
Thermodynamic Re-assessment of the Nb-Zr System Using
the CE–CVM Model for Solid Solution Phases

Shanker Kumar1
• Vikas Jindal1

Submitted: 22 February 2022 / in revised form: 5 April 2022 / Accepted: 19 April 2022 / Published online: 1 May 2022

� ASM International 2022

Abstract The Nb-Zr system was reassessed based on

calculated theoretical data and available thermodynamic

and phase equilibria data. The Gibbs energies of the bcc

and hcp solid phases were described using cluster expan-

sion and cluster variation methods (CE–CVM) to model

short-range ordering (SRO) in the solid solution phases.

Enthalpy of mixing data was calculated using density

functional theory with special quasirandom structures and

cluster expansion (CE) method. A sub-regular solution

model was used for describing the Gibbs energy of the

liquid phase. An optimal set of parameters has been

obtained for describing the Gibbs energies of the liquid and

solid phases in the Nb-Zr binary system. The modeled

phase diagram and thermodynamic properties agree with

the experimental data. The relevance of CE–CVM has been

demonstrated in the present case by calculating the solid

phase’s short-range order (SRO) parameters as a function

of composition and temperature.

Keywords CALPHAD method � computational

thermodynamics � cluster variation method � Nb-Zr

system � phase diagram � thermodynamic assessment

1 Introduction

Niobium and zirconium are important alloying elements

for superalloys and refractory alloys. Nb-Zr alloys exhibit

excellent mechanical properties, superior corrosion resis-

tance, low magnetic susceptibility, superconducting nature,

and superior irradiation resistance. They can also be used

in biomedical applications such as knee and hip replace-

ment for orthopedic surgeries due to their biocompatibil-

ity.[1] The Nb-Zr phase diagram is vital to understanding

these alloys’ structure and properties at various tempera-

tures and compositions. Many efforts have been made to

determine the phase diagram of this system, which were

reviewed by Abriata and Bolcich[2](1982) and Guiller-

met.[3] In this system, there is complete miscibility in the

liquid state, and the liquidus and solidus show a minimum

point where the bcc_A2 (b) phase melts congruently. At

high temperatures, the bcc_A2 phase covers the whole

compositional range. In contrast, it exhibits a critical

solution point at lower temperatures and a corresponding

(bZr) ? (bNb) miscibility gap. There is a monotectoid

reaction (bZr) $ (aZr) ? (bNb), which results in the

coexistence of hcp_A3 (aZr) with (bNb). The solidus and

the liquidus were measured by Rogers and Atkins[4] and

Lundin and Cox.[5] Flewitt[6] and Van Effenterre[7] data are

preferred for the miscibility gap. The solubility limits in the

temperature range of interest are mainly based on the x-ray

analysis of Flewitt[6] for the Nb-rich part and the experi-

mental data (x-ray, resistivity, microscopical examination,

and dilatometry) of Van Effenterre for the Zr-rich part.[7]

No reliable experimental thermodynamic data is available

for this system.[2] Thermodynamic assessments of the Nb-

Zr system have been done by Abriata and Bolcich,[2]

Guillermet,[3] Lafaye et al.[8] In these assessments, the

Gibbs energy of phases is described using the sublattice
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model within the Compound Energy Formalism framework

(CEF).

The reliability of thermodynamic modeling depends on

the quantity and quality of data used to evaluate thermo-

dynamic model parameters.[9,10] Two sets of input data are

used in the CALPHAD modeling: thermochemical data

and phase equilibrium data. Measuring reliable thermo-

chemical data such as enthalpy of mixing is very chal-

lenging compared to phase equilibrium data. Limited

solubility range and sluggish kinetics at low temperatures

limit the reliability of these measurements. Hence, the first-

principles calculations can be used instead of experiments

for determining thermochemical data. Density functional

theory (DFT), along with techniques such as cluster

expansion[11] and Special Quasirandom Structures

(SQS),[12–15] can be used to calculate thermochemical data.

