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Abstract: The role of late embryogenesis abundant (LEA) proteins in stress tolerance was examined by using a yeast expression system. 
LEA protein tolerance to the abotic stresses in plants involved in salt, drought and freezing stresses and additional tolerance to heat, Na-
HCO3 (salt-alkali) and ultraviolet radiation was also investigated. The transgenic yeast harboring the Tamarix LEA gene (DQ663481) was 
generated under the control of inducible GAL promoter (pYES2 vector), yeast cells transformed with pYES2 empty vector were also gener-
ated as a control. Stress tolerance tests showed that LEA yeast transformants exhibited a higher survival rates than the control transformants 
under high temperature, NaHCO3, ultraviolet radiation, salt (NaCl), drought and freezing, indicating that the LEA gene is tolerant to these 
abiotic stresses. These results suggest that the LEA gene is resistant to a wider repertoire of stresses and may play a common role in plant 
acclimation to the examined stress conditions.  
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Introduction   
 
Late embryogenesis abundant proteins (LEA) accumulate during 
the late stage(s) of embryogenesis and they are found in a wide 
range of plant species. These proteins are highly hydrophilic and 
are proposed to play a role in desiccation tolerance based on their 
accumulation and physicochemical properties. Many LEA genes 
were cloned from plants, including Physcomitrella patens (Liang 
et al. 2004), Pisum sativum (Grelet et al. 2005), Glycine max 
(Shih et al. 2005), Capsicum annuum (Kim et al. 2005), Oryza 
sativa (Moons et al. 1997), Gossypium hirsutum (Galau et al. 
1993) and Raphanus sativus (Raynal et al. 1990). The abiotic 
stress tolerance of LEA proteins has been investigated exten-
sively, and the resistance to stresses of freezing (Shimamura et al. 
2006), drought or osmosis (Manfre et al. 2006; Goyal et al. 
2005a), and salt (Chourey et al. 2003) has been also confirmed. 

The yeast, Saccharomyces cerevisiae, is widely used to pro-
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duce heterologous proteins (Hasegawa et al. 2000), and it is an 
excellent model organism for studying the mechanisms underly-
ing stress tolerance (Han et al. 1999; Posas et al. 2000; Serrano 
and Rodriguez-Navarro, 2001; Jeong et al. 2000). As the 
glyceraldehyde-3-phosphate dehydrogenase gene was transferred 
into yeast cells, and yeast transformants exhibited significantly 
higher resistance to cold, salt, heat, and drought stresses than 
controls. In addition, Mahalakshmi et al. (2006) reported that 
expression of the serine-rich protein gene from Porteresia 
coarctata conferred increasing NaCl tolerance in yeast. Wang et 
al. (2005) cloned the novel Ca2+-permeable channel gene, 
TaTPC1, from wheat and expression of TaTPC1 in a yeast mu-
tant lacking CCH1 recovered its growth under lithium stress. 
Overexpression of the sugar beet eIF1A gene also increased the 
sodium and lithium salt tolerance of yeast (Rausell et al. 2003). 
These results illustrate that the yeast expression system is a de-
sirable tool for studying stress tolerance gene. In the present 
study, we utilized yeast expression system to study the stress 
tolerance of the Tamarix LEA gene.  

 
Materials and methods 
 
Construction of the yeast expression vector and yeast transfor-
mation 
  
Yeast strain, S. cerevisiae INVSc1 (His-, Leu-, Trp-, Ura-), from 
Invitrogen, was used for all transformation. The yeast plasmid, 
pYES2 (Invitrogen), with the inducible GAL1 promoter was 
used as an expression vector. Primers for amplifying the LEA 
gene were designed according to the sequence of the LEA gene 
(DQ663481) from Tamarix: LEA1, 5’CTAGAGGTACCA- 
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TGGCTCGCTGCTCTTACTCTAAT3’, (KpnI site underlined) 
and LEA2, 5’TCTAGCTCGAGTCAGTGAGAGGATCGATT- 
GAACTTG3’ (XhoI site underlined). The LEA gene was ampli-
fied by PCR method using a cDNA library plasmid (pBluescript; 
Stratagene) containing the Tamarix LEA gene. The amplified 
product was digested with KpnI plus XhoI and ligated to 
KpnI/XhoI -digested pYES2 to construct the expression vector, 
pYES2-LEA. pYES2-LEA was transferred into Escherichia coli 
for amplification. To confirm whether the LEA gene was cor-
rectly inserted into the pYES2 vector, the plasmid was extracted 
from E. coli cells transformed with pYES2-LEA, and digested 
with KpnI and XhoI. The pYES2-LEA and control plasmid, 
pYES2 (empty vector), were transformed into S. cerevisiae 
INVSc1 using a lithium acetate method, as described in the 
manufacturer’s protocol (pYES2, Invitrogen). The selected yeast 
clones were grown at 30°C in SC-ura medium (containing 2% 
glucose) without uracil. The transformant of empty pYES2 was 
used as a control.  
 
