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Abstract The interdiffusion process in a three-component

alloy system has been studied by means of numerical

analysis. The composition profiles for a ternary system

were generated making use of the closed-form solution

with a constant interdiffusion matrix with the accompa-

nying analysis of the diffusion paths. Two methods [the

Fitting Method and the modified square root diffusivity

(MSQRD) method] have been considered to investigate the

inverse interdiffusion problem for application to a single

interdiffusion couple measurement. The Fitting Method

simultaneously fits the required functional form into the

data obtained for two composition profiles. Such fitted

parameters are used to determine the constant interdiffu-

sion matrix. The MSQRD method has been applied to the

generated composition profiles and performs very well for

all the cases considered. It was found that the errors of the

MSQRD method are, in general, lower than in the use of

the Fitting Method even without imposing artificial noise

on the composition profiles to mimic the experimental data.

In addition, it has been shown that the back-tests of the

composition profiles must not be used as the only proof of

the reliability of the methods used.

Keywords compact diffusion couple � error-function
solution � interdiffusion � modified square root diffusivity

method � ternary alloys

1 Introduction

Interdiffusion problems are central to the processing and

in-service behaviour of materials. Initially, Boltzmann[1]

introduced an exact method for the calculation of the single

interdiffusion coefficient analytically from the composition

interdiffusion profile for a binary alloy. Following this, a

number of studies, e.g., Ref 2-5 were published where the

same interdiffusion problem in binary alloys was analysed

in several different ways. In, Ref 2 the important concept of

the Matano plane (a plane across which equal amounts of

mass diffuse to the left and the right sides) was introduced

and basic relationships were derived from it. In, Ref 3 this

method was further advanced using the interrelationships

between the atomic fluxes in such a way that the exact

position of the Matano plane was not needed. In, Ref 4 a

further modification of the basic relationships was intro-

duced for application to the dilute ends of the composition

profiles. In, Ref 5 it was shown that the method in Ref 4

can only be applied (in the dilute regions) if the interdif-

fusion coefficient is constant, and that, in the general case

of a composition-dependent interdiffusion coefficient, the

original methods[2,3] should be used.
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However, technologically important metallic alloys are

often comprised of three or more components. Indeed,

ternary diffusion is central in most commercial materials

systems employed in high-temperature as well as nuclear

reactor environments, where interdiffusion processes play a

vital role. Fujita and Gosting[6,7] investigated diffusion in

both binary and ternary systems. In the binary case, they

described a general theoretical foundation for interpreting

diffusion data. In the ternary case, they described an exact

(error function-based) solution of two simultaneous dif-

ferential diffusion equations in terms of the four interdif-

fusion coefficients. Following that, they developed a new

procedure[8] for solving the inverse interdiffusion problem

in the ternary system – calculating the four diffusion

coefficients of three-component systems from Gouy dif-

fusiometer data. They showed that they obtained more

accurate results than in previous studies. In, Ref 9, 10 the

authors mainly focused on different methods for deter-

mining the diffusion coefficients in ternary alloys. In, Ref 9

a full description of available methods was given. In, Ref

10 a variation on the fitting method was used and favour-

ably compared with the other available methods. Day-

ananda and Grace[11] worked on ternary diffusion in Cu-

Zn-Mn alloys and showed that a vapour-solid diffusion pair

can effectively be used in ternary diffusion studies. Ternary

diffusion in Cu-Ag-Au metallic alloys is discussed in. Ref

12 There, the author systematically studied the diffusion

behaviour over the entire, two-dimensional composition

domain. Vrentas and Vrentas[13] developed some theoreti-

cal aspects of ternary diffusion problems. In the general

case of a multi-component system, the composition profiles

cannot be accurately calculated by means of a binary

analysis. Therefore, a different approach for solving the

(inverse) multicomponent diffusion equations must be

used. (It should be noted that recently a good experimental

interdiffusion study in a quinary alloy by means of the

quasi-binary interdiffusion analysis has been

reported,[14,15] although the study has attracted some

scepticism[16]).