Cottura and Clouet[16] studied the solubility of the Zr-Nb

system temperatures below 890 K using DFT. Barannikova

et al.[17] computed mixing enthalpies for hcp_A3, bcc_A2,

and hypothetical fcc Zr-Nb alloys using ab initio methods.

An interatomic potential for simulation of Zr-Nb system

was reported by Smirnova and Starikov.[18] Zhao et al.[19]

studied bcc_A2 ordered and disordered Nb-Zr systems

using the first-principles method and reported positive

formation energy in bcc_A2 Zr-Nb alloy. For lower Nb

concentration (B12.5 at.%), the bcc_A2 Zr-Nb solid solu-

tion structure was unstable. Natarajan et al.[20] have

reported a cluster expansion (CE) study of this system.

However, available thermodynamic descriptions of the Nb-

Zr system have not used calculated thermochemical data so

far in the assessments.

It is well known that the constituent atoms of an alloy

are not distributed randomly over the crystal lattice sites.

Instead, depending on the atomic interaction energies, the

different kinds of atoms tend to distribute in a non-random

way as the temperature is lowered. This deviation from the

random distribution is known as SRO, and it influences

several physical parameters, including mechanical, elec-

trical, and magnetic properties.[21] The presence of SRO

also decreases the configurational entropy from ideal esti-

mates. This is important for the thermal stability of high

entropy alloys (HEA) which are based on the concept that

their high configurational entropy of mixing should stabi-

lize simple solid-solution phases (such as fcc or bcc) rel-

ative to other competing phases. Hence thermodynamic

descriptions and databases which take SRO into account

are highly desirable. Several models have been developed

to describe the effect of SRO, e.g., the cluster variation

method (CVM)[11] and Monte Carlo (MC) techniques.[20]

One of the significant advantages of these techniques is that

Gibbs energy is expressed directly in terms of SRO

parameters.

Re-assessment of the Nb-Zr system is desirable for two

reasons: (1) to incorporate newly available thermochemical

data based on first-principle calculations and (2) to model

SRO present in the solid solution phases. Enthalpy of

mixing data of the solid solution phases will be calculated

using DFT calculations with SQS and cluster expansion

methods. All the available experimental and calculated

data will be optimized to get a thermodynamic description

of the system.

2 Methodology

2.1 DFT Calculations

Electronic structure total energy calculations[22] of ordered

configurations, required for the construction of the cluster

expansion Hamiltonian, were performed using Quantum-

Espresso[23–25] (with the generalized gradient approxima-

tion (GGA).[26,27] Ultra-soft pseudopotentials[28,29] with an

energy cutoff of 400 eV were used. The first-order Meth-

fessel-Paxton[30] method of electronic occupancy was used

with a smearing width of 0.2 eV. Brillouin zone integration

was carried out using a Monkhorst- Pack k-point mesh. In

this work, the k-point density per reciprocal atom (KPPRA)

was set to 46656, which, for the bcc_A2 structure, trans-

lates to a 36 9 36 936 grid. These choices of basis cutoff

and k-point grid ensure convergence of the total energy

within a few meV/atom.

2.2 SQS Calculations

The SQS method was used to determine the mixing

enthalpies of the bcc_A2 solid solution. As mentioned

earlier, this method generates a series of ‘‘special’’ con-

figurations that reproduce the random disorder of a solid

solution at a given composition with a limited number of

atoms per unit cell. The present work generated the bcc_A2

structures for 0.25, 0.50, and 0.75 binary compositions

using 16-atom supercells.[14] The mixing enthalpy was

calculated by subtracting the total energy of the SQS

structure calculated by DFT to the molar fraction weighted

sum of the energies of the pure elements in a structure

similar to the solid solution structure. SQS supercells were

relaxed in two ways: (1) relaxed with respect to cell vol-

ume only and (2) fully relaxed. Relaxed SQS structures

were checked for symmetry.