Level of LEA gene expression in S. cerevisiae at different induc-
ing time 
  
Northern blot analysis was performed to determine the expres-
sion level of LEA gene at different inducing time in yeast. Yeast 
transformants were cultured under different conditions as follows: 
yeast transformants harboring LEA gene were cultured in the 
induction medium (SC-ura medium supplied with 2% galactose) 
for 3, 12, 24, 36, 48 and 60 h at 30°C and harvested for RNA 
isolation. The empty pYES2 transformants were cultured in the 
induction medium for 24 h at 30°C, then harvested as a control. 
Total RNA was extracted from each samples using Trizol reagent 
(Invitrogen) according to the manufacturer’s protocol. RNA (20 
μg) was dissolved in denaturing buffer (formamide: formalde-
hyde [37% solution]: 10 x Mops buffer, 500:162:100 [v/v/v]), 
heated (65°C, 15 min), fractionated on formaldehyde agarose 
gels, blotted on Hybond N+ membranes, and fixed by UV 
cross-linked (254 nm, 8 min). Probe was labeled with digoxi-
genin (Roche) using PCR method. After prehybridization at 65°C 
for 2 h, the membrane was hybridized with probe for 18 h at 
65°C. The washing and detection procedures were performed 
following the manual's instruction (Dig Northern starter kit in-
struction manual, Roche).   
 
Characterizing the stress resistance of LEA gene 
   
Yeast transformants harboring pYES2-LEA, or a control vector, 
were cultured in SC-ura liquid medium containing 2% glucose, 
and incubated for 24 h at 30°C. The cell densities were measured 
at OD600, adjusted to OD600 of 0.4 in 5 mL of induction me-
dium (SC-ura medium supplied with 2% galactose), and incu-
bated for 24 h at 30°C to promote further expression of the LEA 
gene. After incubation, cell densities were recalculated at OD600, 
and the culture samples (cells transformed with the LEA gene or 
the control) were adjusted to an equal cell number (about 1 x 107 

cells) for the stress experiments.  
To measure responses to NaCl stress, the yeast cells were in-

cubated in a 5 mol/L NaCl solution, placed at 4°C for 24 h, and 
diluted 100- and 1000-fold for spread plates. To measure re-
sponses to NaHCO3 stress, yeast cells were added to an 8% or 
10% NaHCO3 solution and mixed before being placed at 30°C 
for 8 h, and diluted 100-fold for spread plates. To calculate re-
sponses to drought stress, yeast cells were vacuumed for 8 h, 
treated with an 8 mol/L sorbitol solution for 24 h, and diluted 
1000-fold for spread plates. To quantitate responses to high tem-
perature stress, yeast cells were incubated for 2 or 3 h at 53°C 
and for measuring freezing stress, yeast cells were placed in an 
ethanol bath at -20°C for 24 h, and then diluted 100- and 
1000-fold for spread plates. Following the above treatments, the 
stressed cells (100 μl) was spread on SC-Ura solid medium (sup-
plying with 2% glucose) and incubated for 48–52 h at 30°C. To 
measure ultraviolet radiation stress, yeast cells were spread on 
SC-Ura solid medium and exposed to ultraviolet radiation at a 
wave length of 254 nm (100 μJ/ cm2) for 12 s or 36 s; then the 
plates were incubated for 48 h at 30°C. The plates were scanned 
and the survival rates of two samples (LEA transformed yeast 
cells and the control) were compared for the assay of LEA gene 
stress tolerance.    
 
Results 
 
LEA gene reached a high expression level at the induction time 
of 12 h to 24 h  
 
Yeast transformants harboring the LEA gene were induced by 
galactose at different times (3, 12, 24, 36, 48 and 60 h), and ana-
lyzed by northern blot to demonstrate the presence of the RNA 
transcript during expression of the LEA gene. Northern blot re-
sults showed that the LEA gene was transcribed in yeast cells, 
with transcription reaching a high level at the induction time of 
12 h to 24 h (Fig. 1). 
 

 

 
 
Fig. 1 Analysis of Tamarix LEA gene expression in yeast cells by 
northern blot.  
Yeast transformants harboring Tamarix LEA gene were induced by galactose 
for 3, 12, 24, 36, 48 or 60 h; CK, yeast cells transformed with empty pYES2. 
 
