54 -.082 -.093 TC2_GR -.300(**) -.241(**)

SR57 -.037 -.037 TC3_WE .380(**) .338(**)

SR73 -.147(**) -.130(*) GLCM_MEAN -.669(**) -.544(**)

NDVI -.085 -.063 GLCM_VAR -.067 -.035 

ND53 -.129(*) -.111(*) GLCM_HOMO .081 .078 

ND54 -.084 -.095 GLCM_CONT -.100 -.063 

ND57 -.034 -.032 GLCM_DISS -.099 -.085 

ND32 .061 .083 GLCM_ENTR -.011 -.016 

ARVI -.099 -.073 GLCM_SECM .011 .027 

EVI .014 -.002 GLCM_CORR -.020 -.016 

 
Given the highest correlation coefficients with the AGB and 

stem volume, the GLCM mean texture was ultimately used as a 
basis for sample data selection, resulting in the subset data ex-
hibited in Table 4. The data selection was actually a process to 
remove the extreme values from the complete dataset, and hence, 
reduced standard deviation of the subset data. Comparison be-
tween the subset and complete datasets found similar mean AGB 
and stem volume, and spatial distribution of the data was also 
similar with the complete dataset (Fig. 1), as only the data within 
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±1.SD were selected.  Assuming there was no change on the 
data distribution, the subset data was used to build the remote 
sensing-based AGB and stem volume linear equations.  

ETM multispectral bands (ETM Bands 1-5, and 7), SR53, 
SR73, GEMI, VIS123, MID57, ALBEDO, PC1, TC1, TC2, TC3, 
and GLCM mean were significantly correlated with AGB and 
stem volume (ρ < 0.05), although the correlation coefficients on 
average were relatively low (r < 0.5) 

 
Table 4.  Comparison of stem volume and AGB from complete and 
selected datasets  

 Complete Dataset Subset Data 

 
Stem Volume 

(m3·ha-1) 
AGB 

(t·ha-1) 
Stem Volume 

(m3·ha-1) 
AGB 

(t·ha-1) 

Mean 156.79 167.36 156.60 166.82 
Min 1.73 4.69 59.95 60.85 
Max 628.62 663.35 221.97 234.03 
SD 92.15 94.16 24.69 27.12 
%SD 59% 56% 16% 16% 
N 1460  388  

 
Using Stepwise method, these data were iteratively selected to 

model the stem volume (StVol), and the linear equation model 
was generated (SEE=18.4, F=34.719, ρ < 0.05). 
 

( ) ( ) ( )
( ) ( )
( ) ( )
( ) 511.1192_595.15

_3412.2541699.4214
444.22001.0

751.85910.114703.9

+×

−×−×

+×−×

+×+×+×=

MEANGLC
WETCPC

ALBEDOGEMI
BBBStVol

   (2) 

 
Similar to stem volume, the AGB was estimated using combina-
tion of the RS data for predicting the biomass linear equation 
(SEE=22.7, F=21.44, ρ < 0.05). 
 

( ) ( ) ( )
( ) ( )
( )
( ) 644.1029_991.12

_3087.2647
1451.3430784.14

7366.95198.144569.6

+×

−×

−×+×

−×−×−×=

MEANGLC

WETC
PCALBEDO

BBBAGB

 
(3) 

 
Applying Equations (2) and (3), we estimated 157.8±16.12 

m3/ha of stem volume and 168.06±14.57 ton/ha of AGB over the 
study area. These estimates were similar with those predicted 
from the field observation data obtaining 156.79±92.15 m3/ha 
and 167.36±94.16 ton/ha of stem volume and AGB, respectively 
(see Table 4). 
 
