ORIGINAL RESEARCH ARTICLE

Phase Equilibria in the Quasi-Ternary System $Cu_2Se-In_2Se_3-CuI$ and the Crystal Structure of the $A^IB^{III}_2X^{VI}_3Y^{VII}$ Compounds, Where A^I -Cu, Ag; B^{III} -Ga; X^{VI} -Cl, Br, I; Y^{VII} -S, Se, Te

I. A. Ivashchenko¹ · V. S. Kozak² · L. D. Gulay³ · V. V. Galyan³

Submitted: 14 March 2023/in revised form: 20 October 2023/Accepted: 14 November 2023/Published online: 6 December 2023 © The Author(s) 2023

Abstract The quasi-ternary system Cu₂Se-In₂Se₃-CuI has been investigated by x-ray diffraction and differential thermal analysis. The isothermal section at 770 K and the liquidus surface projection of the system have been built. For the first time, the primary crystallization regions, and the coordinates of the invariant and monovariant equilibria have been determined. In the system, the regions of the solid solutions based on the binary, ternary, and quaternary compounds have been investigated. The formation of the CuIn₂Se₃I quaternary compound, which melts congruently at 1213 K and has a homogeneity region of 15 and 9 mol.% CuI within the composition triangle has been established. For the first time, the crystal structures of CuGa₂Te₃I and AgGa₂Te₃Br compounds have been studied using a powder method. They crystallize in the tetragonal Space Group *I*-4, a = 5.9147(4)symmetry, Å. c = 11.952(2) Å for CuGa₂Te₃I; a = 6.2977(3) Å, c = 11.9473(7) Å for AgGa₂Te₃Br compound, respectively. The connection of their structures with the structures of the defective diamond-like semiconductors has been discussed.

Keywords crystal structure \cdot differential thermal analysis \cdot isothermal section \cdot vertical section \cdot x-ray powder diffraction

I. A. Ivashchenko iivashchenko@pk.edu.pl

¹ Cracow University of Technology, Cracow, Poland

² Municipal Institution of Higher Education of the Volyn Oblast Council, Volyn Medical Institute, Lutsk, Ukraine

³ Lesya Ukrainka Volyn National University, Lutsk, Ukraine

1 Introduction

The multiphase compositions used in semiconductor devices require the study of phase equilibria in multicomponent systems. Therefore, the Cu₂Se-In₂Se₃-CuI system of the mixed 2-anion chalcogen halide type has been chosen for this study. The quasi-ternary system is formed by binary halides and chalcogenides, which already have vast practical application, in particular A^IY^{VII}, where the number of cations is equal to the number of anions (A^I-Cu, Ag; Y^{VII} -Cl, Br, I), cation excess compound $A_2^I X^{VI}$, where A^{I} -Cu, Ag; X^{VI} -S, Se, Te, and cation-defective $B^{III}_{2}X^{VI}_{3}$ compounds, where B^{III}-Ga, In. Since the compounds formed in this system belong to diamond-like semiconductors of the $A^{I}B^{III}X^{VI}_{2}$ and $A^{I}Y^{VII}$ types, it will be interesting to investigate the interaction between chalcogenides and halides. The construction of the quasi-binary phase diagrams and liquidus surface projection of the quasi-ternary system allows for determining the regions of the primary crystallization of the compounds and the coordinates of the invariant and monovariant equilibria. Previously, we partially investigated the system Cu₂Se-In₂Se₃-CuI and established a character of the CuIn₂Se₃I quaternary compound formation in the In₂Se₃-CuI system.^[1] In this work, we present additional results obtained for 3 vertical sections (Cu₃InSe₃-"Cu₃SeI"; "Cu₃SeI"-CuIn₂Se₃I; CuIn₃Se₅-CuIn₂Se₃I), results for the isothermal section at 770 K and the liquidus surface projection of the quasi-ternary system Cu₂Se-In₂Se₃-CuI. The authors of Ref 2, 3 studied quaternary compounds $A^{I}B^{III}_{2}X^{VI}_{3}Y^{VII}$, where A^{I} -Cu, Ag; B^{III} -In; X^{VI} -S, Se, Te; Y^{VII} -Cl, Br, I. Phases with structures of the defective zincblende, spinel, and defective NaCl, respectively, were obtained. For example, it was established that the CuIn₂Se₃I compound crystallizes in the cubic symmetry, Space Group (SG) F-43 m,

a = 5.781(1) Å.^[2] In our work, we decided to investigate the crystal structures of the other quaternary compounds of such type, where B^{III}-Ga. Some of them were investigated by us previously, like CuGa₂S₃I,^[4] CuGa₂Se₃I,^[4] AgGa₂ S₃Cl,^[5] AgGa₂Se₃Cl,^[6] AgGa₂Se₃Br,^[6] AgGa₂Te₃Cl,^[7] AgGa₂Te₃I.^[8] In this work, CuGa₂Te₃I and AgGa₂Te₃Br compounds were synthesized to investigate their crystal structures for a better understanding of the nature of the quaternary compounds. Their crystal structures and connection with known defective semiconductors were discussed.