Dayananda and Sohn[17] defined a new method for the

determination of constant ternary interdiffusion coeffi-

cients using experimental composition profiles. In, Ref 17

the interdiffusion coefficients in ternary alloys were cal-

culated over composition points on either side of the

Matano plane for selected diffusion couples, Cu-Ni-Zn,

Fe-Ni-Al, and Ni-Cr-Al. Here, average interdiffusion

coefficients were used to manipulate the composition

profiles. Next et al.[18] analysed different properties of

ternary metallic systems directly from the composition

profiles. The MultiDiFlux software was developed for

calculating ternary interdiffusion coefficients from the

composition profiles (Cu-Ni-Zn couples were used as an

example).[18] More recently, Dayananda[19] investigated

interdiffusion coefficients in ternary diffusion from dif-

fusion constraints at the Matano plane. The diffusion

constraints interlink the compositions, composition gra-

dients and interdiffusion fluxes at the Matano plane in a

ternary diffusion couple. In addition, in, Ref 19 compo-

sition-dependent interdiffusion coefficients were calcu-

lated from composition profiles in a ternary alloy system

using several techniques.

The square root diffusivity (SQRD) method[20] can be

directly applied to multicomponent (ternary and higher

systems) inverse interdiffusion problems. We will call the

application of this method for the case of a single diffusion

couple as the modified square root diffusivity (MSQRD)

method. This is to be distinguished from the application of

this method to two or more diffusion couples. Thompson

et al.[21] investigated applications of square root diffusivity

for ternary (Ni-Al-Cr) alloys using two couples. Jaques and

LaCombe[22] studied the MSQRD method equations for

determining ternary diffusivities from a single couple.

Multicomponent diffusivities using one diffusion couple or

two diffusion couples were analysed in Ref 23, 24 on the

basis of the estimated uncertainties. In this case, the SQRD

method predicted errors that were approximately equal to

the experimental error, while the MSQRD method had

much larger errors that could not be predicted without a

prior knowledge of the interdiffusivity, especially for dif-

fusion couples with certain composition differences. In,

Ref 25 the SQRD method was used to measure diffusivities

in Ni-Cr-Al-Mo alloys. In, Ref 26, the use of the SQRD

method for five and six component alloys is also discussed.

In, Ref 27-30 the different available methods were applied

for solution of the inverse interdiffusion problem in ternary

systems. There, the composition profiles were analysed by

employing several programs such as MultiDiFlux, VisiMat

and a graphical user interface.

The scheme of the present computational study on the

ternary interdiffusion problem is first to produce discretised

composition profiles (without superimposing artificial

noise that is usually used to simulate experimentally

obtained profiles). This is followed by investigating the

inverse interdiffusion problem using the MSQRD method

and the Fitting Method. The Fitting Method simultaneously

fits the required functional form into the data obtained for

two composition profiles. Such obtained fitted parameters

are used then to determine the constant interdiffusion

matrix.

2 Theory and Analysis

The governing equations for diffusion in the ternary system

can be written as[7]:

J. Phase Equilib. Diffus. (2019) 40:522–531 523

123



oC1

ot
¼ eD11

o2C1

ox2
þ eD12

o2C2

ox2
ðEq 1Þ

oC2

ot
¼ eD21

o2C1

ox2
þ eD22

o2C2

ox2
ðEq 2Þ

where C1 and C2 are compositions that can be functions of

distance x and time t and C3 ¼ 1� C1 � C2.

eD11; eD12; eD21 and eD22 are the four interdiffusion coeffi-

cients and they are assumed to be constant, independent of

composition. It is assumed that the reference atomic

component is C3. The initial conditions are:

CI ¼ �CI þ
DCI

2
; for x[ 0; t ¼ 0 ðEq 3Þ

CI ¼ �CI �
DCI

2
; for x\0; t ¼ 0 ðEq 4Þ

in which DCI is a function of distance and time. The

boundary conditions are:

CI ! �CI þ
DC0

I

2
; for x ! 1; t[ 0 ðEq 5Þ

CI ! �CI �
DC0

I

2
; for x ! �1; t[ 0 ðEq 6Þ

where

�CI ¼ CIð Þ�1þ CIð Þ1
� �

=2 ðEq 7Þ

DC0
I ¼ CIð Þ1� CIð Þ�1 ðEq 8Þ

In Eq 7 and 8, CIð Þ�1¼ CI x ! �1ð Þ and CIð Þ1¼
CI x ! 1ð Þ are the two end (terminal) compositions of

component I. According to the definition of the composi-

tion vector (see Ref 31) DC½ � is then defined as

DC½ � ¼ DC0
1 ;DC

0
2

� �

.

The diffusion Eq 1 and 2 are to be solved with the initial

and boundary conditions presented in Eq 3-8.

The exact solution for the compositions C1 and C2 can

be presented in the following closed form7:

C1 ¼ C1 þ Kþ
1 U

p
r1xð Þ þ K�

1 U
p
r2xð Þ ðEq 9Þ

C2 ¼ C2 þ Kþ
2 U

p
r1xð Þ þ K�

2 U
p
r2xð Þ ðEq 10Þ

in which the error function U is given by:

U qð Þ ¼ 2p
p
r
q

0

e�q2dq ðEq 11Þ

and

Kþ
1 ¼ r1 � Eð ÞDC0

1 � FDC0
2

2 r1 � r2ð Þ ðEq 12Þ

K�
1 ¼ r2 � Eð ÞDC0

1 � FDC0
2

2 r2 � r1ð Þ ðEq 13Þ

Kþ
2 ¼ r1 � Hð ÞDC0

2 � GDC0
1

2 r1 � r2ð Þ ðEq 14Þ

K�
2 ¼ r2 � Hð ÞDC0

2 � GDC0
1

2 r2 � r1ð Þ ðEq 15Þ

and

E ¼
eD11

eDij

�

�

�

�

; F ¼
eD12

eDij

�

�

�

�

; G ¼
eD21

eDij

�

�

�

�

; H ¼
eD22

eDij

�

�

�

�

ðEq 16Þ

r1 ¼
1

2
H þ E þ H � Eð Þ2þ4FG

h i1
2

� �

ðEq 17Þ

r2 ¼
1

2
H þ E � H � Eð Þ2þ4FG

h i1
2

� �

ðEq 18Þ

For the inverse part of the problem, the fitting functions

for the two compositions are:

C1 ¼ C1 þ a11U a xð Þð Þ þ DC0
1

2
� a11

� �

U b xð Þð Þ ðEq 19Þ

C2 ¼ C2 þ
DC0

2

2
� a22

� �

U a xð Þð Þ þ a22U b xð Þð Þ ðEq 20Þ

Here, a11; a22; a and b are fitting parameters.

It is known (see, for example, 32) that when the com-

position vector DC½ � is aligned with the direction of an

eigenvector of the interdiffusion matrix, the coefficients of

one error function in Eq 19 and 20 will be zero. In the

plane ðC1;C2Þ the angle /c of the composition vector is

defined as tan/c ¼ DC0
2=DC

0
1.
[31] The corresponding

angles of the major and minor eigenvectors, /1 and /2, can

then be defined as tan/1 ¼ r1 � Eð Þ=F and

tan/2 ¼ r2 � Eð Þ=F.[31]
For the generation of the composition profiles for each

test simulations, we have used the closed form solution

given by Eq 9-20. Following that, the profiles were dis-

cretised at the grid in the x-direction containing 200 points.

The choice of time and the total width of the diffusion zone

in this procedure was consistent with the standard resolu-

tion of the experimental measurements of the interdiffusion

profiles of 2-3 lm.