Land cover classification 
The accuracy of classification results was assessed using confu-
sion matrices and Kappa Statistics (Table 5), and found the clas-
sification using ETM image and processed using majority analy-
sis had better accuracy (OA00 = 82.8%, OA03 = 85.1%) than the 
use of PCA bands (OA00 = 75.9%, OA03 = 80.8%) or ETM data 
without post-classification process (OA00 = 77.9%, OA03 = 

81.9%). 
Majority analysis was basically an attempt to remove minor 

spurious pixels surrounded within a large single class using a 
kernel matrix. The analysis resulted in more homogenous classi-
fication map, which had higher accuracies and better visualiza-
tion characteristics. 

Based on the ETM data, nine land cover classes, namely ma-
ture forest, very dense forest classes (VDF-closed, VDF-gaps), 
dense forest classes (DF-closed, DF-gaps, DF-disturbed), ripar-
ian forest (RF), shrubs and bare soil were classified. The classi-
fication map showed noticeable marks of forest degradation and 
deforestation from 2000 to 2003 (Fig. 6). Southern part of the 
study area, which were dominated by very dense forests in 2000 
were mostly converted into dense forest in 2003, indicating 
prominent forest degradation. The expansion of road networks 
and slash and burn practice for the opening of new agriculture 
lands were the major problems compromising the sustainability 
of forest management over this forest region. 

 
Table 5. Classification Accuracy of ETM 2000 and 2003 

ETM 2000  ETM 2003  
OA00 
(%) 

Kappa  OA03 
(%) 

Kappa

ETM image (Band 1-5,7) 77.9 0.75  81.9 0.79 
PCA Bands (PC 1-3) 75.9 0.73  80.8 0.78 
ETM image, majority analysis 82.8 0.80  85.1 0.83 

 
Comparison of AGB and stem volume estimates 
We have so far two land cover maps, namely the GIS land cover 
map and land cover map of ETM data classification. Unfortu-
nately, both maps have different number of classes and class 
descriptions. There were eleven classes and nine land cover types 
identified in the GIS land cover map and the classification of 
ETM data, respectively. To compare the biomass density and 
standing stocks estimated from RS and GIS – field observation 
based approaches; the incompatible class labels were excluded or 
aggregated following general classification rule. The incompati-
ble land cover classes, i.e. agriculture, mixed forest and swamp 
forest classes were excluded from the GIS land cover map. The 
remaining classes were aggregated resulting in five final classes 
for both land cover maps, namely mature forest, very dense for-
est, dense forest, riparian forest and shrubs. Using the aggregated 
land cover classes, the assessments of biomass and stem volume 
changes from 2000 to 2003 were conducted. 

An attempt using GIS and field data obtained higher AGB and 
stem volume in mature- and very dense forests classes than did 
the remote sensing approach. For dense forest, riparian forest and 
shrubs, the AGB and stem volume were higher when the RS data 
was applied (Table 6). In general, both approaches lead to similar 
conclusion, as the regenerating stage becomes more advanced, 
the more AGB and standing stocks were found in the study area. 
This study considered shrubs as the least complex vegetation 
structure, representing the earliest regenerating stage. In contrast, 
mature forest was associated with the most advanced vegetation 
structure. 
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Dynamics of biomass abundance 
The land cover map of classified ETM data was used as the ref-
erence for analyzing the total areas of each land cover type and 

biomass change from 2000 to 2003. Of about 4,200 ha of mature 
forests in 2000 were converted into other land cover types in 
2003 showing forest degradation within this particular forest. 

  

 
 
Fig. 6 Classified ETM images of year 2000 (left) and 2003 (right) showing mature forest, very dense forests, dense forests, riparian forest, shrubs 
and bare soil. The bare soil class was masked out from the classification prior to the estimates of AGB density and stem volume of each land 
cover type 
 
Table 6. Comparison of AGB and stem volume estimates for par-
ticular land cover type 

Remote Sensing Estimate GIS and Field Data Estimate
Forest  
physiognomies 

Stem Volume 
(m3/ha) 

AGB 
(ton/ha) 

Stem Volume 
(m3/ha) 

AGB 
(ton/ha) 