2 Method of Synthesis

Simple substances of high purity (Cu-99.99, In-99.99, Se-99.997 wt.%) were used to synthesize all alloys of the investigated systems. Cuprous iodide was obtained by the interaction of $CuSO_4$ ·5H₂O with NaI taken in stoichiometric amounts in the presence of SO₂. During the interaction of the solutions, a brown precipitate was formed, which, after passing SO₂, turned into a white precipitate of cuprous iodide. The precipitate was filtered on a Buchner funnel and washed with water to remove SO_4^{2-} ions. It was washed with ethanol and diethyl ether to prevent the product from oxidizing. The ampoules with prepared weights were evacuated to a residual pressure of $1.33 \cdot 10^{-2}$ Pa and sealed using a gas-oxygen burner. Before the synthesis, pumped and sealed ampoules were placed in metal tubes. The synthesis was carried out in the automatic furnaces "Thermodent" with a furnace temperature regulation system of \pm 5 K. Samples were synthesized as follows: heating to 670 K at a rate of 10 K/h, annealing for 48 h; heating to a maximum temperature of 1070 K, holding for 48 h; cooling to a temperature of 770 K at a rate of 20 K/h and homogenizing annealing was carried out for 300 h to establish the equilibrium state of the synthesized alloys.^[1] They were investigated by x-ray diffraction (XRD) method on DRON 4-13 diffractometer (CuKa radiation) and differential thermal analysis (DTA) ("Thermodent" H307/1 furnace with a PDA-1 XY-recorder, Pt/Pt-Rh thermocouple). To study the crystal structure of CuGa2Te3I and

Fig. 2 The diffractograms of the samples of the system In_2Se_3 -CuI in the region of 50-100 mol.% CuI

 $AgGa_2Te_3Br$, high purity Cu-99.99, Ag-99.99, Ga-99.999 and Te-99.99 wt.% were used. AgBr was obtained by reacting the AgNO₃ water solution with the KBr solution.

3 Results and Discussion

3.1 The Isothermal Section of the Quasi-Ternary System Cu₂Se-In₂Se₃-CuI at 770 K (497 °C)

The isothermal section of the quasi-ternary system $Cu_2Se_1n_2Se_3$ -CuI at 770 K (497 °C) was constructed based on the

results of x-ray diffraction analysis (Fig. 1). According to the obtained data, the CuI compound crystallizes in cubic symmetry, SG $Fm\overline{3}m$, a = 6.1512(3) Å, which agrees well with Ref 9 (Fig. 2). In the system In₂Se₃-CuI, the existence of the quaternary compound CuIn₂Se₃I, which crystallizes in cubic symmetry, is confirmed, SG $F\overline{4}3m$, a = 5.8012(1)Å, which is in good agreement with Ref 2. Cu_2Se is indexed as monoclinic symmetry, SG C2/c, a = 7.1379 Å, b = 12.3823 Å, c = 27.3904 Å, $\beta = 94.308^{\circ}$.^[10] In₂Se₃ is indexed as hexagonal symmetry, SG P63/mmc, with unit cell periods a = 4.0242(5) Å, c = 19.251(2) Å, which agrees well with Ref 11. The preliminary results of the xray phase analysis of the Cu₂Se-In₂Se₃ system were described in our previous work.^[12-14] The following ternary compounds were established: CuInSe₂, SG $I\overline{4}2d$, a = 5.7855(2) Å, c = 11.551(3) Å; CuIn₃Se₅, SG P42c, a = 5.7602(1) Å, c = 11.515(3) Å; CuIn₇Se₁₁, SG P3m1, a = 4.0263(2) Å, c = 16.2992(7) Å; and layered CuIn₅Se₈ and CuIn₁₁Se₁₇ compounds with unknown structures. The largest single-phase regions in Cu₂Se-In₂Se₃-CuI are based on CuInSe₂ and CuIn₂Se₃I compounds. It is known that CuIn₂Se₃I is a cation defect compound, with a ratio of cations to anions of 3:4. In our opinion, this affects the largest extent of the solid solution based on CuIn₂Se₃I towards defective compounds CuIn₃Se₅, CuIn₅Se₈, CuIn₇-Se₁₁, CuIn₁₁Se₁₇, but not to the CuInSe₂ or CuI side, which have the same number of cations and anions. Solubility based on all other binary and ternary compounds is negligible. Between the single-phase regions there are regions of 2-phase equilibria, which divide the system into corresponding 3-phase fields.

3.2 The Liquidus Surface Projection of the Cu₂Se-In₂Se₃-CuI Quasi-Ternary System

The liquidus surface projection (Fig. 3) was built based on the results of the DTA analyses of more than 150 samples (Fig. 4). It consists of fields of primary crystallization of α -solid solution based on HTM-Cu₂Se (e₂-U₁-U₂-p₁-*u* (e₂-U₁-e₃-Cu₃InSe₃-e₂), ζ -solid solution based on HTM-CuInSe₂ (e₃-U₁-U₂-E₁-m₁-E₂-U₃-e₁-U₄-p₄-CuInSe₂-e₃), ϵ -solid solution based on LTM-CuInSe₂ (m₁-E₂-p₂-E₁-m₁), η -solid solution based on HTM-CuI (p₁-U₂-E₁-p₂-E₂-U₃-p₃-CuI-p₁), δ -solid solution based on 1-HTM-In₂Se₃ (e₄-E₃-e₅-In₂Se₃-e₄), θ -solid solution based on CuIn₂Se₃I (e₅-E₃-U₅-U₄-e₁-U₃-p₃-CuIn₂Se₃I-e₅), compounds CuIn₅Se₈ (p₄-U₄-U₅-p₅-p₄),

Fig. 4 Phase compositions of the synthesized samples of the quasi-ternary system $Cu_2Se_{In_2Se_3}$ -CuI