2.3 Cluster Expansion

In the cluster expansion method, any function of configu-

ration for a phase, such as the configurational enthalpy Hc,

can be expressed as a bilinear sum of the products of the
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correlation functions and their respective cluster expansion

coefficients (CECs). This idea is very analogous to a Taylor

or Fourier expansion.

The function Hc can be expressed as[11,31]

Hc ¼
XrN

j¼1

Cjmjuj ðEq 1Þ

Here, the subscript j is an index that serves to identify

each distinct cluster type rN is the number of all distinct

cluster types, Cj are the CECs and mj, the multiplicities

corresponding to the respective correlation functions uj.

The multiplicities mj are defined as the number of sym-

metry-equivalent clusters of type j per site present in the

structure.

The Alloy Theory Automated Toolkit (ATAT)[37] was

used to construct the cluster expansion Hamiltonian for the

bcc_A2 structure. Energies of the structures generated by

ATAT were calculated using Quantum-Espresso. To find

the optimum set of ECIs, we use a database of DFT

energies computed for 110 bcc_A2-like structures. DFT

calculations involve full atomic relaxations.

2.4 Thermodynamic Models

2.4.1 Pure Elements

The enthalpy of a pure component i at 298.15 K, 1 bar

pressure, and at its the stable state (say ;) is denoted as

Stable Element Reference,HSER
i . And with reference to this

HSER
i , the Gibbs energy of component i in the phase ; is

described as a function of temperature by the following

expression[32]:

G;;0
i Tð Þ � HSER

i ¼ aþ bT þ cT ln T þ
X

dTn ðEq 2Þ

where a, b, c, and d are coefficients and n represents a set of

integers, typically taking the values of 2, 3, and -1. The

Gibbs energy functions for the unary phases of pure ele-

ments Nb and Zr are selected from the Scientific Group

Thermodata Europe (SGTE) database.[32]

2.4.2 Solution Phases

Gibbs energy of a given phase ; can be written as the sum

of the reference energy term G;;ref and mixing energy term

G;;mix in a given solution.

G; ¼ G;;ref þ G;;mix ðEq 3Þ

The reference energy term can be expressed as Gibbs

energy of pure elements

G;;ref ¼ xNbG
;;0
Nb þ xVG

;;0
Zr ðEq 4Þ

The mixing energy term can be further split into terms

G;;mix ¼ G;;id þ G;;xs ðEq 5Þ

The ideal part of the equation can be expressed as

G;;id ¼ RT xNb ln xNb þ xZr ln xZrð Þ ðEq 6Þ

where xNb and xZr are mole fractions of Nb and Zr in the

solution phase. There are two solution phases in the sys-

tem: liquid and bcc_A2. The liquid phase of the given

system has been modeled using Redlich-Kister polynomial

expansion[33] using the following equation:

Gl;xs¼xNbxZr Ll0 Tð ÞþLl1 Tð Þ xNb�xZrð ÞþLl2 Tð Þ xNb�xZrð Þ2þ...
� �

and

Lli ¼ Lli0 þ Lli1T ðEq 7Þ

where Lli is the ith interaction parameter.

The bcc_A2 and hcp_A3 phases were treated using

phenomenological cluster expansion (CE) for configura-

tional enthalpy of mixing and CVM for configurational

entropy of mixing.[34] The tetrahedron and tetrahedron-

octahedron approximations of the CE-CVM were used for

the bcc_A2 and hcp_A3 phases, respectively. Both these

models take into account interactions up to second nearest-

neighbor pairs. Further details are given in the supple-

mentary data. The Gibbs energy of mixing for the bcc_A2

phase is expressed as

Gb;mix ¼ Hb;mix � TSb;mix ðEq 8Þ

where Hb;mix and Sb;mix respectively denote the enthalpy

and entropy of mixing.