Mature forest 171.8 180.8 271.1 287.9 
Very dense forest 161.5 171.0 193.3 204.2 
Dense forest 152.8 163.4 140.3 149.8 
Riparian forest 146.1 154.1 121.5 139.0 
Shrubs 105.2 118.7 96.5 107.5 

 
Mature forests are important for forest ecosystem, as these fo-

rests represent the most complex vegetation structure and indi-
cated the presence of undisturbed forests. In contrast, very dense 
forests increased from 8 859 ha to 16 865 ha (Table 7). This was 
probably due to the degradation of mature forests, or due to the 
growth of dense forest into a m o r e  complex structure reducing 
the area of this particular class from 35 563 ha (2000) to 27 624 
ha (2003). The riparian forest areas increased up to 4 962 ha in 
2003, this implied the excessive extension of shrubs into respec-
tive forest class. The bare soil class was none of our interest, 
therefore excluded prior to the biomass change assessment. 

Calculating the sum products of AGB and stem volume (Table 

6) and total forest areas in 2000 and 2003 (Table 7), the changes 
on biomass and standing stocks over the study area were ob-
tained (Table 8). The AGB in mature forest decreased by 25% 
from 2.77 Gt in 2000 to 2.0 Gt in 2003 estimated from RS data. 
Similarly, the GIS – field data assessed lower biomass in this 
particular forest with greater magnitude. Both approaches found 
an increased AGB in very dense forest and riparian forest. The 
dense forest class, representing of more than 56% of forested 
lands, contributed to over 55% of total biomass in 2000 esti-
mated using RS data. 
 
Table 7.  Percentage of Land cover change from 2000 to 2003 based 
on ETM data classification (percentage is shown in brackets) 

Forest  
physiognomies 

Land Cover 2000 
(ha) /(%) 

Land Cover 2003
(ha) /(%) 

Difference 
(2003 – 2000) 

(ha) 

Mature forest 15,297 (24.4%) 11,094 (17.7%) -4,202 
Very dense forest 8,859 (14.2%) 16,865 (27.0%) 8,006 
Dense forest 35,563 (56.8%) 27,624 (44.2%) -7,939 
Riparian forest 1,550 (2.5%) 4,962 (7.9%) 3,413 
Shrub 1,150 (1.8%) 1,134 (1.8%) -15 
Bare Soil 151 (0.2%) 888 (1.4%) 737 
Total classified area 62,568 (100%) 62,568 (100%)  
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In overall, there was a slightly declining trend in total biomass 
from 2000–2003. This indicates continuous degradation and 
deforestation within the forest region and consequently reduced 

the total abundance of biomass and the volume of standing 
stocks. 

 
Table 8.  Dynamics of Forest Biomass (AGB) and Stem Volume (Vol) from 2000 to 2003 

Remote Sensing data estimate 
2000 2003  Differences (2003–2000)Forest physiog-

nomies 
Vol. (m3) (%) 

AGB 
(Gton) 

(%) Vol. (m3) (%) 
AGB 

(Gton) 
(%)  Vol. (m3) AGB (Gton)

Mature forest 2,627,681 26.7% 2.766 26.4% 1,905,789 19.7% 2.006 19.5%  -721,893 -0.760 

Very dense forest 1,430,454 14.5% 1.515 14.5% 2,723,228 28.1% 2.884 28.0%  1,292,774 1.369 

Dense forest 5,435,006 55.2% 5.812 55.5% 4221747 43.5% 4.515 43.8%  -1,213,260 -1.298 

Riparian forest 226,391 2.3% 0.239 2.3% 725,013 7.5% 0.765 7.4%  498,621 0.526 

Shrub 120,894 1.2% 0.136 1.3% 119,295 1.2% 0.135 1.3%  -1,599 -0.002 

Total 9,840,427 100% 10.469 100.0% 9,695,071 100.0% 10.304 100.0%  -145,356 -0.164 

GIS and field data estimate 
2000 2003  Differences (2003–2000)

 
Forest type 

Vol. (m3) (%) 
AGB 

(Gton) 
(%) Vol. (m3) (%) 