Fig. 5 Phase diagram of CuInSe₂-CuI system: 1–L, $2-L + \zeta$, $3-L + \varepsilon$, $4-L + \eta$, $5-\zeta$, $6-\zeta + \varepsilon$, $7-\varepsilon$, $8-\eta - \varepsilon$, $9-\eta$, with ζ and ε -solid solutions based on HTM-CuInSe₂ and LTM-CuInSe₂, accordingly, η solid solution based on HTM-CuI^[1]

CuIn₁₁Se₁₇ (p₅-U₅-E₃-e₄-p₅). These areas are separated by 19 monovariant curves and 19 nonvariant points. The systems CuInSe₂-CuI and CuInSe₂-CuIn₂Se₃I are quasi-binary (Fig. 5, 6, 7, 8)^[1] and divide the investigated quasi-ternary system into 3 subsystems Cu₂Se-CuInSe₂-CuI, CuInSe₂-CuIn₂Se₃I-CuI and CuInSe₂-CuIn₂Se₃I-In₂Se₃. To simplify the reading of the following text the formulas of the compounds and their polymorphic modifications on which the solid solutions are based will be indicated in parentheses. Three nonvariant transition reactions take place in the first

subsystem (Fig. 9). The first one, $L_{U1} + Cu_3InSe_{3-}$ $\leftrightarrow \zeta$ (HTM-CuInSe₂) + α (HTM-Cu₂Se), takes place at 1185 K (912 °C). Curves of monovariant processes: L_{e2-U1-} $\leftrightarrow Cu_3InSe_3 + \alpha$ (HTM-Cu₂Se), $L_{e3-U1} \leftrightarrow \zeta$ (HTM-CuInSe₂) + Cu₃InSe₃ converge to the point U₁. The second nonvariant transition reaction $L_{U2} + \alpha$ (HTM-Cu₂-Se) $\leftrightarrow \eta$ (HTM-CuI) + ζ (HTM-CuInSe₂) occurs at 1010 K (737 °C). Curves of monovariant processes converge to the point U₂: $L_{U1-U2} \leftrightarrow \alpha$ (HTM-Cu₂Se) + ζ (HTM-CuInSe₂), $L_{p1-U2} \leftrightarrow \eta$ (HTM-CuI) + α (HTM-Cu₂Se). Point E₁ lies on

Fig. 6 Some diffractograms of the samples of the CuInSe₂-CuI system.

the plane of the nonvariant eutectic process $L_{E1} \leftrightarrow \epsilon(LTM-CuInSe_2) + \eta(HTM-CuI) + \zeta(HTM-CuInSe_2)$, which takes place at 978 K (705 °C). Curves of monovariant processes converge to this nonvariant point: $L_{U2-E1} \leftrightarrow \eta(HTM-CuI) + \zeta(HTM-CuInSe_2)$, $L_{m1-E1} \leftrightarrow \zeta(HTM-CuInSe_2) + \epsilon(LTM-CuInSe_2)$ and $L_{p2-E1} \leftrightarrow \eta(HTM-CuI) + \epsilon(LTM-CuInSe_2)$. As the temperature decreases, another nonvariant eutectoid process $\zeta(HTM-CuInSe_2) \leftrightarrow \epsilon(LTM-CuInSe_2) + \eta(HTM-CuI) + \alpha(HTM-Cu_2Se) \circ ccurs in the subsolidus region at 890 K (617 °C). Below it, the alloys contain crystals of 3 phases: <math display="inline">\epsilon(LTM-CuInSe_2)$, $\eta(HTM-CuI)$, $\alpha(HTM-Cu_2Se)$, which agrees with Fig. 1.

In the subsystem CuInSe₂-CuIn₂Se₃I-CuI the nonvariant process $L_{U3} + \theta$ (CuIn₂Se₃I) $\leftrightarrow \eta$ (HTM-CuI) + ζ (HTM-CuInSe₂) takes place at 1000 K (727 °C). Further, crystallization is completed by the nonvariant eutectic process L_{E2} . $\leftrightarrow \eta$ (HTM-CuI) + ϵ (LTM-CuInSe₂) + ζ (HTM-CuInSe₂) at 975 K (702 °C), and in the subsolidus region at 900 K (627 °C) the eutectoid process ζ (HTM-CuInSe₂) $\leftrightarrow \eta$ (HTM-CuI) + ϵ (LTM-CuInSe₂) $\leftrightarrow \eta$ (HTM-CuI) + ϵ (LTM-CuInSe₂) $\leftrightarrow \eta$ (HTM-CuI) + ϵ (LTM-CuInSe₂) $\leftrightarrow \eta$ (HTM-CuI) + ϵ (LTM-CuInSe₂) + θ (CuIn₂Se₃I) takes place, and the alloys contain the corresponding 3 phases (Fig. 1). In the subsystem Part of the compounds in the system $Cu_2Se_1In_2Se_3$ are formed by solid-phase reactions, namely $CuIn_3Se_5$ and $CuIn_7Se_{11}$. Therefore, there are no regions of the primary crystallization on the liquidus surface projection with them. The Scheil reaction scheme representing the sequence of all invariant reactions is shown on Fig. 9.