2.1 Calculation to Recover eDij Using the Fitting

Method

To calculate the interdiffusion matrix, the first step is to

calculate the inverse interdiffusion matrix E;F;G;Hf g.
Once E;F;G;Hf g is recovered, one then calculates

1
EH�FG

¼ det eD
� �

and the matrix feD11; eD12; eD21; eD22g can

be found by multiplying H;�F;�G;Ef g by det eD
� �

. The

components of the matrix E;F;G;Hf g can be calculated as

follows:
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E ¼ s1 DC0
1 � 2a11

	 


DC0
2 � 2a22

	 


� 4s2a11a22
	 


=

�2DC0
2a11 þ DC0

1 DC0
2 � 2a22

	 
	 


ðEq 21Þ
H ¼ s1 þ s2 � E ðEq 22Þ
F ¼ 6a11 s1 � s2ð Þ � s1 þ E ðEq 23Þ
G ¼ 6a22 s1 � s2ð Þ þ s1 � E ðEq 24Þ

Here, s1 and s2 are related to the fitting parameters a, b

and time t as:

s1 ¼ 4ta2 and s2 ¼ 4tb2 ðEq 25Þ

2.2 Calculation to Recover eDij Using the MSQRD

Method

In this method, the diffusivity eD
� �

is replaced by the matrix

of the square root diffusivity r½ � in an obvious way [20,33]:

eD
� �

¼ r½ � r½ � ðEq 26Þ

The amount of atoms I that is passing through the

Matano plane at x ¼ 0 in time t can be calculated as:

SI ¼ r
þ1

0

CI � CIð Þ1
	 


dx ðEq 27Þ

The square root diffusivity analysis for the ternary sys-

tems is based on the solution to a system of linear equa-

tions. The first two of them have the following form:

SI ¼ �
ffiffiffi

t

p

r

ri1DC
0
1 þ ri2DC

0
2

	 


ðEq 28Þ

where rij is an element of r½ �.
In matrix notation, Eq 28 can be written as:

S½ � ¼ �
ffiffiffi

t

p

r

r½ � DC½ � ðEq 29Þ

When two compact diffusion couples (i.e., diffusion

couples with a nearly constant diffusivity) are prepared that

have diffusion paths that cross at x ¼ 0, Eq 28 provides

four equations to calculate the four elements of r½ �. This is
the SQRD method. Another two equations can be derived

from the ternary generalization of the Boltzmann–Matano

analysis as [20]:

Z

CI x
0ð Þ

CIð Þ1

xdCI ¼ �2t
X

2

j¼1

eD
oCj

ox

�

�

�

�

�

x0

ðEq 30Þ

Evaluating Eq 30 at x0 ¼ 0, the equation is reduced to:

SI ¼ �2t
X

2

j¼1

eDrC0
j ðEq 31Þ

or

S½ � ¼ �2t eD
� �

rC0
� �

ðEq 32Þ

where rC0 is treated as the composition gradient of

component j at x ¼ 0. Combining Eq 26, 29 and 30 to

extract S½ � and eD
� �

gives:

DC½ �
2

ffiffiffiffiffi

pt
p ¼ r½ � rC0

� �

ðEq 33Þ

Equation 33 give another two linear equations at x ¼ 0.

When Eq 33 is applied to two diffusion couples that have a

crossing diffusion path at x = 0, there are now four linear

equations to find the four components of the matrix r½ �.
This is an alternate form of the SQRD method. The pre-

ferred method depends on whether SI or rC0
I has the

lowest experimental error.

The MSQRD method combines Eq 28 from the SQRD

method with a similar equation from the alternate method

that involves DC0
I and rC0

I . That provides four equations

to calculate the four elements of r½ � from one diffusion

couple. Therefore, the MSQRD method requires the com-

position vector, concentration gradients, and atoms that

have crossed the Matano plane, whereas the Fitting

Methods require both the composition vector and the end

compositions.

3 Analysis of Diffusion Paths in the Ternary
Diagram

Analysing the diffusion path is one of the standard steps in

the computation of the interdiffusion in a three (or more)

component alloy system. The information on the end

compositions of the couples together with the composition

vectors is given in Table 1.