Hb;mix ¼
X

i

Cb
i m

b
i u

b;mix
i ðEq 9Þ

Sb;mix ¼ �R
X

i

cbi m
b
i

X

j

wi;jqi;j ln qi;j ðEq 10Þ

Cb
i ¼ Cb

i0 þ Cb
i1T ðEq 11Þ

The Cb
i are phenomenological cluster expansion coeffi-

cients (CECs) or effective cluster interactions (ECIs),

which may be temperature-dependent. The subscript i

refers to one of the five crystallographically distinct clus-

ters for the tetrahedron approximation. The multiplicity mb
i

is equal to the number of clusters of type i per atomic site

in the structure and ub;mixi ¼ ubi � xNbu
b
i;Nb � xVu

b
i;Zr. Here

ubi , ubi;Nb and ubi;Zr represent the correlation functions cor-

responding to cluster type i for the alloy, pure Nb and pure

Zr, respectively. These correlation functions are the aver-

age values of site operators or their products. In the

orthogonal basis we use, the site operator takes the value
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-1 or ?1, respectively, when component Nb or Zr atom

occupies the site.[35] Further, cbi is the Kikuchi–Barker

overlap correction coefficient for cluster type i. The cluster

variable qi;j represents the probability of occurrence of

cluster configuration j on cluster type i and wi;j represents

the weight of cluster configuration j. These cluster vari-

ables are, in turn, functions of correlation functions

qi;j ¼ qi;j ubi

� �
. The Gibbs energy of the phase, parame-

terized by Cb
i , can be obtained by minimizing it with

respect to the correlation functions[35] using the Newton–

Raphson (NR) method. The model parameters Lli and Cb
i

can be obtained by simultaneous optimization of all

available experimental data for the system.

2.5 Simultaneous Optimization

In the present work, all available phase diagrams and

thermodynamic data have been simultaneously optimized

with equal weights using the procedure given by Lele and

Sarma.[35] The simultaneous optimization procedure begins

by defining a figure-of-merit function (v2) as the sum (over

all N data points) of squares of the ratios of the errors ei and

the respective standard deviations ri. Thus,

v2 ¼
XN

i¼1

ei
ri

� �2

ðEq 12Þ

In general, ei corresponds to the difference between the

observed quantity and that calculated using the model

under the conditions of experimentation. The v2-merit

function is minimized with respect to a chosen set of model

parameters to determine their values using the Levenberg–

Marquardt (LM) algorithm.[36] We developed necessary

computer codes for optimization following the algorithmic

considerations discussed by Press et al.[36] Details of the

procedure are given in Ref. 37

3 Results and Discussion

3.1 DFT Calculations

The lattice parameters are compared with experimental

values to benchmark our first-principles calculations.

Table 1 shows the lattice parameter, equilibrium volume,

and bulk modulus comparisons for the pure elements. For

the pure elements, comparisons are also made to DFT

results calculated by Lejaeghere et al.[38] Good agreement

between the experiment and DFT calculation was

observed.

3.2 SQS Calculations

Nb and Zr form a continuous bcc_A2 solid solution with a

miscibility gap appearing at low temperatures. In Fig. 1,

the calculated enthalpies of mixing for random Nb-Zr

bcc_A2 alloys using volume relaxed and fully relaxed SQS

structures are shown. As expected, energies for the fully

relaxed are found to be lower than volume relaxed struc-

tures. Values of relaxed SQS structures compare well with

the work of Colinet et al.,[42] Lafaye et al.,[8] and Zhao

et al.,[19] except near the Zr end. Overall, the enthalpy of

mixing is positive and indicates that Nb-Zr is a phase

separating-type system. This is consistent with experi-

mental findings where bcc_A2 shows a miscibility gap at

lower temperatures. However, enthalpy of mixing for xZr =

0.75 is found to be negative. Zhao et al.[19] have also

reported similar results near the Zr end. Negative values

near the Zr end may be attributed to the bcc Zr-Nb alloy

being a dynamically unstable system.