3.3 The Vertical Section Cu₃InSe₃-"Cu₃SeI"

The vertical section Cu₃InSe₃-"Cu₃SeI" was built based on the DTA and x-ray phase analysis results. It passes through 2 surfaces of the primary crystallization of the compound Cu₃InSe₃ and α -solid solution, respectively (Fig. 10). The 3-phase space of secondary crystallization of the binary eutectic $L \leftrightarrow \alpha + Cu_3 In Se_3$ descends to the plane of the nonvariant process $L_{U1} + Cu_3InSe_3 \leftrightarrow \alpha + \zeta$, which is shown with a horizontal line at 1185 K (912 °C). There are 3-phase spaces of solid phase decomposition Cu₃InSe₃₋ $\leftrightarrow \alpha + \zeta$ and monovariant eutectic process $L \leftrightarrow \zeta + \alpha$ below the line at 1185 K (912 °C). The 3-phase space of the eutectic process descends to the plane of the nonvariant process $L_{U2} + \alpha \leftrightarrow \eta + \zeta$ at 1010 K (737 °C), which results in the disappearance of the liquid. At 890 K (617 °C), this section intersects the plane of the eutectoid reaction: ζ (HTM-CuInSe₂) $\leftrightarrow \epsilon$ (LTM-CuInSe₂)- $+ \eta$ (HTM-CuI) $+ \alpha$ (HTM-Cu₂Se), below which the alloys are 3-phase $\varepsilon + \eta + \alpha$ in agreement with Fig. 1.

3.4 The Vertical Section "Cu₃SeI"-CuIn₂Se₃I

"Cu₃SeI"-CuIn₂Se₃I was built based on the DTA, x-ray phase analysis results and passes through 2 subsystems Cu₂Se-CuInSe₂-CuI and CuInSe₂-CuIn₂Se₃I-CuI (Fig. 11). The liquidus of the section is represented by the curves of the primary crystallization of α , ζ , θ -solid solutions. In the subsystem Cu₂Se-CuInSe₂-CuI, the section crosses the plane of the nonvariant reaction L_{U2} + $\alpha \leftrightarrow \eta + \zeta$ at 1010 K (737 °C), resulting in one region where the liquid disappears for some of the compositions (field 14, the **Fig.** 7 Phase diagram of CuInSe₂-CuIn₂Se₃I system: 1-L, $2-L + \zeta$, $3-L + \theta$, $4-\zeta$, $5-\zeta + \theta$, $6-\theta$, $7-\zeta + \varepsilon$, $8-\varepsilon$, $9-\varepsilon + \theta$, with ζ -solid solution based on HTM-CuInSe₂, ε -solid solution based on LTM-CuInSe₂, θ -solid solution based on CuIn₂Se₃I^[1]

3-phase ($\alpha + \eta + \zeta$) region) while in the other region the crystals of α -solid solution disappear. Therefore, below the horizontal at 1010 K (737 °C) is field 12, where the monovariant eutectic process $L \leftrightarrow \eta + \zeta$ occurs. This field, together with the 3-phase field 10 ($L + \epsilon + \eta$) of the monovariant eutectic process $L \leftrightarrow \epsilon + \eta$, descends to the plane of nonvariant eutectic process $L_{E1} \leftrightarrow \epsilon + \eta + \zeta$ at 978 K (705 °C). At 890 K (617 °C), this section intersects the plane of the nonvariant eutectoid reaction ζ (HTM-CuInSe₂) $\leftrightarrow \epsilon$ (LTM-CuInSe₂) + η (HTM-CuI) +

 α (HTM-Cu₂Se). Below this plane, the alloys are 3-phase and contain crystals of ϵ , η , α -solid solutions (field 17), which agrees with the isothermal section in Fig. 1.

In the subsystem CuInSe₂-CuIn₂Se₃I-CuI at 1000 K (727 °C), the section intersects the plane of the nonvariant process $L_{U3} + \theta \leftrightarrow \eta + \zeta$, which results in the disappearance of the liquid only in a part of the alloys of the section, that is why field 7 contains 3 phases: $\theta + \eta + \zeta$. In the other part of the section, the nonvariant transition reaction $L_{U3} + \theta \leftrightarrow \eta + \zeta$ results in the disappearance of the θ -solid solution. Therefore, below the horizontal at 1000 K (727 °C) is field 9, where the monovariant eutectic process $L \leftrightarrow \eta + \zeta$ takes place, which together with the 3-phase field $L + \epsilon + \eta$ of the monovariant eutectic process $L \leftrightarrow \epsilon + \eta$ descends to the plane of the nonvariant eutectic process $L \to \eta + \epsilon + \zeta$ at 975 K (702 °C). The vertical section

Fig. 8 Some diffractograms of the samples of the $CuInSe_2$ - $CuIn_2Se_3I$ system

intersects the plane of the nonvariant eutectoid decomposition ζ (HTM-CuInSe₂) $\leftrightarrow \eta$ (HTM-CuI) + ϵ (LTM-CuInSe₂) + θ (CuIn₂Se₃I) at 900 K (627 °C). Below this plane, the alloys are 3-phase and contain the crystals of η , ϵ , θ -solid solutions (field 20), which agrees with Fig. 1. The region between fields 7 and 8, is 2-phase $\eta + \zeta$, since the process $L_{U3} + \theta \leftrightarrow \eta + \zeta$ at 1000 K (727 °C) for the composition of 30 mol.% "Cu₃SeI"-70 mol.% CuIn₂Se₃I ends with the disappearance of the liquid and the crystals of θ -solid solution because this composition coincides with the connecting horizontal of the plane of the nonvariant process $L_{U3} + \theta \leftrightarrow \eta + \zeta$.