Stress tolerance analysis of the LEA gene in transgenic yeast 
cells 
 
The stress tolerance of LEA gene, or control transformant yeast 
cells was tested by treating them with a variety of stress inducers. 
The cells were then spread on plates, incubated for 48 h at 30°C, 
and the survival rates of LEA transformant and control cells were 
compared. The results showed that there was no difference in 
survival rate between the transgenic and nontransgenic yeast 
under non-stress conditions (Figs. 2–7), indicating that the 
transgenic and nontransgenic yeasts have an identical grow rate. 
While the survival rate of the transgenic and nontransgenic 

CK    3 h    12 h   24 h   36 h   48 h    60 h 
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yeasts varied significantly when treated with different stress.  
 
Resistance to NaCl stress  
There was no difference in survival rate between the transgenic 
and nontransgenic yeast under non-stress conditions. Following 
exposure to 5 mol/L NaCl at 4°C for 24 h, the survival rate of 
yeast cells transformed with the LEA gene was about 6-fold 
higher than that of the control transformants (Fig. 2), indicating 
that the expression of LEA gene enhances the salt tolerance of 
yeast cells.  
   
 

 
 
 
 
 
 
 
 
       
 
 
Fig. 2 NaCl tolerance of yeast cells 
Yeast cells were incubated in a 5 mol/L NaCl solution, placed for 24 h at 4˚C, 
diluted 100- and 1000-fold, and plated on SC-Ura medium. LEA+, LEA 
transformed yeast cells; LEA-, yeast transformed with the empty pYES2; Con, 
untreated yeast cells; 100 x, 1000 x, cells were diluted 100-, 1000-fold and 
plated.   
 
Resistance to NaHCO3 stress 
Yeast cells were treated with an 8% or 10% NaHCO3 solution 
and incubated at 30°C for 8 h. No difference in survival rate 
between the transgenic and nontransgenic yeast were found un-
der non-stress conditions. The survival rate of LEA yeast trans-
formants was significantly higher than the control transformants, 
especially after exposure to 10% NaHCO3 solution (Fig. 3). 

 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 3 NaHCO3 tolerance of yeast cells 
Yeast cells were added to an 8% or 10% NaHCO3 solution, incubated at 30˚C 
for 8 h, and plated on SC-Ura medium. LEA+, LEA transformed yeast cells; 
LEA-, yeast transformed with the empty pYES2; Con, untreated yeast cells. 

 
At 8% NaHCO3 stress the survival rate of LEA yeast trans-

formants was more than 2-fold higher than that of control cells. 

At 10% NaHCO3 stress, the survival rate of the LEA gene trans-
formants was about 5-fold that of the control cells. The results 
show that the LEA gene has significant salt-alkali stress toler-
ance. 
 
Resistance to Sorbitol stress 
The vacuum-treated yeast cells were incubated in 8 mol/L sorbi-
tol solution for 24 h at 4°C. The transgenic and nontransgenic 
yeast were shown as Fig. 4. The cells were then diluted 
1000-fold and plated on medium. The survival rate of the LEA 
transformed yeast cells was about 2.4-fold that of control cells, 
showing that expression of LEA gene enhances the drought tol-
erance of yeast cells. 
 
Fig. 4 Drought resistance of yeast 
cells 
Yeast cells were treated with 8 mol/L 
sorbitol solution for 24 h and plated 
on SC-Ura medium. LEA+, LEA 
transformed yeast cells; LEA-, yeast 
transformed with the empty pYES2; 
Con: untreated yeast cells; 1000X: 
cells were diluted 1000 fold and 
plated. 
 
 
Ultraviolet radiation stress resistance   
The yeast cells were treated with ultraviolet radiation (100 μJ/ 
cm2) for 12 s or 36 s. Although LEA transformed and control 
yeast cells all suffered serious injury, the survival rate of LEA 
transgenic cells was about 2-fold greater than that of the control 
cells when exposed to ultraviolet radiation for 12 s. After ex-
posed to ultraviolet radiation 36 s, there were 9 colonies of LEA 
transformants in plate, while only 1 colony of control was found 
(Fig. 5). These results suggest that the LEA gene also has ultra-
violet radiation stress resistance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Ultraviolet radiation resistance of yeast cells. 
Yeast cells were spread on SC-Ura solid medium and exposed to ultraviolet 
radiation (254 nm, 100 μJ/ cm2) for 12 s or 36 s, incubated for 48 h at 30˚C. 
LEA+, LEA transformed yeast cells; LEA-, yeast transformed with the empty 
pYES2; Con, untreated yeast cells. 
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High temperature (53°C) stress resistance 
Yeast cells were incubated at a 53°C water batch for 2 h and 3 h, 
and plated on culture medium. No differences between LEA 
transformed and control cells were found under non-stress condi-
tion. However, after 2 h and 3 h, the LEA transformed cells ex-
hibited significantly higher survival rates than the control cells 
(Fig. 6). After the 3-h incubation, the survival rate of LEA trans-
genic cells was more than 10-fold greater than that of the control 
cells. The results clearly indicate that the LEA gene induces high 
tolerance to heat.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 High temperature resistance of yeast cells 
Yeast cells were incubated at 53˚C for 2 or 3 h and plated on medium. LEA+, 
LEA transformed yeast cells; LEA-, yeast transformed with the empty pYES2; 
Con, untreated yeast cells 
 