3.3 Cluster Expansion

The bcc_A2 structure is chosen for the Nb-Zr system to

perform CE calculations as parent lattices. The comparison

of the enthalpy of formation obtained from the DFT cal-

culations and the CE method is shown in Fig. 2. there is a

good agreement between these two methods, as shown in

the figure. The CV score of the present calculation is

0.00806828 and sufficiently small for the CE method.[43]

Figure 3(a) shows the calculated and fitted energy of the

structures used in cluster expansion. The cluster expansion

has predicted one ground state belonging to space group

C2/m (12). The formation enthalpy of this ground-state is

small, less than - 16 meV/atom. Calculated effective

cluster interaction (ECI) versus cluster diameter plots are

given in Fig. 3(b). Values are three-point, and four-point

ECIs are smaller than pair ECIs, and convergence of ECIs

can be readily observed. To analyze ECIs, the ECIs of the

empty, the point, the first two nearest pairs, and the first

triplet, which includes the nearest pair, are listed in

Table 2. The ECI value of the empty cluster corresponds to

the energy of the fully-disordered alloy. A large positive

value of the fully-disordered alloy indicates its instability,

which is consistent with positive values of mixing obtained

from SQS calculation and the observed miscibility gap in

the bcc phase.[44] It may be noted from Table 2 that the

ECIs of the nearest and second nearest pair cluster for bcc

are negative. This further indicated tendency for the phase

separation in the bcc phase. The energy of the disordered

bcc phase at various compositions has been calculated

using fitted ECIs, and these results are shown in Fig. 3(a).

Predicted enthalpy of mixing from CE match well with the

SQS method (Fig. 2).
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3.4 Simultaneous Optimization

As mentioned earlier, the phase diagram Nb-Zr system is

characterized by three invariant reactions: congruent

melting, critical point of miscibility gap, and monotectoid.

For congruent melting, temperature and composition val-

ues observed by Ref. 4 and [5] are in good agreement, and

the same values have been used in this work. A dataset

Table 1 Comparison of

equilibrium bulk properties of

Nb (in bcc_A2) and Zr (in

bcc_A2 and hcp_A3) as

calculated with DFT

calculations and their respective

experimental values.

Element Bulk property This Work Experimental DFT

b-Nb Lattice parameter, Å 3.3088 3.299[39] 3.3084[38]

Equilibrium volume, Å3/atom 18.11 17.952[39] 18.106[38]

Bulk modulus, GPa 170 170.2[39] 170.28[38]

a-Zr Lattice parameter, Å … a = 3.233, c = 5.146[40] …

Equilibrium volume, Å3/atom 23.385 23.285[40] 23.383[38]

Bulk modulus, GPa 93.7 94[40] 93.885[38]

b-Zr Lattice parameter, Å 3.6665 3.627*[40] 3.574[41]

Equilibrium volume, Å3/atom 24.64 23.857*[40] 22.826[41]

Bulk modulus, GPa 87.9 66*[40] 90.2[41]

Fig. 1 Calculated mixing enthalpies of the bcc_A2 solid solutions in

the Nb-Zr system compared to data from the literature

Fig. 2 Comparison of enthalpies of formation (eV/atom) obtained

from first principle calculations and predicted with the CE method

Fig. 3 (a) Ground-state search for the cluster expansion of Nb-Zr

bcc_A2 phases in (a) and (b) ECI vs. cluster diameter for a cluster

expansion fit to the as calculated first principles energies
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similar to Guillermet[3] was used for liquidus and solidus

boundaries. The consolute point and monotectoid temper-

ature values of Flewitt[6] have been accepted for this work.