In our investigation, we have chosen four different

interdiffusion matrices with the same diagonal terms and

different off-diagonal ones. The four interdiffusion matri-

ces (scaled to the highest component eD11) are given in

Table 2 together with their eigenvalues k1; k2f g and

eigenvectors v1½ � and ½v2�.
In Fig. 1a and d, we present the minor and major

eigenvector directions together with three composition

vector directions for the Cases-i–iv. It is clear that for

Case-i the composition vector of the BC-1 is near the

directions of the minor eigenvector; and for Case-ii and

Case-iv the composition vector of the BC-2 is near the

directions of the minor eigenvectors.

Diffusion paths for the couples are presented in the

ternary diagram in Fig. 2, from which it is clear that, in

general, as it should be, the diffusion paths are not straight.

The shape is determined by the interdiffusion matrix and

the composition vector.[31] In agreement with the
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Table 1 The end compositions (in molar fractions) and corresponding composition vectors for three chosen diffusion couples

Diffusion couple C1ð Þþ1 C2ð Þþ1 C1ð Þ�1 C2ð Þ�1 [DC]

BC-1 0.50 0.0 0.33 0.33 [0.18, - 0.33]

BC-2 0.50 0.17 0.25 0.08 [0.25, - 0.08]

Table 2 Interdiffusion

matrices, their eigenvalues and

corresponding eigenvectors for

four considered cases

Case
eD 3ð Þ=eD

3ð Þ
11

k1k2f g [v1] ½v2�

Case-I 1:0 0:5
0:1 0:5

� 


1:08; 0:41f g ½0:98; 0:17� [- 0.65, 0.76]

Case-ii 1:0 �0:1
0:1 0:5

� 


0:98; 0:52f g [0.98, 0.20] [0.20, 0.98]

Case-iii 1:0 0:5
�0:1 0:5

� 


0:86; 0:64f g [0.96, - 0.27] [- 0.81, 0.59]

Case-iv 1:0 �0:1
�0:1 0:5

� 


1:02; 0:48f g [- 0.98, 0.19] [- 0.19, - 0.98]

Fig. 1 Major (short-dashed red lines) and minor (long-dashed blue lines) eigenvectors shown together with two composition vectors (solid black

lines) for the diffusion couples BC-1 and BC-2 for (a) Case-i; (b) Case-ii; (c) Case-iii; (d) Case-iv
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conclusions in [31] it can be seen that, for the BC-1 couple,

the shape of the diffusion paths are nearly straight lines for

the diffusion matrices in Case-i and Case-iii (directions of

the composition vectors are reasonably close to the minor

eigenvalue directions). In addition, it is interesting to see

that the diffusion path in the BC-2 couple does follow

somewhat nearly (but not exactly!) a straight line for all

four matrices, despite the fact that the BC-2 composition

vector is closed to the minor eigenvector only for Case-ii

and Case-iv. This is, of course, not in contradiction with

the prediction in [31] because each composition vector must

have the maximum deviation from the straight diffusion

path (for a given interdiffusion matrix). For BC-2, this

maximum deviation is clearly very small.

4 Investigating the Interdiffusion Matrix

The present analysis was carried out for the purposes of

comparing two methods for solving an inverse interdiffu-

sion problem. Another purpose was to determine whether

or not the use of one compact diffusion couple can give

reliable results for [D] if its eigenvectors are not known

before doing the experiments. As was described above, for

the testing calculations, we have chosen four different

interdiffusion matrices and two diffusion couples with

different boundary conditions. For analysis of the Fitting

Method and the MSQRD method (as discussed above), the

composition profiles were computed using a closed form

solution and then they were discretised at a convenient step

Table 3 Interdiffusion

coefficients calculated using

several approaches from the

original profiles obtained from

closed form solution with the

couple BC-1

eD11=eD11
eD12=eD11

eD21=eD11
eD22=eD11

Case-i 1.0 0.5 0.1 0.5

Cftool 1.0525 (5.2) 0.4949 (1.0) 0.0532 (46.8) 0.4753 (4.9)