3.5 The Vertical Section CuIn₃Se₅-CuIn₂Se₃I

The section was built based on the DTA results and x-ray phase analysis. The the regions with liquid (Fig. 12) are represented by the areas of primary crystallization of ζsolid solution based on HTM-CuInSe₂ and θ -solid solution based on CuIn₂Se₃I. The section intersects the plane of the nonvariant process $L_{U4} + \zeta \leftrightarrow \theta + CuIn_5Se_8$ at 1123 K (850 °C) where for compositions in this section the liquid disappears. In the subsolidus region, 2 planes of nonvariant $\zeta \leftrightarrow \theta + CuIn_5Se_8 + Cu_2In_4Se_7$ processes (1080 K) (807 °C), $CuIn_5Se_8 + Cu_2In_4Se_7 \leftrightarrow \xi + \theta$ (1030 K) (757 °C) intersect with the section, where ξ is solid solution based on CuIn₃Se₅. In alloys of this section, this results in the disappearance of CuIn₅Se₈ and Cu₂In₄Se₇ crystals, so below 1030 K (757 °C), crystals of ξ- and θ-solid solutions are present which agrees with Fig. 1. As the temperature decreases to 770 K (497 °C), the limit of ξ solid solution decreases to 3 mol.% of the second component. The parameters of the unit cell increase a little from a = 5.7602(1) Å, c = 11.515(3) Å for CuIn₃Se₅ till a = 5.7657(2) Å, c = 11.525(4) Å for the composition of 95 mol.% CuIn₃Se₅-5 mol.% CuIn₂Se₃I. The region of θsolid solution narrows to 17 mol.% CuIn₃Se₅ with a decrease in temperature to 770 K (497 °C). The parameter of the unit cell decreases from a = 5.8012(1) Å for $CuIn_2Se_3I$ till a = 5.7722(3) Å for the composition of 20 mol.% CuIn₃Se₅-80 mol.% CuIn₂Se₃I.

3.6 Crystal Structure of A^IB^{III}₂X^{VI}₃Y^{VII} Compounds, Where A^I-Cu, Ag; B^{III}-Ga; X^{VI}-Cl, Br, I; Y^{VII}-S, Se, Te

When the In_2Se_3 -CuI system was investigated in Ref 1, the formation of the quaternary compound CuIn_2Se_3I, which belongs to a larger group of compounds with general formula $A^IB^{III}_2X_3Y$ (A^I -Cu, Ag; B^{III} -Ga, In; X-S, Se, Te; Y-Cl, Br, I) was established. Replacing Cu⁺, In^{3+} , Se^{2-} and I^- by Ag⁺, Ga³⁺, Te²⁻, and Br⁻ the quaternary

Fig. 9 Scheil reaction scheme of the quasi-ternary system Cu₂Se-In₂Se₃-CuI

compounds $CuGa_2Te_3I$, $AgGa_2Te_3Br$ are obtained, for which the crystal structures were studied using the powder method. The measurement conditions and the calculation results are shown in Tables 1, 2, 3, 4, Fig. 13, 14. The coordinates and the isotropic thermal parameters of atoms in the structures of the CuGa_2Te_3I and AgGa_2Te_3Br are given in Tables 2 and 3. The interatomic distances and coordination numbers of the atoms are shown in Table 4. The Ga atoms occupy 2 Wyckoff positions 2*a* and 2*c*, have tetrahedral coordination and occupy these positions to 80% (Tables 2, 3; Fig. 15). 2 Wyckoff positions (2*b*, 2*d*) are occupied by the statistical mixtures M1 (Cu (Ag) + Ga) and M2 (Cu (Ag) + Ga), resulting in coordination polyhedron-tetrahedron [M1 4Te], [M2 4Te]. The statistical mixtures M1 and M2 are 50% Cu (Ag) and 20% Ga, and 30% of positions are not occupied.

As previously mentioned, chalcohalides of the type $A^{I-}C^{III}_{2}X^{VI}_{3}Y^{VII}$ belong to cation-deficient compounds with a

Fig. 10 The vertical section Cu_3InSe_3 -" Cu_3SeI ": 1–L; $2-L + \alpha$; $3-L + Cu_3InSe_3$; $4-L + \alpha + Cu_3InSe_3;$ 5-Cu₃InSe₃; 6-Cu₃InSe₃ + α ; $7-Cu_3InSe_3 + \alpha + \zeta;$ $8-\alpha + \zeta; 9-L + \alpha + \zeta;$ $10-L + \alpha + \eta;$ $11 - L + \eta + \zeta_{2}$ $12-\alpha + \zeta + \varepsilon; 13-\alpha + \varepsilon;$ $14-\alpha + \eta + \epsilon; 15-\eta + \alpha,$ with *ζ*-solid solution based on HTM-CuInSe2, E-solid solution based on LTM-CuInSe₂, α-solid solution based on Cu2Se, ηsolid solution based on CuI

ratio of cations to anions of 3:4. The structure can be represented as a 3-layer packing of anions in which $\frac{3}{4}$ of the tetrahedral vacancies are occupied by C^{III} cations, for example, Ga or In. Statistical mixtures of M1 (Cu(Ag) + Ga) and M2 (Cu(Ag) + Ga), and $\frac{1}{4}$ of the voids remain vacant.^[15] According to Ref 16, other compounds have a cation:anion ratio of 3:4, for example, AgIn₅Se₈, AgZnPS₄, Cu₂HgI₄, and Hg₂SnSe₄. A similar ratio have CdGa₂Se₄ and β -Ag₂HgI₄, structural type CdAl₂S₄, both crystallize in the SG *I*-4. In the specified structures of the studied compounds $A^{I}C^{III}_{2}X^{VI}_{3}Y^{VII}$ and $CdGa_{2}Se_{4}$, β - $Ag_{2}HgI_{4}$, a similar arrangement of cations is observed (Table 5), but in $A^{I}C^{III}_{2}X^{VI}_{3}Y^{VII}$ the A^{I} atoms half occupy 2 positions 2*b*, 2*d*. The C^{III} cations are statistically in the same positions as A^{I} , filling them to 20%. The C^{III} positions, 2*a* and 2*c*, remain partially occupied at 80%. In the compounds $CdGa_{2}Se_{4}$ and β - $Ag_{2}HgI_{4}$, position 2*a* is occupied by a divalent cation, and position 2*c* and 2*b*-by other cations in the structure (Ga and Ag, respectively). The vacancy occupies the 2*d* position in these structures.