AGB 
(Gton) 

(%)  Vol. (m3) AGB (Gton)

Mature forest 4,147,107 37.2% 4.403 37.1% 3,007,788 27.7% 3.194 27.6%  -1,139,319 -1.210 

Very dense forest 1,712,045 15.4% 1.809 15.2% 3,259,308 30.0% 3.444 29.7%  1,547,262 1.635 

Dense forest 4,987,952 44.7% 5.329 44.9% 3,874,489 35.7% 4.139 35.7%  -1,113,463 -1.189 

Riparian forest 188,261 1.7% 0.215 1.8% 602,902 5.6% 0.690 6.0%  414,641 0.474 

Shrub 110,976 1.0% 0.124 1.0% 109,508 1.0% 0.122 1.1%  -1,468 -0.002 

Total 11,146,342 100.0% 11.880 100.0% 10,853,995 100.0% 11.588 100.0%  -292,347 -0.292 

 
Carbon accumulation over this period definitely was reduced, 

and more carbon was released into the atmosphere. Remote 
sensing approach in general calculated lower biomass abundance 
and stem volume than those from GIS–field data. The earlier 
approach predicted 10.45 Gt and 10.3 Gt of total biomasses in 
2000 and 2003, while the later estimated 11.9 Gt and 11.6 Gt of 
total biomasses, respectively. 
 
Discussion 
 
Prediction Results Assessment 
 
This study successfully predicted the above ground biomass 
(AGB) and stem volume over a tropical forest region using re-
mote sensing and GIS–field data approaches. Estimation of stem 
volume is important for mapping of standing stock and for forest 
inventory purpose, as it provides initial prediction on timber 
amount that could be commercially harvested. The biomass on 
the other hand is important for indicating carbon accumulation in 
a forest region over time, and information on total AGB esti-
mated for each land cover type is useful to assess how different 
regeneration stages could have an effect on the forest as a source 
of carbon sink.  

Remote sensing based estimates have potential to predict the 
dynamics of forest biomass and stem volume over large forest 
region with less efforts, time and cost than field based estimate. 
However, the accuracy of the estimates is somehow questionable, 

as it depends on the quality of remote sensing data and its rela-
tionship with field observation data being modeled. Several at-
tempts to estimate AGB from remote sensing data found high 
uncertainties which were around 30%–40% (Sales, Souza Jr. et 
al. 2007). This study confirmed this high error estimate in as-
sessing the AGB using RS data and found slightly lower error 
estimate (Table 9), and the result might be used as an initial pre-
diction of AGB over the study area. To elevate the estimate pre-
cision, correlation analysis between the RS data and biomass can 
be separately implemented for different land cover, and it should 
be considered for further study. 

An attempt to estimate the AGB using remote sensing (RS) 
tends to underestimate the result due to the saturation of the 
ETM spectral values and vegetation indices. The RS data satu-
rated at higher AGB and stem volume, reducing the coefficient 
correlation with the measured forest properties. In order to re-
duce the saturation problem, we masked the extreme values out 
from RS data to get better correlation with the forest properties 
under study. The present study as well as previous studies con-
firmed that reflectance of Landsat data and NDVI were saturated 
at higher biomass density (Steininger 2000; Lu 2005). Several 
underlying factors may cause this problem, namely the size of 
sampling plot that was not designed to be related to spaceborne 
data, or the saturation from dense leaf canopies that restricts the 
AGB estimates into a low level when passive sensors, such 
Landsat ETM, are used (Anaya et al. 2009). Nevertheless, the 
utility of moderate resolution of satellite data, such as ETM im-
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age, is the only alternative to predict the AGB and stem volume 
in this particular forest due to the lack of active sensors, e.g. 
SAR and Lidar, or high spatial resolution satellite imagery, e.g. 
Ikonos and Quickbird.  