Freezing stress resistance 
After incubation in a -20°C alcohol bath for 24 h, the yeast cells 
were diluted 100- and 1000-fold and plated on SC-Ura culture 
medium. The survival rate of LEA transgenic cells was about 
3-fold greater than that of the control cells, indicating that the 
LEA gene enhances the freezing tolerance of yeast cells (Fig. 7).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Freezing tolerance of yeast cells 
Yeast cells were placed in an ethanol bath for 24 h at -20˚C and diluted 100- 
or 1000-fold for spread plates. LEA+, LEA transformed yeast; LEA-, yeast 
transformed with the empty pYES2; Con, untreated yeast cells; 100 X, 1000 
X, cells were diluted 100-, 1000 fold and plated. 

 
Discussion  
 
The precise role of LEA proteins is not fully defined (Goyal et al. 
2005a), although their various functions have been proposed. It 
is thought that LEA proteins confer stress resistance by stabiliz-
ing membranes and protein structures (Serrano and Montesinos 
2003; Danyluk et al. 1998; Grelet et al. 2005; Babu et al. 2004); 
preferentially hydrating at moderate desiccation and replacing 
water at extreme desiccation (Serrano and Montesinos 2003). 
LEA proteins can also adopt certain structures by interacting 
with macromolecules from other plants, thus promoting protec-
tion from stress-induced damage (Soulages et al. 2002). Goyal et 
al. (2005b) found that LEA proteins can act as molecular chap-
erones or shields that might prevent irreversible protein aggrega-
tion. Goyal et al. (2005a) further illustrated that LEA proteins 
can prevent aggregation by binding to non-native proteins, and 
maintaining them in a folding competent state. In addition, LEA 
proteins are shown to sequester ions, protecting enzymes from 
desiccation, and replacing water (Grelet et al. 2005) when the 
plant is under stress-inducing conditions. These studies primarily 
focus on LEA protein tolerance to the abotic stresses of salt, 
drought and freezing in plants. We confirm that the Tamarix LEA 
gene is tolerant to these stresses and illustrate that it has addi-
tional tolerance to heat, NaHCO3 (salt-alkali) and ultraviolet 
radiation. 

Our study shows that expression of the Tamarix LEA gene 
confers heat tolerance and enhances the survival of yeast cells. 
Tamarix can endure a high temperature in desert, implying that 
they have developed an efficient heat resistance system. Through 
this study, we suggest that the LEA gene may contribute to heat 
stress resistance in Tamarix. High temperature stress affects plant 
growth and development and is a common environmental stress 
to plants in summer season. The finding and study of heat toler-
ance gene will be helpful for us to enhance the heat stress toler-
ance of plants by genetic methods.   

Our study also shows that the LEA protein has NaHCO3 toler-
ance. Expression of the LEA gene in yeast cells significantly 
enhanced their survival rate in response to NaHCO3 stress. Thus, 
it appears to be an attractive candidate gene in improving plant 
salt-alkali tolerance by genetic engineering. The ability to make 
transgenic plants with tolerance to salt-alkali stress has important 
implications. According to incomplete statistics of UNESCO and 
FAO, 950 million ha (6.4%) of the world's land area has sa-
line-alkali soil (Zhang et al. 2006). In saline-alkali soil, plants 
endure concomitant saline and alkali stress; consequently it is 
difficult to grow in the saline-alkali soil. The Tamarix LEA gene 
has high saline-alkali resistance, and may be used to genetically 
engineer plants that will survive these soil conditions.  

The studies confirmed that the LEA gene was tolerant to many 
kinds of environmental stress, suggesting that the LEA gene may 
contribute to the ability of adapting to stressful environments of 
plants. This study improves our understanding of how the LEA 
gene functions during stress, and has implications for the genetic 
engineering of plants with enhanced stress tolerance.  
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