Origin 0.9435 (5.6) 0.4314 (13.7) 0.0494 (50.6) 0.4718 (5.6)

MSQRD method 0.9401 (6.0) 0.4605 (7.9) 0.1101 (10.1) 0.5001 (0.0)

eD11=eD11
eD12=eD11

eD21=eD11
eD22=eD11

Case-ii 1.0 - 0.1 0.1 0.5

Cftool 1.0104 (1.0) - 0.0903 (9.7) 0.0524 (47.6) 0.5069 (1.4)

Origin 1.0066 (0.6) - 0.0913 (8.7) 0.0505 (49.5) 0.5055 (1.1)

MSQRD method 0.9949 (0.5) - 0.1014 (1.4) 0.0830 (17) 0.4937 (1.3)

eD11=eD11
eD12=eD11

eD21=eD11
eD22=eD11

Case-iii 1.0 0.5 - 0.1 0.5

Cftool 1.1709 (17) 0.6496 (30) - 0.0434 (56.6) 0.5302 (6.0)

Origin 1.1933 (19) 0.6744 (25) - 0.0201 (79.9) 0.5302 (6.0)

MSQRD method 0.9805 (1.9) 0.4903 (1.9) - 0.1000 (0.0) 0.5000 (0.0)

eD11=eD11
eD12=eD11

eD21=eD11
eD22=eD11

Case-iv 1.0 - 0.1 - 0.1 0.5

Cftool 0.9730 (3.9) 0.1609 (!) - 0.0487 (51.3) 0.4818 (3.6)

Origin 0.9613 (4.9) 0.1513 (!) - 0.0483 (51.7) 0.4823 (3.5)

MSQRD method 0.9938 (0.6) - 0.1017 (1.7) - 0.1059 (5.9) 0.4977 (0.5)

The percentage of the relative error is given in parentheses next to each number. An exclamation sign is

used if the sign was not correctly reproduced (relative error is then over 100%)

Fig. 2 Comparison of diffusion paths for BC-1 and BC-2. Cases-i

and -iii are represented by and solid red dashed green lines whereas

the dashed blue and solid green lines represent Cases-ii and -iv,

respectively (Color figure online)
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in space that corresponds to a standard experimental res-

olution of 2-3 lm. The Fitting Method is then used for the

recovery of the matrix of interdiffusion coefficients. For the

application of the Fitting Method, there are two main

procedures available: first, using specialized software, e.g.

Origin-17, a simultaneous fitting of two related functions

into two sets of data can be obtained; second, the manual

iterative manipulation of the fitting functions can be per-

formed using conventional software (e.g. Cftool from

MATLAB). The results of these two approaches of the

Fitting Method will be called Origin and Cftool, respec-

tively. The obtained fitted parameters permit the immediate

determination of the ternary interdiffusion matrix .

Application of the MSQRD method involves the cal-

culations of the Matano plane, the gradient of compositions

at this plane, rC0
i , and the integrated atomic fluxes, Si,

passing through the Matano plane. Usually, the location of

the Matano plane is calculated on the basis of the mass

equilibrium for individual atomic components using the

trapezoidal method and is determined from the conserva-

tion condition:

r
xM

�1
1� C xð Þð Þdx ¼ r

þ1

xM

C xð Þdx; ðEq 34Þ

where xM is the position of the Matano plane. For the

closed form solution given by Eq 19 and 20, the Matano

plane must be located at the average composition point, xA

where C1 xAð Þ ¼ C1, C2 xAð Þ ¼ C2;C3 xAð Þ ¼ C3. The (pos-

sible) deviation of xM from xA can then be treated as the

indication of the accuracy of the constant interdiffusion

matrix approximation. In the present study, for the simu-

lated composition profiles, this deviation is of the order of

the computational error (14 decimal places as a default in

Matlab) and can be neglected. The composition gradients

at the Matano plane are calculated by using the fourth order

finite difference approximation.

The calculated inverse interdiffusion coefficients are

shown in Table 3 for the diffusion couple BC-1 for the

application of Cftool and Origin and the MSQRD methods.