These three invariant reaction data points have been given

more weightage during the optimization. First, parameters

for the bcc phase have been optimized using the miscibility

gap and enthalpy of mixing data. With optimized bcc phase

parameters, hcp phase parameters have been optimized

using bcc-hcp phase equilibria data. Next, liquid phase

parameters have been optimized using liquid and solidus

data with optimized bcc phase parameters. Lastly, the

entire parameter set is further refined with the complete

dataset. The number of optimization parameters in the

procedure described in the previous section was gradually

increased till all systematic deviations of the calculated

values from the observed ones were eliminated. Efforts

were made to keep the number of parameters minimum.

The optimized parameters, along with those from previous

assessments, are given in Table 3. It is found that a rea-

sonably good description of the Gibbs energy for the bcc

phase may be obtained by using parameters related to the

first, second neighbor pair, and triangle only. The second

neighbor pair cluster expansion coefficient (CEC) is fixed

as 2/3rd of the first neighbor CEC since independent

optimization of these parameters often leads to non-

physical values. Temperature dependence of some param-

eters was needed to fit experimental data. For the hcp

phase, the minimal set consists of the first neighbor pair

interactions (with the CECs corresponding to the in-plane

and out-of-plane first neighbors being equal, Ca
2 = Ca

3, that

is, the interactions were assumed to be isotropic). Due to

the different modeling approaches, the model parameters

cannot be compared with earlier assessments.

The calculated phase diagram is shown in Fig. 4. A

comparison with the numerous experimental data on the

solidus and liquidus is given in Fig. 5, and a reasonably

good agreement with the experimental data may be seen.

At lower temperatures, phase decomposition has been

observed. Figure 6 shows the calculated miscibility gap

boundary and monotectoid reaction with experimental

information. Reasonable compliance between them may be

observed. The invariant points in the phase diagram are

presented in Table 4, along with earlier results. There is

good agreement among all the results.

Enthalpies of mixing have been calculated at two tem-

peratures, as shown in Fig. 7. Calculated enthalpies of

mixing are compared with those obtained from cluster

expansion and SQS. Overall good agreement is found with

cluster expansion results. However, SQS values show

deviations from the calculated values near the Zr end.

As mentioned earlier, SRO can be determined using

CVM. A quantitative measure of SRO is provided by the

Cowley-Warren SRO parameters ai,
[45] which can be cal-

culated from

ai ¼
ui � u2

0

1 � u2
0

ðEq 13Þ

Here ui and u0 are the equilibrium values of the ith pair

and point correlation functions, respectively. The variation

of the first neighbor SRO as a function of composition for

Table 2 Selected ECIs for Nb-Zr bcc system

Num of sites Multiplicity ECI, eV ECI, J/mol

0 1 0.028932 2791.694

1 1 - 0.026241 - 2532.0352

2 4 - 0.001906 - 183.9129

2 3 - 0.010107 - 975.2403

3 12 0.00061 58.8599

4 6 - 0.000116 - 11.193

Table 3 Optimized set of ECI’s used in assessing the Nb-Zr phase

diagram

Phase Parameters, J/mol

bcc_A2 phase Cb
2 ¼ �462:6 � 0:4152 � T (I-

neighbor pair)

Cb
3 ¼ �308:4 � 0:2768 � T (II-

neighbor pair)

Cb
4 ¼ 88:0 (Triangle)

hcp_A3 Ca
2 ¼ �841:4 (I-neighbor pair)

Ca
3 ¼ �841:4 (II-neighbor pair)

Liquid Ll0 ¼-28060.0 ? 21.72*T

Ll1 ¼-24650 ? 10*T Fig. 4 Calculated phase diagram and invariant points of Nb-Zr

system
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various temperatures is shown in Fig. 8. A considerable

degree of SRO may be seen particularly near the misci-

bility gap boundary and at lower temperatures. Similarly,

the variations of the SRO parameter with temperature for

the first nearest neighbor pair for the 25, 50, and 75 at.%

alloys are shown in Fig. 9. As expected, the maximum

degree of SRO is observed at lower temperatures and

decreases with temperature. The persistence of SRO even

at high temperatures justifies using thermodynamic models

which account for SRO. Another useful application of

CVM can be seen in analyzing the effect of SRO on con-

figurational entropy of mixing. Variation of configurational

entropy with composition at various temperatures is shown

in Fig. 10. Configurational entropy, as expected, shows

higher values near equiatomic alloys. However, these val-

ues are considerably smaller than those calculated from the

ideal entropy of mixing due to the presence of SRO.