Fig. 11 The vertical section "Cu₃SeI"-CuIn₂Se₃I: 1-L; $2-L + \alpha$; $3-L + \zeta$; $4-L + \theta$; $5-L+\theta+\zeta; 6-\theta+\zeta;$ $7-\zeta + \eta + \theta$; $8-\eta + \varepsilon + \zeta$; $9-L + \zeta + \eta;$ $10-L + \varepsilon + \eta;$ $\begin{array}{l} 11 - L + \zeta + \alpha; \\ 12 - L + \zeta + \eta; \ 13 - \zeta + \eta; \end{array}$ $14-\alpha+\zeta+\eta;$ $15-L + \alpha + \eta; 16-\alpha + \eta;$ $17-\alpha + \varepsilon + \eta;$ $18-\zeta + \varepsilon + \eta$; $19-\eta + \varepsilon$; $20-\eta + \varepsilon + \theta$; $21-\eta + \theta$; 22 $-\theta$, with ζ -solid solution based on HTM-CuInSe₂, ε-solid solution based on LTM-CuInSe2, 0-solid solution based on $CuIn_2Se_3I$, α -solid solution is based on Cu₂Se, η-solid solution based on CuI.

The composition of the cation-deficient compounds with a ratio of cations to anions of 3:4 can be represented by the formula $K_{n-u} \square_u A_n$, where K-cations, \square -vacancies, A-anions, and u-the first letter of the word "unoccupied", which indicates the number of vacancies. For these compounds VEC > 4, in particular, AgIn₅Se₈, AgZnPS₄, Cu₂HgI₄, and Hg₂SnSe₄, VEC = 4.571.^[17, 18] The exact value is obtained for the quaternary chalcohalides $A^{I}C_{2}^{III}X^{VI}X^{VI}$

 $(1\cdot 1 + 2\cdot 3 + 3\cdot 6 + 1\cdot 7)/1 + 2 + 3 + 1 = 4.571$. If we consider the vacancy as an atom with zero valence, then we get for the compounds $A^{I}C^{III}{}_{2}\Box X^{VI}{}_{3}Y^{VII}$ $1\cdot 1 + 2\cdot 3 + 1$ $0 + 3\cdot 6 + 1\cdot 7)/1 + 2 + 1 + 3 + 1 = 4$, which means that their structures are tetrahedral when the cations are surrounded by the 4 nearest anions located at the vertices of the tetrahedron.

Fig. 12 The vertical section CuIn₃Se₅-CuIn₂Se₃I: 1–L, 2–L + ζ , 3–L + ζ + θ , 4–L + θ , 5– ζ , 6–CuIn₅Se₈ + ζ , 7–L + CuIn₅Se₈ + ζ , 8– θ + CuIn₅Se₈ + ζ , 9– ζ + θ , 10– θ , 11– ζ + θ , 12–Cu₂. In₄Se₇ + θ , 13–Cu₂In₄Se₇ + ζ + θ , 14–Cu₂In₄Se₇ + ζ , 15–Cu₂In₄Se₇ + CuIn₅Se₈ + ζ , 16–CuIn₅Se₈ + Cu₂In₄Se₇,

 $\begin{array}{ll} 17-CuIn_5Se_8+Cu_2In_4Se_7+\theta, & 18-Cu_2In_4Se_7+CuIn_5Se_8\\ +\ CuIn_3Se_5, & 19-Cu_2In_4Se_7+CuIn_3Se_5, & 20-CuIn_3Se_5 & (\xi),\\ 21-CuIn_3Se_5+\theta, \ with \ \zeta-solid \ solution \ based \ on \ HTM-CuInSe_2, \ \theta-solid \ solution \ based \ on \ CuIn_2Se_3I \end{array}$

4 Conclusions and Future Work

The quasi-ternary system $Cu_2Se_{-}In_2Se_{3}$ -CuI formed by binary halides and chalcogenides, which already have wide practical applications, has been investigated by x-ray and differential thermal methods. The isothermal section at 770 K (497 °C) and the liquidus surface projection of the system have been built. The regions of primary crystallization, types, and coordinates of the invariant and monovariant equilibria have been established for the first time. It allows us to know the areas of primary crystallization of the compounds, types and the coordinates of the invariant and monovariant equilibria. In the system, the regions of the solid solutions based on the binary, ternary,

J. Phase Equilib. Diffus. (2023) 44:714-728

and quaternary compounds have been investigated. The formation of the CuIn₂Se₃I quaternary compound, which melts congruently at 1213 K (940 °C) and has a homogeneity region of 15 and 9 mol.% CuI in the composition triangle, has been established. For the first time, the crystal structures of CuGa2ITe3 and AgGa2BrTe3 compounds, which belong to the cation-deficient compounds

Table 1 Results of crystal structure refinement of the CuGa2Te3I, AgGa2Te3Br compounds