In this couple, in all four Cases, it is clear that the MSQRD

method gives the best agreement with the input interdif-

fusion matrix for the diagonal and off-diagonal terms with

a maximum of 6 and 10% relative errors, respectively.

Fig. 3 Comparison of composition profiles for the couple BC-1 using

a different set of interdiffusion matrices obtained from the Cftool,

Origin and MSQRD methods with original profiles: (a) Case-i, (b)

Case-ii, (c) Case-iii, (d) Case-iv. The composition profile for C3 is

shown for completeness
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Results for the two Fitting Methods (both implementa-

tions) is much worse than for the MSQRD method, espe-

cially when the off-diagonal terms are considered, with a

relative error of up to 80%. (In Case-iv, the Fitting Meth-

ods result in the wrong sign for the one off-diagonal term.)

In these cases, the Origin implementation of the Fitting

Methods gives the highest maximum of the relative errors

for the diagonal terms (up to 19%). The Cftool imple-

mentation of the Fitting Methods gives somewhat better

results than the Origin implementation.

In Fig. 3, comparisons of composition profiles for the

diffusion couple BC-1 for the four cases are presented. The

matrices obtained using the FittingMethods and theMSQRD

method have been used for generating the back-test com-

position profiles that were plotted along with the initial set of

profiles. It can be seen that the composition profiles obtained

using all different interdiffusion matrices are almost the

same as the initial composition profiles. In this case, the big

differences are present only for the off-diagonal coefficients

of the interdiffusion matrices (up to a factor of 2 when the

sign is correct). It is indirect evidence that accurate estima-

tion of the off-diagonal (and the diagonal!) interdiffusion

coefficients using a single diffusion couple experiment is

very difficult and would require a very high accuracy in the

measurement of the composition profiles.

Next, the analysis of the diffusion couples using the

Fitting Methods and the MSQRD method is investigated

using another standard ternary couple BC-2. Results of this

analysis are presented in Table 4.

Analysis of this couple shows that for all the Cases, the

results of the MSQRD method are the most accurate for the

diagonal (up to 7.5%) and off-diagonal (up to 19%) terms.

Both implementations of the Fitting Methods give the least

accurate results for all cases, especially for the off-diagonal

terms. This effect can be attributed to the fact that the

diffusion paths for this couple are all almost straight (see

Fig. 2). As a result, the composition profiles follow an

effective single error function and fitting them into a two

error functions form becomes very difficult.

Both the Origin and Cftool implementation of the Fitting

Methods fail to reproduce the sign of some of the off-diag-

onal terms (for all the Cases). The MSQRD method always

gives the correct sign of the off-diagonal terms. The con-

clusion can be drawn that the MSQRD method is the pre-

ferred method for the analysis of a single diffusion couple. In

addition, to ensure reliability of this method, the accuracy of

the experimentally obtained profiles should be as high as

possible.

In Fig. 4, the comparison of the composition profiles for

the coupleBC-2 for all theCases are presented. The back-test

Table 4 Interdiffusion

coefficients calculated using

several approaches from the

original profiles obtained from

the closed form solution with

the couple BC-2

eD11=eD11
eD12=eD11

eD21=eD11
eD22=eD11

Case-i 1.0 0.5 0.1 0.5

Cftool 0.8658 (13.4) - 0.1215 (!) 0.1537 (53.7) 0.4282 (14.5)

Origin 0.8539 (14.6) - 0.1250 (!) 0.1556 (55.6) 0.4266 (14.7)

MSQRD method 0.9992 (0.1) 0.4979 (0.4) 0.1189 (19.0) 0.4626 (7.5)

eD11=eD11
eD12=eD11

eD21=eD11
eD22=eD11

Case-ii 1.0 - 0.1 0.1 0.5

Cftool 1.0224 (2.2) 0.0306 (!) 0.0503 (49.7) 0.5117 (2.3)