Secondly, compositions corresponding to maximum con-

figurational entropy are not equiatomic compositions.

These are important observations from the point of view of

designing stable HEA compositions. Contrary to the sim-

plistic ideal entropy of the mixing model, the CE-CVM

model better estimates the entropy of mixing and locating

compositions that maximize them. This information is

crucial in the determination of the stability of the HEAs.

Comparing CEC parameters of the bcc phase obtained

after optimization with those obtained from cluster

expansion will be interesting. CE and optimized CECs of

both first and second neighbor pairs are negative. A direct

comparison is not possible due to the temperature depen-

dence of optimized CECs parameters. It may be noticed

that the value of the first neighbor CEC is lower than that

of the second neighbor in the case of CE. This is slightly

unphysical and difficult to avoid in CE fitting. However,

during simultaneous data optimization in this work, the

second neighbor pair CEC is fixed as 2/3rd of the first

neighbor CEC to avoid this kind of anomaly. CEC values

of the triangle cluster obtained from both approaches are

positive and compare well. Cluster expansion CEC corre-

sponding to the four-point cluster is negligible compared to

pair CECs and not used in optimization. Overall a quali-

tative agreement may be observed in both the parameters

set.

4 Conclusions

This study aimed to reassess the Nb-Zr system using newly

available calculated thermochemical data and employing

the CE-CVM model for the solid solution phases for

modeling SRO. Enthalpy of mixing for the Nb-Zr bcc

Fig. 5 Calculated liquidus and solidus boundaries in the Nb-Zr

system along with experimental data

Fig. 6 Calculated miscibility gap and monotectiod reaction in the

solid phase (solid line) and experimental data

Fig. 7 Calculated enthalpy of mixing of the solid phase at 1900 K

along with calculated data in this work
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solutions calculated using DFT calculation with (1) SQS

and (2) cluster expansion methods. Both methods have

given similar results. A consistent set of thermodynamic

parameters has been arrived at for describing the Gibbs

energies of the solid and liquid solution phases, leading to

good agreement between the calculated results and most of

the experimental data found in the literature. Cowley–

Warren’s first neighbor SRO parameters were calculated

for the bcc phase. A considerable amount of sro was found

at low temperatures and equiatomic compositions. Present

work is a step towards modeling SRO in the multi-principal

HEA alloys.
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Table 4 Invariant points in the Nb-Zr system

Invariants Ref. 6 Ref. 2 Ref. 3 Present work

T, K xZr T, K xZr T, K xZr T, K xZr

Congruent minimum … … 2013 0.783 2016 0.782 2017 0.755

Consolute point 1253 0.40 1261 0.394 1250 0.413 1245 0.412

Three-phase equilibrium 893 0.10 (bNb)

0.85 (bZr)

- (aZr)

893 0.09 (bNb)

0.815 (bZr)

0.994 (aZr)

893 0.079 (bNb)

0.813 (bZr)

0.993 (aZr)

895 0.074 (bNb)

0.797 (bZr)

0.986 (aZr)

Fig. 8 Calculated Cowley–Warren first neighbor SRO parameter for

the bcc_A2 phase as a function of composition at different

temperatures

Fig. 9 Calculated Cowley–Warren first neighbor SRO parameters for

the bcc_A2 phase as a function of temperature for various

compositions

Fig. 10 Variation of configurational entropy of mixing with compo-

sition for the bcc solid phase at various temperatures
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