Empirical formula	CuGa ₂ Te ₃ I	AgGa ₂ Te ₃ Br
Sp. Gr	<i>I</i> -4	<i>I</i> -4
Z	2	2
Unit cell parameters, Å	a = 5.9147(4),	a = 6.2977(3),
	c = 11.952(2)	c = 11.9473(7)
$V, Å^3$	418.1(1)	473.85(7)
Number of atoms in cell	14	14
Calculated density, g/cm ³	5.660(2)	4.9759(7)
Absorption coefficient, 1/cm	1255.51	1043.46
Radiation and wavelenght, Å	CuKa; 1.54185	CuKa; 1.54185
Diffractometer	DRON 4-13	DRON 4-13
Mode of refinement	Full profile	Full profile
Number of free parameters	10	10
$R_{\rm I}; R_{\rm p}$	0.0902; 0.3759	0.1031; 0.2576
Scale factor	1.26(3)	1.96(10)
Texture axis and parameter	[1 0 0] 0.37(3)	[0 1 1] 0.14(3)

 $A^{I}C^{III}_{2}X^{VI}_{3}Y^{VII}$ with a ratio of cations to anions of 3:4, have been studied using a powder method. They crystallize in the tetragonal symmetry, SG I-4, a = 5.9147(4) Å, c = 11.952(2) Å for CuGa₂ITe₃; a = 6.2977(3) Å, c = 11.9473(7) Å for AgGa₂BrTe₃ compound. The connection of their structures with the structures of the defect diamond-like semiconductors has been discussed, and a conclusion about their semiconducting properties has been made.

According to the results, future work will be on growing the single crystals of the quaternary compound CuIn₂Se₃I and solid solutions formed in the system to investigate their semiconducting properties.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as

Table 4 Interatomic distances and coordination numbers, C.N. of atoms in the CuGa₂Te₃I, AgGa₂Te₃Br structures

CuGa ₂ Te ₃ I		AgGa ₂ Te ₃ Br			
Atoms	Interatomi	c distances, Å	C.N.		
Ga1-4An	2.55(4)	2.69(2)	4		
Ga2-4An	2.58(4)	2.60(2)	4		
M1-4An	2.61(4)	2.69(2)	4		
M2-4An	2.54(4)	2.751(15)	4		

Table 2 Refined coordinates of atoms and their isotropic	Atom	Wyck off positions	x/a	y/b	z/c	Occupation	$B_{isot.}$ × 10 ² , Å ²
thermal parameters in	Gal	2a	0	0	0	0.8	0.75(11)
CuGa ₂ 1e ₃ 1	Ga2	2c	0	1/2	1/4	0.8	0.74(11)
	M1	2b	0	0	1/2	0.5 Cu + 0.2 Ga	0.76(11)
	M2	2d	0	1/2	3⁄4	0.5 Cu + 0.2 Ga	0.76(11)
	An	8 g	0.248(7)	0.243(9)	0.127(3)	0.75 Te + 0.25 I	0.18(7)

Table 3 Refined coordinates of atoms and their isotropic thermal parameters in AgGa2Te3Br

Atom	Wyck off positions	x/a	y/b	z/c	Occupation	$B_{\rm izot.} \times 10^2 \text{\AA}^2$
Gal	2a	0	0	0	0.8	0.54(6)
Ga2	2c	0	1/2	1⁄4	0.8	0.54(6)
M1	2b	0	0	1/2	0.5 Ag + 0.2 Ga	0.35(6)
M2	2d	0	1/2	3/4	0.5 Ag + 0.2 Ga	0.34(6)
An	8 g	0.2402(12)	0.2602(11)	0.126(2)	0.75 Te + 0.25 Br	0.44(4)

Fig. 13 Experimental (dots), calculated (solid) and difference (bottom scale) diffractogram of the $CuGa_2Te_3I$ compound

Fig. 14 Experimental (dots), calculated (solid) and difference (bottom scale) diffractogram of the AgGa2Te3Br compound.

Fig. 15 The structure of the unit cell and coordination polyhedra of statistical mixtures M1, M2 and Ga atoms in the structure of $AgGa_2Te_3Br$, where blue balls-Ga1, Ga2; grey balls-M1, M2; red balls-Anion

 Table 5 Coordinates of atoms in the structures of ternary and quaternary compounds

CdGa ₂ Se ₄ Sp.Gr. <i>I</i> -4 ^[17]	β -Ag ₂ HgI ₄ Sp.Gr. <i>I</i> -4 ^[18]	$\begin{array}{c} A^{I}C^{III}_{2}X^{VI}_{3}Y^{VII}\\ \text{Sp.Gr. }I-4 \end{array}$
2a (0 0 0) Cd (1)	2a (0 0 0) Hg (1)	2a (0 0 0) C ^{III} (0.8)
2c (0 ½ ¼) Ga (1)	2c (0 ¹ / ₂ ¹ / ₄) Ag (1)	$2c (0 \frac{1}{2} \frac{1}{4}) C^{III} (0.8)$
2b (0 0 ½) Ga (1)	2b (0 0 ½) Ag (1)	$2b (0 \ 0 \ \frac{1}{2}) \ 0.5 \ \text{A}^{\text{I}} + 0.2 \ \text{C}^{\text{III}}$
		$2d \ (0 \ \frac{1}{2} \ \frac{3}{4}) \ 0.5 \ A^{I} + 0.2 \ C^{III}$
8 g (x x z) S (1)	8 g (x x z) I (1)	8 g (x x z) 0.75 X ^{VI} + 0.25 Y ^{VII}