Origin 1.0226 (2.3) 0.0308 (!) 0.0500 (50.0) 0.5116 (2.3)

MSQRD method 0.9934 (0.7) - 0.0893 (16.1) - 0.1017 (1.7) 0. 5043 (0.9)

eD11=eD11
eD12=eD11

eD21=eD11
eD22=eD11

Case-iii 1.0 0.5 - 0.1 0.5

Cftool 0.9071 (9.3) 0.0940 (80.6) 0.0228 (!) 0.4524 (9.5)

Origin 0.9061 (9.4) 0.0942 (80.6) 0.0287 (!) 0.4526 (9.5)

MSQRD method 0.9939 (0.4) 0.5117 (2.4) - 0.0966 (3.4) 0.4934 (1.3)

eD11=eD11
eD12=eD11

eD21=eD11
eD22=eD11

Case-iv 1.0 - 0.1 - 0.1 0.5

Cftool 0.9787 (2.1) 0.0198 (!) - 0.0497 (50.2) 0.4887 (2.3)

Origin 0.9780 (2.2) 0.0197 (!) - 0.0498 (50.2) 0.4889 (2.2)

MSQRD method 0.9947 (0.5) - 0.0893 (10.7) - 0.1017 (1.7) 0.5043 (0.9)

The percentage of the relative error is given in the parentheses next to each number. The exclamation sign

is used if the sign was not correctly reproduced (relative error is then over 100%)
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profiles obtained using the MSQRD method (as well as the

Fitting Methods!) gives very good agreement with the initial

profiles. This again is indirect evidence that the use of a

single diffusion couple for the analysis of the full interdif-

fusion matrix is difficult. Another important conclusion is

that the back-tests of the composition profiles must not be

used as the only proof of the reliability of the methods used.

From Fig. 3 and 4, it is clear that, despite some large

differences in the matrices (especially in the off-diagonal

terms), the back-tests of the composition profiles are all

surprisingly close to the original ones. The maximum

deviations are for the C1 profiles, and only up to 0.009

atomic fractions. In, Ref 10 a different Fitting Method was

found to give a consistently good accuracy for a similar

single diffusion couple applications. There, the accuracy of

the fitting procedure was set to an exceptionally high level,

up to 10-14 order. Together with our results, this provides

strong evidence that, to be able to use a single diffusion

couple for a reliable interdiffusion analysis, the experi-

mental data must be obtained with a very high level of

accuracy (which is, of course, impossible in a real exper-

iment). The use of two diffusion couples should be treated

as the best option for the application of the SQRD

method[23,24] to the experimental data.

Nonetheless, it is highly recommended that the MSQRD

method (with increased accuracy in numerical differentia-

tion and integration) is used for the interdiffusion analysis

using one compact couple.

5 Conclusions

The Fitting (into a closed form error-function solution)

Method and the MSQRD method were used for the analysis

of the inverse interdiffusion problem in a ternary alloy

(using one diffusion couple) with a constant interdiffusion

matrix. The interdiffusion coefficients have been deter-

mined from the initially generated composition profiles

obtained from the closed form solution.

In all the diffusion couples, theMSQRDmethod gives, on

average, the best agreement with the initial matrices and

profiles. The MSQRD method gives an error up to only 2%

for the diagonal terms for most cases.With respect to the off-

diagonal terms, it was shown that, for the cases considered,

the MSQRD method always accurately reproduced the sign

Fig. 4 Comparison of composition profiles for the couple BC-2 using a different set of interdiffusion matrices obtained from the Cftool, Origin

and MSQRD methods with original profiles: (a) Case-i, (b) Case-ii, �) Case-iii, (d) Case-iv

530 J. Phase Equilib. Diffus. (2019) 40:522–531

123



of the terms. This is not the case for the two FittingMethods.

The accuracy of the MSQRD method could, in principle, be

increased by making use of the higher-order accuracy finite

difference approximations to the composition gradients.

In addition, strong evidence has been presented that the

back-tests of the composition profiles must not be used as

the only proof of the reliability of the methods used.
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