The biomass estimates of this study were compared with those 
computed using another allometric model generated with de-
structive sampling and developed for similar forest environment. 
Assuming the similarity of forest structure and vegetation com-
positions, those models were implemented in this study for esti-
mating the AGB using available sample dataset. Our estimates 
(AGBGIS and AGBRS) were similar with the results of FAO 
model (FAO 1997) and Brown and Lugo study (Brown, Gilles-
pie et al. 1989). However, Ketterings model (Ketterings et al. 
2001) estimated significantly lower biomass than did other mod-
els (Table 9). This was probably due to the forest composition in 
Sumatra, the site where this particular model was developed, did 
not represent the forest in the Labanan, although both forests 
were geographically located in one country. The AGB models 
developed for general tropical forest (Brown et al. 1989; Brown 
1997) are more suitable for our study site. The Brown & Lugo 
model (Brown et al. 1989) was generated collecting tree sample 
from Brazil, Cambodia and Indonesia. Similarly, the FAO model 
(Brown 1997) was developed for tropical moist forest environ-
ment in general. 
 
Table 9. Above ground biomass estimates computed in this study 
using different allometric equations developed for tropical forest 
environment  

 AGBGIS 
(This 
study) 

AGBRS 
(This 
study) 

FAO 
Model 
(1997) 

Brown & 
Lugo 
(1992) 

Ketter-
ings, et.al. 
(2001) 

AGB 
Estimate 
(t·ha-1) 

167.4 166.8 164 155.7 88.46 

SD 
(t·ha-1) 94.2 27.1 91.8 94.5 47.5 

 
Relationship Between GLCM Mean Texture, Land Cover, and 
Forest Biomass 
 
We found texture features derived from the Grey Level 
Co-ocurrence Matrix (GLCM) mean texture had a strong corre-
lation with the AGB and stem volume (Table 3). To study the 
capability of mean texture feature in discriminating the AGB of 
particular land cover type, the GLCM mean texture, AGB esti-
mate, and land cover type were plotted showing that moderate- 
and flat terrain-dense forests represented higher texture values 
compared to that of very dense forest classes (Fig. 7).  

The GLCM mean texture values of dense forest-hilly class 
have large interval and highly overlaps with other forests texture 
values. During field observation we found many similarities 
between very dense- and mature forests, and to differentiate 
these forest classes is sometimes problematic, especially those 
located in moderate and steep slope. Within these forest classes, 
we found numbers of moderate trees (dbh>50 cm) configured 
with a very small gap of canopy opening. Calculating mean tex-
ture features, the shadow effects from tree canopies was removed, 
but the limited ability of ETM data in penetrating through the 

forest canopies created problems for characterizing each land 
cover biomass using individual texture data. 
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Fig. 7 Distribution of GLCM Mean Texture of Different Land Cover 
Type 
 
 
Conclusions 
 
The assessment of above ground biomass (AGB) and stem vol-
ume was presented in this study implementing RS data and GIS 
– field data approach. The ETM data, vegetation indices, image 
transform layers, simple ratio, PCA, tasseled caps bands, GLCM 
texture features and DEM were generated and correlated with the 
AGB and stem volume. We found the GLCM mean texture had 
higher coefficient correlation than other RS data, but was diffi-
cult for discriminating the biomass of each land cover type due 
to the limitation of ETM data. Based on selected dataset, the 
linear equation models of AGB and stem volume were predicted. 
On average, 158±16 m3·ha-1 of stem volume and 168±15 t·ha-1 of 
AGB were estimated using RS approach. Based upon the field 
observation data, 157±92 m3·ha-1 and 167±94 t·ha-1 of stem vo-
lume and AGB were predicted, respectively. The dynamics of 
biomass abundance from 2000 to 2003 were assessed using clas-
sified ETM data.  In general, there was a declining trend of total 
biomass over this period. Remote sensing approach estimated 
lower biomass abundance than did the GIS and field data. The 
earlier approach predicted 10.47 Gt and 10.3 Gt of total bio-
masses in 2000 and 2003, while the later estimated 11.9 Gt and 
11.6 Gt of total biomasses, respectively. 
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