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 V.S. Kozak, I.A. Ivashchenko, and I.D. Olekseiuk, Phase Equilibria in the Quasi-Ternary System Cu₂Se-In₂Se₃-CuI, *Uzhhorod Univ. Sci. Bull. Chem. Ser.*, 2019, **42**, p 26-34. https://doi. org/10.24144/2414-0260.2019.2.26-34

- K.-J. Range, H.J. Huebner, and B. Teil, Hochdrucksynthese Quaternärer Chalkogenidhalogenide AB₂X₃Y (A-Cu, Ag; B-In; X-S, Se, Te; Y-Cl, Br, I), *Anorg. Chem.*, 1983, **38**, p 155-160. https://doi.org/10.1515/znb-1983-0207
- K.-J. Range and K. Handrick, New 13₂06₃7 Compounds, Z. Naturforsch., 1988, 43, p 240-242. https://doi.org/10.1515/znb-1988-0218
- V.S. Kozak, P.V. Tyshchenko, I.D. Olekseiuk, I.A. Ivashchenko, and L.D. Gulay, Crystal Structure of CuGa₂S(Se)₃I Compounds, *Odesa Univ. Sci. Bull. Chem. Ser.*, 2019, **72**, p 63-69. https://doi. org/10.18524/2304-0947.2019.4(72).185534
- P.V. Tyshchenko, Phase Equilibria of Quasi-Triple Systems Based on the Compounds of A^I₂X, B^{III}₂X₃, R₂X₃, A^IY (A^I-Cu, Ag; B^{III}-Ga, In; R-La, Er; X-S, Se; Y-Cl, I) and Properties of Intermediate Phases and Glasses. PhD thesis. 02.00.01, Uzhgorod, 2019, 154 p. https:// www.uzhnu.edu.ua/uk/infocentre/get/21024
- I. Ivashchenko, V. Kozak, L. Gulai, and I. Olekseiuk, Crystal Structure of AgGa₂Se₃Cl(Br) Compounds, *Proc. Shevchenko Sci. Soc. Chem. Sci.*, 2022, LXX, p 62-68. https://doi.org/10.37827/ ntsh.chem.2022.70.062
- V. Kozak, I. Ivashchenko, L. Gulay, and I. Olekseyuk, Crystal Structure of the AgGa₂Se₃Cl and AgGa₂Te₃Cl Compounds, *Chem. Met. Alloys*, 2020, 13, p 45-48.
- I.A. Ivashchenko, V.S. Kozak, L.D. Gulay, and I.D. Olekseiuk, The Crystal Structure of the Compound AgGa₂Te₃I, *Uzhhorod Univ. Sci. Bull. Chem. Ser.*, 2022, 47, p 19-21. https://doi.org/10. 24144/2414-0260.2022.1.19-21
- Y. Yude, H. Boysen, and H. Schulz, Neutron Powder Investigation of CuI, Z. Kristallogr., 1990, 191, p 79-91. https://doi.org/10. 1524/zkri.1990.191.1-2.79
- L.D. Gulay, M. Daszkiewicz, O.M. Strok, and A. Pietraszko, Crystal Structure of Cu₂Se, *Chem. Met. Alloys*, 2011, 4, p 200-205. https://doi.org/10.30970/cma4.0184
- S. Popovic, A. Tonejc, B. Grzeta-Plencovic, B. Celustka, and R. Trojko, Revised and New Crystal Data for Indium Selenides, *J. Appl. Cryst*, 1979, **12**, p 416. https://doi.org/10.1107/S0021889879012863
- O.F. Zmiy, I.A. Mishchenko, and I.D. Olekseyuk, Phase Equilibria in the Quasi-Ternary System Cu₂Se-CdSe-In₂Se₃, J. Alloys Compd., 2004, 367, p 49-57. https://doi.org/10.1016/j.jall com.2003.08.011
- L. Gulay, I. Ivashchenko, O. Zmiy, and I. Olekseyuk, Crystal Structure of the CuIn₇Se₁₁ Compound, J. Alloys Compd., 2004, 384, p 121-124. https://doi.org/10.1016/j.jallcom.2004.03.117
- I. Ivashchenko, L. Gulay, O. Zmiy, and I. Olekseyuk, The Quasiternary System Cu₂Se-CdSe-In₂Se₃ and Crystal Structure of the Cu_{0.6}Cd_{0.7}In₆Se₁₀ Compound, *J. Alloys Compd.*, 2005, **394**, p 186-193. https://doi.org/10.1016/j.jallcom.2004.10.031
- M.V. Moroz, M.V. Prokhorenko, S.V. Prokhorenko, M.V. Yatskov, and O.V. Reshetnyak, Thermodynamic Properties of AgIn₂Te₃I and AgIn₂Te₃Br Determined by EMF Method, *J. Phys. Chem.*, 2018, **92**, p 19-23. https://doi.org/10.1134/S0036024418010168
- E. Parte, *Elements of Inorganic Structural Chemistry*, 2nd edn. Geneve, Archive ouverte UNIGE, 1996, p141
- H. Hahn, G. Frank, W. Klingler, A.D. Strörger, and G. Strörger, Untersuchungen Über Ternäre Chalkogenide. VI. Über Ternäre Chalcogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber, Z. Anorg. Chem, 1955, 279, p 241-270. https://doi.org/10.1002/zaac.19552790502
- H. Hahn, G. Frank, and W. Klingler, Zur Struktur des β-Cu₂HgJ₄ und des β-Ag₂HgJ₄, Z. Anorg. Chem., 1955, **279**, p 271-280. https://doi.org/10.1002/zaac.19552790503

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.